ﬁ‘ Discrete Event Dynamic Systems: Theory and Applications, 14, 267-307, 2004
i" © 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Perturbation Analysis of Multiclass Stochastic
Fluid Models

GANG SUN gsun@bu.edu
Department of Manufacturing Engineering and Center for Information and Systems Engineering, Boston
University, Brookline, MA 02446

CHRISTOS G. CASSANDRAS cge@bu.edu
Department of Manufacturing Engineering and Center for Information and Systems Engineering, Boston
University, Brookline, MA 02446

CHRISTOS G. PANAYIOTOU christosp@ucy.ac.cy
Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
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1. Introduction

In this paper, we use the framework of stochastic fluid models (SFM), together with
perturbation analysis (PA) techniques, in order to develop gradient estimators of various
performance metrics for queueing system with multiple customer classes. Such estimators
can be used for on-line control and performance optimization of communication networks
and manufacturing systems, as described in some of our previous work (Cassandras et al.,
2002; Yu and Cassandras, 2002). In particular, we are interested in using threshold-based
controllers and have applied infinitesimal perturbation analysis (IPA) to obtain sensitivity
estimators for loss and workload metrics with respect to controllable threshold parameters.
In Cassandras et al. (2002), a single-node single-class SFM was analyzed. In Cassandras et
al. (2003), we considered a node with infinite buffer capacity which processes two traffic
streams: one traffic stream is uncontrolled and the other is subject to threshold-based
buffer control. In Sun et al. (2002), we provided some results for a similar two-class model
with finite buffer capacity. In this paper, we analyze a finite-capacity model with M > 2
traffic classes and associated thresholds.

SFMs provide an alternative to queueing models when the latter become impractical
due to huge traffic volumes and complex stochastic processes that cannot be handled by
tractable analytical derivations. The SFM paradigm allows the aggregation of multiple
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events, associated with the movement of individual customers (e.g., packets or parts), into
a single event associated with a rate change. It foregoes the identity and dynamics of
individual customers and focuses instead on the aggregate flow rate. SFMs have recently
been shown to be especially useful for analyzing various kinds of high-speed networks
(Cassandras et al., 2002, 2003; Wardi and Melamed, 2002; Kesidis et al., 1996; Kumaran
and Mitra, 1998; Miyoshi, 1998; Liu et al., 1999; Yan and Gong, 1999). As argued in
Cassandras et al. (2002, 2003), such models may not always be accurate for the purpose of
performance analysis, but they capture the salient features of the underlying ‘‘real”’
system in a way which is often sufficient to solve control and optimization problems. In
this case, estimating the gradient of a given cost function with respect to key parameters
becomes an essential task. PA methods (Ho and Cao, 1991; Cassandras and Lafortune,
1999) are therefore suitable, if appropriately adapted to a SFM viewed as a discrete-event
system (Cassandras et al., 2002, 2003; Wardi et al., 2002; Liu and Gong, 2002). From a
technical standpoint, performance metrics associated with a SFM can often be shown to be
Lipschitz continuous with respect to controllable parameters of interest. This generally
results in unbiased IPA estimators associated with a SFM, whereas the same is usually not
true for the corresponding discrete event system. For example, IPA estimators have been
known to be biased when applied to queueing models with customer blocking or with
multiple customer classes (Cao, 1987). In addition, the estimators are generally simple to
implement and can be evaluated based on data observed on a single sample path of the
actual (discrete-event) system. Thus, we use the SFM to derive the form of a gradient
estimator, but can then implement it using actual system data. Even though using SFM-
based estimators on an actual system may introduce a bias, simulation results indicate that
gradient estimators obtained in this fashion work well with gradient-based optimization
algorithms.

In a single-class SFM of a communication network node with threshold-based buffer
control, IPA was shown to yield simple nonparametric sensitivity estimators for packet
loss and workload metrics with respect to the threshold parameter (Cassandras et al.,
2002). In the infinite-capacity two-class case studied in Cassandras et al. (2003), the
estimators generally depend on some traffic rate information, but not on the stochastic
characteristics of the arrival and service processes involved. In this paper, we consider
a finite-capacity SFM with multiple (M > 2) classes viewed as different traffic streams
(see Figure 1). Each stream is associated with a threshold and is subject to threshold-
based control. The finite buffer capacity and the presence of M > 2 classes cannot be
handled as straightforward generalizations of Cassandras et al. (2002) and our analysis
leads to more complex estimator forms, as we shall see, although the basic theoretical
setting for IPA is similar to previous work such as Cassandras et al. (2002) and Yu and
Cassandras (2002). Thus, the main contributions of this paper are (i) the derivation of
IPA gradient estimators for multiple class-dependent loss metrics and a workload
metric with respect to the threshold parameters in the model and (ii) proving that these
estimators are unbiased. In the general case where M > 2, the IPA estimators we
derive are obtained through recursive equations. In the case where M =2, we are
further able to exploit the structure of the sample paths of the SFM and obtain explicit
closed-form expressions for the IPA estimators that involve readily observable sample
path data.
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Figure I. Stochastic fluid model (SFM) with M = 3 classes.

The paper is organized as follows. First, in Section 2, we present our model and define
performance metrics and parameters of interest. We also present a partition of a sample
path into time intervals defined by specific events that facilitate the PA task. In Section 3,
we derive IPA estimators for the sensitivities of the traffic loss volumes for all classes and
for the system workload with respect to any one controllable threshold parameter. In
Section 4, we analyze the simpler two-class model exploiting the structure of its sample
paths and derive closed-form (as opposed to recursively obtained) IPA estimators. In
Section 5, we establish the unbiasedness of the derived estimators and conclude with
Section 6.

2. SFM of a Multiclass Queueing System

We consider a single node with a common FIFO buffer fed by M sources. Each source
defines a ‘‘class’ m,m =1,...,M, and is associated with a threshold T,,, where we
assume 0 <7 <---<T, <---<Ty. By convention, we set T,=0. If the buffer
content is above the value T,,, all traffic from class m is rejected (which implies that all
traffic from classes labeled i < m are also rejected). In the context of communication
networks, it is worth noting that this model captures the operation of the differentiated
services (DS) protocol that has been proposed for supporting quality of service (QoS)
requirements (Blake et al., 1998; Heinanen et al., 1999; Panayiotou and Cassandras, 2001).
Class M corresponds to the top-priority traffic and if all such traffic is to be accepted, then
T, is simply the physical buffer capacity of the node.

The inflow rate of class m at time ¢ is denoted by «,,(¢) and the corresponding loss rate
by 7,,(?). The service rate is denoted by () and let x(¢) be the buffer level at time ¢. For the
purpose of our analysis, we choose any one of the thresholds, say 75, as the one with
respect to which we wish to carry out sensitivity analysis and denote this parameter by 6.
We then write the m-th class loss rate as y,,(6; ) and the buffer content as x(0; ) to express
their dependence on the choice of 6. We also assume that the processes
{a,()},m=1,...,M, and {f(z)} are independent of 0 and cannot take negative
values; other than that, these processes are only assumed to be bounded and right-
continuous piecewise continuously differentiable w.p.1. The time variable ¢ is confined to
an interval [0, T] for a given fixed 0 < T < oo. It will also be convenient in our analysis to
make use of the following definition, for any m = 1,...,M:
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An(0)= Y o, (1) = (1) (1)

n=m
and observe that
A, (1) > A, 1(1), m=1,....M—1 (2)

Figure 1 depicts the SFM described above with M = 3 and T; set to the physical capacity
of the buffer.

We assume that the parameter 6 is confined to a bounded (compact) interval
O = (Ts_1,T5,,) and let £(0) : ® >R be any random function defined over the
underlying probability space (Q, #, P). Strictly speaking, we write .# (6, ®) to indicate
that this sample function depends on the sample point w € Q, but will suppress o unless it
is necessary to stress this fact. In what follows, we consider two performance metrics, the
m-th class loss volume L,, 7(6),m = 1, ..., M, and the cumulative workload (or just work)
07(0), defined on the interval [0, T] as follows:

T
L (0) = /0 on(0:00d,  m=1,....M 3)

0,(0) = / x(0; 1)de (@)

Note that from the workload metric it is possible to obtain a delay metric using appropriate
forms of Little’s law (see, for example, Wardi and Melamed, 2001).

Viewed as a discrete-event system, an event in a sample path of the above SFM may be
either exogenous or endogenous. An exogenous event is one that causes a change in the
dynamics of x(0; r) due to changes in one or more of the processes {«,, (1)}, m=1,..., M,
and {f(¢)}, which are independent of 0. In particular, we will be interested in changes in
the sign of A,,(¢) in (1) for some m = 1, ..., M and define an associated exogenous event
e, as one where the buffer content leaves the value x(0;¢) = T,,, for some m = 0,...,M,
after it has maintained it for some finite length of time. An endogenous event on the other
hand, denoted by e,, is defined to occur whenever the buffer content reaches the value
x(0;t) =T, forany m = 0,..., M. Note that x(¢; 0) = T,, for all 7 in some interval [s,, s,]
implies that A,,(r) >0 and A,, | < 0. In other words, the arriving flow rate from the
M — m — 1 highest priority classes is less than the capacity f(¢); thus, a portion of the
a,,(f) flow is admitted, while there is some excess which is rejected. As a result, we
observe the period with constant x(#;0) = T,,. At t = s,, if the sign of either A,,(¢) or
A,, () changes, then this interval will end with an e, event.

For the purpose of our analysis, we partition the sample path into cycles defined by
successive exogenous events e, (the term ‘‘cycle’’, however, should not be interpreted as
implying any sort of regenerative property). Suppose that a sample path includes K such
cycles, where K is a random number which is locally independent of 6. Denote the
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Figure 2. Typical sample path segment for a SFM with M = 5 classes.
corresponding exogenous event times by &,k =1,...,K and let ¢ | =T, so we can
express cycles as intervals %, = [&, &, ), k=1,...,K. We further denote all
endogenous event (ep) times within %, by v ;,i=1,...,S,. By convention, let

Vio = Cc and vig o = i, 80 € is divided into periods
Pk,iE[Vk,ndHl)v i=0,...,8

and the corresponding open interval (v, ;, v, 1) is denoted by p{ ;. From our definition of
e, and e,, we can immediately see that throughout the last period, Prs,» of Gy, x(0;1) is
“flat”’, that is, x(6;¢) = T,, for some m =0, ..., M; we shall refer to this as a Type I
interval. During all other periods p;;, i =0,...,5, — 1, x(0;t) takes values strictly
between any two adjacent thresholds; we shall refer to these as Type II intervals. A typical
sample path for the case of M = 5 is shown in Figure 2.

During Type II intervals py;,i =0,...,S, — 1, if T,,_; <x(0;t) < T, for tepy;, the
buffer content dynamics are 1

dx(t)

o = A, (1) )

On the other hand, during Type I intervals p, g, , the buffer content dynamics are

art 0 (©6)

With this discussion in mind, we may also view the SFM as a hybrid dynamic system in
which the buffer content satisfies the dynamics (5)—(6) with switches between M + 1
““modes’’ caused by the discrete events e; and e, we have defined above.

3. IPA with Respect to Thresholds

Our objective here is to estimate the derivatives dE[L,,7(0)]/d0, m =1,...,M and
dE[Q7(0)]/d0, through the sample derivatives dL, r(0)/d0, m=1,...,M and
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dQr(0)/d0 which are commonly referred to as the IPA estimators (Ho and Cao, 1991;
Cassandras and Lafortune, 1999). Henceforth, we shall use the ‘‘prime’’ notation to
denote derivatives with respect to 6, so the sample derivatives above are denoted by
L}, 7(0) and Q%(0), respectively. For any sample function .#(6), an IPA-based estimate
Z'(0) of the performance metric derivative dE[Z(0)]/d0 is unbiased if
dE[Z£(0)]/d0 = E[£'(0)] (see Ho and Cao, 1991; Cassandras and Lafortune, 1999).
Unbiasedness is the principal condition for making the application of IPA useful in
practice, for reliable sensitivity analysis purposes or for use in conjunction with control
and optimization methods that employ stochastic gradient-based techniques. We proceed
by first evaluating the sample derivatives L;, ;(0) and Q7(0) in terms of event time
derivatives dv, ;/d0, which we also denote by V;,i’ and then concentrate on the evaluation
of these event time derivatives based on observable quantities along a given sample path.
Similar to our definition of A,,(¢) in (1), let us also define

M

Armk,i = Z %(Vk,i) - ﬁ("k,i) (7)

n=m

Before proceeding, let us identify conditions under which the sample derivatives involved
exist. Recall that any exogenous event time is locally independent of 0, whereas any
endogenous event time is generally a function of 0. Excluding the possibility of the
simultaneous occurrence of exogenous and endogenous events, the only situation
preventing the existence of sample derivatives involves some 7 such that x(6;¢) = T = 60
and Ay(f) = 0 or Ay, 1(f) = 0; in such cases, the one-sided derivative still exists and can
be obtained through a finite difference analysis (as in Cassandras et al., 2002). However, to
keep the analysis simple, we focus only on the differentiable case by proceeding under the
following technical conditions:

Assumption 1:
a. a,() <o, m=1,...,Mand f(¢) < co for all t€0,T].

b. Forevery € ®, w.p. 1, exogenous and endogenous events may not occur at the same
time.

c. W.p. I, there exists no interval (v;;,v;;+ 1), T >0, such that x(0;r) = T,, for all
t€ (v, vi; + 1), and either A, (t) =0 or A, () = 0.

All three parts of Assumption 1 are mild technical conditions to ensure the existence of
sample derivatives. Regarding part c, as already pointed out, one-sided derivatives may
still be used if a sample path happens to contain a period with constant x(¢; 0) = T, for
somem =1,...,M in which A, (r) = 0orA,,, (r) = 0. Specifically, suppose we change
0 by some AO>0. Then, if A,(r)=0, the change in x(¢),Ax(r) =
x(t;0 4+ AO) — x(1;0) = 0. On the other hand, if Af < 0, then Ax(r) < 0. As a result,
the left and right derivatives with respect to 6 are different.
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3.1.

Class m Loss IPA Derivatives

Using the sample path partition into cycles, we may write (3) as follows:

UEDY //E (0: 1)t (8)

Let us now define

I (0) = /f  l0: 1) 9)

so that we can write

mr(0) = Ai(0) (10)
k=1

and our objective is to evaluate i:nyk(O) forany k = 1, ..., K. For simplicity, we will drop
the index k as we focus on a specific cycle %, in the following.

For the purpose of our analysis, a useful way of grouping periods p; within a typical
cycle is by defining sets associated with each class m = 1,...,M as follows:

1.

Partial Loss Period Set U,,. For any p; € U,,, the buffer content is x(0;¢) = T, for all
tep;, and class m traffic experiences partial loss. In particular, the traffic flows satisfy

A,(f)>0 and A, (1) <0 (11)

so that the processing capacity ff(f) can accommodate the cumulative incoming flow

M a,(f) due to classes m+1,..., M, but not the flow SV o, (¢) that

n=m+17"n n=m’n
includes the next lower priority class m. In this case, the system accepts only the

portion of the class m traffic that can be accommodated and incurs a ‘‘partial’’ loss
rate

m(052) = Ay (1) (12)
The dynamics of x(6;¢) during this period are given by

dx(0;1)
dt*

=0

Formally, we define U,, as follows:

Uy ={p; :x(0;1) =T, tep;}. (13)
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Note that the starting point v; of such a period corresponds to an endogenous event e,
whereas the ending point v; . | corresponds to an exogenous event e; and is, therefore,
locally independent of 6. Also note any one element of U,, is always the last interval of a
cycle; conversely, the last interval of a cycle, pg, provided it is such that x(6;¢) # 0 for all
tepg, must be an element of U,, for some m=1,... M.

2. Full Loss Period Set V,,. During such periods, the buffer content is x(0;¢) > T,
(possibly excluding the starting point v;; for instance, in Figure 2 (v5 1,v3,) €V, but
[V3.1,v32) €V3). In this case, all class m traffic is lost:

Vm(052) = 00, (1) (14)
Formally, we define V,, as follows:
Vm = {pl Z)C(H;l‘) > Tma tepl[')} (15)

3. No Loss Period Set W,,. During such periods the buffer content is x(0;1r) < T,
(possibly excluding the starting point v;) and no class m loss occurs:

Vm(0;2) =0 (16)
Formally, we define W,, as follows:

W, = {p; : x(t) < T,, tep}} (17)

Note that each of the sets above is locally independent of 6 (by a random function f(6)
being ‘‘locally independent’’ of 0 we mean that for a given 0 there exists A0 > 0 such that
for every e (0 — A0, 0 + AO), w.p.1 f(0) = f(0), where A) may depend on both 0 and on
the sample path, and that for any particular m, U,, UV,, UW,, = [0, T) with all sets being
mutually exclusive). Moreover, recall that ps is the only possible period which belongs to
U, and vg | = ;1. Thus, (9) can be written as

S Vit Vs+1
@ =Y Upeva) [ a0 1pset,) [ Ay (18)
j:() V/ Vs
where 1{ - } is the usual indicator function. By differentiating with respect to 6, we obtain
s
/“:n(()) = Z l{pj € Vm} [Mm(t)v;+ 1 OCm(t)Vj/-] - l{pS € Um} .Am,Sv{S (19)
j=0

where the sample derivatives v(0) exist under Assumption 1. From (19), we observe that
the task of evaluating L/, (0) reduces to evaluating v;(0), i = 1,...,S, provided the flow
rates involved in this expression are known.
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3.2. Work IPA Derivative

Similar to the analysis in Section 3.1, we may write (4) as follows:

K Cevt
00 =3 L O (20)
Define
4u(0) = /5 Y 1)

so that we can write

K
07(0) = qx(0) (22)
k=1
in which
d ék+l Cle
q;(0) = —/ x(6; t)dt :/ X(0;1)dt (23)
do 4 &

where we use the fact that &, £, | | are independent of 0. Again, we drop the index k in the
following analysis of a typical cycle €.

Let us first consider the last period pg in a cycle, which is a Type I period. If
x(0;t) =T, # 0 for te pg, we have

X (0;1)=0 (24)
If, on the other hand, x(0;7) = 0 for t€ pg, we have
X(0;0) =1 (25)

Next, let us consider the possible values x(0;¢) may take in any other interval
pi, i =0,...,5 — 1 in the cycle. There are four cases.

Case 1: x(0;v;) =T, #0and T,, < x(0;t) <T,, ., for tep?. In this case,

t

x(@; t) = Tm + / Am+ 1 (t)dt

v;

and, upon differentiating, we have
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X(050) = = Ay i (26)

Case2: x(0;v;)=T, #0and T,,_, <x(0;t) <T, for tep?. We have

t

(00 =T, + / A(1)dr

v;

and, upon differentiating, we have

X (0;1) = —A,, v (27)

where A, ; was defined in (7).

Case 3: x(0;v;) = 0=T; and T; < x(0;1) < T5, ., for tep?. We have

t

x(0;6) =0 +/ Ay (t)dt

Vi

and, upon differentiating, we have
X (0;1) =1 _Am+1,i"§ (28)

Case 4: x(0;v;) =0=Ty and Ty, _| < x(0;1) < T, for t€ p?. We have

t

x(0;6) =0 +/ Ay (t)dt

Vi

and, upon differentiating, we have

Summarizing this analysis, it is clear that the complete evaluation of x’'(6; ¢), and hence of
Q' (0) through (23), relies on the event time derivatives.

3.3. Event Time Derivatives

As already discussed, the starting point of %, is independent of 6 because it is an
! / .

exogenous event, so & = v, , = 0. Therefore, we next concentrate on a typical %, and,

dropping the index k, we shall show how an endogenous event time derivative

Vi, i=1,...,S, is related to vi_, so as to derive appropriate recursive relationships.

Recall that v;,i =1,...,S, are the event times when the buffer content reaches (and

possibly crosses) the thresholds Ty, . . ., T),. In addition, it is clear that the value of L], ;(0)
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or Q7 (0) depends only on the event time derivatives v}, i = 1,...,S and the arrival and
processing rates at the instants v;. Therefore, we only need to focus on these particular
event instants and ignore all system activity in between them. This also explains why the
IPA estimators derived in this paper are not dependent on the stochastic characteristics of
the arrival and service processes; only arrival and service rates at selected event times v;
are involved. Furthermore; if these rates are known or they can be measured on line, then
evaluating L, ;(0) and Q7(0) reduces to the evaluation of the event time derivatives v;
which is what we do next.

To do so, we consider all possible intervals p;=[v;,v;, ), i =0,...,5 — 1. There are
eight possible cases.

Case 1: x(0;v;) =T, # 0 and x(0;v; ) =T, # 0. In this case,

Vit
/ Am+l(t)dt: Tm+l _Tm
Vi

and, upon differentiating,

/ ;o
Apsiit1Vign _Am+l,ivi =0

so that

A .
m+ 1,
V;+1 A "V (30)
m+1,i+1

Case2: x(0;v;) =T, # 0andx(0;v;, ) =T, _, # 0.Recall that since x(¢;0) > T,, _,

te[v;v;;1), flows from all low priority classes 1,...,m — 1 are dropped and only the
higher priority classes m, ..., M are accommodated (see also (7)). Thus,

Vit1
/ Am(t)dt = Tmfl - Tm
v

and, upon differentiating,
/ !
Am,i+ 1Vis1 — Am,ivi =0
so that

A .
oy = (31)

m,i+1

Case 3: x(0;v;) =0 =Ty and x(0;v; ) = T ;. We have
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Vit
/ Az (t)dt =Ty — 0

).
i

and, upon differentiating,

/ I
Amiitig1Vied —Amﬂ,i"i =-1
so that
Aoy 1
1,
V§+1 _ m+ L, .vg_ (32)
A= . A=
m+1,i+1 m+1i+1

Case 4: x(0;v;) =0 =Ty and x(0;v;, ;) = T5_,. We have

Vig1
/ Am(t)dt == Tm71 - 9

i

and, upon differentiating,

/ /
Amit1Vigr —Agvi=—1
so that
A 1
/ m,i /
Vig1 = — Vi (33)
A1 Agisi

Case 5: x(0;v;) = T _; and x(0;v; ;) = 0 = T;. We have
Vit

and, upon differentiating,

/ r_
Am,i+1"i+1 —Amvi=1

m,i
so that

As i 1
o= 34
s Am‘ﬂ it Am.i+1 ( )

Case 6: x(0;v;) =Ty, and x(0;v; ) = 0 = T5. We have
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Vit1
/v. Az (t)dt =0 — Ty
and, upon differentiating,
Aﬁ+1,i+1"§+1 _Aﬁ+l,i‘); =1
so that

An g 1
/ m+ 1, /
Viig = — — Vv, + (35)
! m+1i+1 Am-ﬁ—l,i-&-]

Case 7: x(0;v;) = x(0;v; 1) =T,, and x(0;¢) > T,, for tep?. Note that it is possible to
have T,, = 0. We have

Vit
/ Am+ 1 (t)dt =0
and, upon differentiating, we obtain (30).

Case 8: x(0;v;) = x(0;v; 1) =T,, and x(0;1) < T,, for rep?. Once again, it is possible
to have T,, = 0. We have

Vit1
/ A, (t)dt=0
Upon differentiating, we obtain (31).

By combining (30)~(35), we can see that vi,,,i=0,...,5— 1 is obtained through a
simple recursive relationship. We can summarize this analysis as follows:

THEOREM 3.1 For any endogenous event occurring at time v; 1, i =0,...,5§ -1, we
have

Vigg =F; Vi +G; (36)

where F;,G; are given in (30)-(35) depending on the values of x(0;v;) and x(0;v; ).
Moreover, G;#0 if and only if @) x(6;v;)) #x(0;v,)=0 or (i)
x(0;vi 4 1) # x(0;v;) = 0.

Proof: The recursive relationship (36) follows directly from the analysis leading to
(30)—(35). The necessary and sufficient condition for G; # 0 also follows from (30)—
(35). |
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Note that if an exogenous event occurs at &, we get v} =0 for all j > 1 as long as the
condition G; # 0 above is not met. Thus, event time derivatives accumulate according to
(36) following an endogenous event; they are periodically reset to 0 and may maintain this
value for considerable portions of a sample path as long as G; = 0. Finally, based on (36),
we can return to (19) and (23) in order to fully evaluate the loss volume and work IPA
derivatives.

4. 1IPA for the Two-Class Case

In the previous section, we saw that IPA estimators for the class-dependent loss volumes
and the workload with respect to a given threshold parameter among T},...,T,, are
obtained through recursive relationships based on (36). For the special case where M = 2,
we are able to obtain these estimators through closed-form expressions by exploiting the
specific structure of a sample path when only two classes are involved. Thus, we focus on
the SFM shown in Figure 3 and simplify notation by letting T, = b be the buffer capacity
and setting T, = T5; = 0, where 0 < T| < b. In this case, there are three performance
metrics involved, the loss volume of class 1, L; 7(0), the loss volume of class 2, L, 7(0),
and the work, Q7 (0).

A sample path example of this SFM is shown in Figure 4. As in the general M-class
case, the sample path of the two-class system is divided into cycles €,k =1,...,K. In
the remainder of this section, we derive the IPA estimators L; 1(0), L} 1(0), and Q7(0).
Our main results may be summarized as follows: (i) We show that in this case these
estimators are given by closed-form expressions and derive these expressions; (ii) we
show that L) ;(0) is easy to obtain from Lj;(0) without requiring any additional
computation; and (iii) we obtain a simple upper and lower bound for L/ ;(0).

As seen in Section 3, L 1(0), L} 7(0), and Q7(0) are based on event time derivatives.
Theorem 3.1 shows how to evaluate v; , , i =0,...,S — 1, for a particular cycle %. For
the two-class case, there are several simplifications taking place in the eight cases
considered in Section 3.3. Specifically, Cases 1, 2 are clearly infeasible; Cases 3, 4 only
apply to period pg_ ; Cases 5, 6 only apply to period p,; and only Cases 7, 8 are always
applicable. Taking advantage of these observations, (36) in Theorem 3.1 can be
considerably simplified. In particular, the following lemma shows that all event time
derivatives that turn out to be of interest in evaluating L} -(0), L}, ;(0), and Q7(0) are either
0 or can be expressed in terms of A; ; and A, ; (defined in (7) with the index k dropped). By

— h—

72(1) — ) —

o) —— | ®—
%) A1)
: — x(f) —

N

Figure 3. Stochastic fluid model (SFM) with M = 2.
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convention, we shall set A; ;=1 and A, ,=1. We will also use the notation [x] to denote
the smallest integer greater than or equal to x.

LEMMA 4.1 Within a cycle that starts with £, for all v;, i =1,...,S, which satisfy

x(0;v;) = 0:

1. Ifx(6;8) =0

BN

1,0

Vi =

e

1

/
Von =
i=1 A2.2i

n
Apni_i . Apio

Ajpiog

where 1 <n < [S—1/2] and S > 1; and

A1,2n

n
Asniy .

/ _
Vop41 =

Alppyrioy A

where 1 <n < [S—1/2],and § > 2.

2. Ifx(0;¢) =b:
AT
b Ay

. Asnin

Arniy

where 1 <n < [S—1/2] and S > 1; and
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n
/ A2,2n A1,2i7 1 A2,2i7 2
V=[5 (42)
22m+1;21 A2 2,2i—1

where 1 <n < [S—1/2] and S > 2.

3. Ifx(6;¢) =6:
vi=0 (43)
Proof: See Appendix. |

4.1. Class 1 Loss Derivatives

Based on the analysis in Section 3.1, to evaluate L} 7(0) we need to evaluate 4 ;(0) for any
k=1,...,K. Focusing on a typical cycle %, and dropping the index k in the following
analysis, we get from (19):

s
M(H) = Z {p;eV} [0‘1("i+1)"§+1 - 0‘1(";‘)";] —1{psel,} 'Al,svg (44)

i=0

Regarding the last period pg, we next make an observation which simplifies our analysis
because it allows us to proceed without needing to evaluate v beyond the case already
covered by Lemma 4.1. In particular, since the last partial loss period of each cycle can
only take the values 0, b, and 0, this allows us to identify three possible cases:

i. If pgeU,, then x(0;vs) = 0 and Lemma 4.1 applies allowing us to obtain v§.

ii. If pgeV, then x(6;vg) = b and we cannot obtain v§ via Lemma 4.1. However, by the
continuity of the sample path, we must have pg_; €V,. Thus, the last two terms
contributed by the sum on the right-hand-side of (44) are due to pg_; in the amount

o (vs)Vs — o (Vs Vs
and by pg in the amount
— oy (vs)Vs

where we use the fact that v, ; = 0. Therefore, the combined contribution of pg
and py is

— oy (vs_ Vs (45)

and we observe that v§ is not needed for evaluating 1} (6).
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iii. If pgeW,, then x(0;vg) = 0 and Lemma 4.1 does not apply. However, again by the
continuity of the sample path, we must have pg_; € W,. It is clear from (44) that v} is
again not involved in the evaluation of (0).

The next four lemmas provide the expressions for the derivative 4} (0) in (44) over a cycle,
depending on the state of the SFM when the cycle starts and ends. In the first lemma, we
show that 1} (0) = 0 whenever the cycle starts from 0 (e.g., € 11 in Figure 4) regardless of
how it ends. In the second lemma, we show that A} () = —1 whenever the cycle ends with
0 (e.g., €, in Figure 4) if it starts with x(0; &) # 0.
LEMMA 4.2 For a cycle that starts with £, if x(0; &) = 0, then:

H0)=0 (46)
Proof: See Appendix. |

LEMMA 4.3 For a cycle that starts with ¢ and contains events occurring at v;,i =
L,....,S, if x(6; &) # 0 and x(0;vg) = 0, then:

H0)=—-1 (47)
Proof: See Appendix. |
The next two lemmas consider the cases where a cycle starts with x(0; &) =0 and b,
respectively, and does not end with 0 (e.g., 6; _,, €, _,, and 6, in Figure 4). In these
cases, A (0) is given by flow rate information contained in A;;and A, ; (defined in (7) with

the index k dropped).

LEMMA 4.4 For a cycle that starts with ¢ and contains events occurring at v;,i =
1,...,S:

1. Ifx(6;¢) =0, x(6;vg) = 0:

For S=1:. 21(0)=0 (48)
SD2A A,
ForS>1: 2(0)=—1+ Ao Aagi-1 4
0 i1 Avai Aroio (49)
2. Ifx(0;8) =0, x(0;vg) = b
R S A
For §=2: 21(0) = —-1+-— (50)
Apy
A (§-2 2A A
For §>72: 7,(0) = —1 +-25-1 12i | Aopici 51)
Ayai Argioi
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Proof: See Appendix. |

LEMMA 4.5 For a cycle that starts with ¢ and contains events occurring at
vioi=1,...,8:

1. Ifx(0;&) = b, x(0;vg) = 0:

I Al,l
For §=2: 21(0)=—-1+—— (52)
Az
A =224 A ..
For §>2 2(0) = —1+-5-1 e (53)
l Axs1 ,1:[1 Ao Az
2. Ifx(0;¢) = b, x(0;v5) = b:
For S =1: 21(0) =0 (54)
G=D/24 4
For S > 1: 7,(0) = -1+ 22, LAl (55)
: i1 A Az
Proof: See Appendix. |

Finally, we can also establish some simple bounds on A (0) as shown in the following
lemma.

LEMMA 4.6 The class 1 loss over any cycle satisfies: —1 < 21(0) < 0.
Proof: See Appendix. |

Motivated by our analysis thus far, let us partition the set of all cycles as follows. First,
define

® = {ke{l,....K} : x(0; &) = 0}

to be the set of cycles that start from 0, corresponding to Lemma 4.2. Let ®(6) denote the
complement set of @ and define

D,y = {k: ke d,x(0; 1) = 0}

Dgg = {k : ke ®,x(0; &) =0, x(0; &) =0}
Dy, = {k : ke ®,x(0;¢;) =0, x(0; &) = b}
®py = {k : ke ®,x(0;&;) = b, x(0; 1) =0}
@y, = {k : ke ®,x(0;&;) = b, x(0; k1) = b}
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which cover the remaining cases, corresponding to Lemmas 4.3—4.5. Moreover, note that
all the above sets are locally independent of . The expressions in Lemmas 4.4—4.5 can
also be simplified by defining for any k = 1,... K,

n/2

Avkoi Asgoi—i
R = I I — . = =24 ... d R =1 56
ko 1 1. Az,k,Zi Alkz'_]’ n s Ty an k0 ( )
i=1 Kyl
_ M2 AL Ay _
Ry, =22 -2, n=24.. and R,=1 (57)

AL Asgoia
Then, using Lemmas 4.2-4.5 and the definitions above, we get

0 if ked,,
Rys, 1 if ke Dy

AZ,I(.S -1 . e
L Rk15~172 if kGCDOh

Ai(0) =—1+ ﬁifik:: ) o (58)
AZ:k:Si -1 Rk*Sk -2 if ke (DbO
R/@Sk—l if ke(i)bb
1 if ked
We may now summarize our results as follows.
THEOREM 4.1 The sample derivative L} 1(0) is given by
/ x Aggs, 1
1r(0) =— K"+ Z Ris, -1+ Z AiRkﬁsk—z
ke dy, kedy, 1AS =1
Ags,—1 5 S
+ Z A'—kRk,skfz + Z Ris, 1 (59)
ke®,, 28, — 1 ke ®y,

where K* is the (random) cardinality of the set @, contained in [0, T], including a possibly
incomplete last cycle.

Proof: The result follows immediately from (10) and (58). |

The expression in (59) provides the IPA estimator for the loss metric L; (6). Unlike the
M > 2 case studied in Section 3, here we are able to obtain a closed-form expression in
terms of A ;; and A, ; ;. Again, we note that L} (6) does not depend on any distributional
information regarding the arrival and service processes and involves only flow rates at
event times v, ; which may be estimated on line.

As far as implementation is concerned, the evaluation of 1} ,(0) in Lemmas 4.2-4.5
requires observing events e¢; and e, and the corresponding rates of oy, oy, and f§ at their
occurrence times, so that we can evaluate A, ; ; and A, ; ;. If a cycle starts from an empty
buffer or full buffer and ends with a partial loss period at 8, then the only implementation
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requirement is that such a cycle be detected and the contribution of this cycle is simply —1.
It is also worth mentioning the following simple bounds we can obtain:
COROLLARY L +(0) is bounded as follows:

—K* <Ly;(0) <0

Proof: Follows directly from (59) and Lemma 4.6, in view of (10). |

4.2. Class 2 Loss Derivatives

Since T, = b, class 2 experiences partial loss only during the period through which
x(0;¢) = b, and the loss rate is y,(0; 1) = o,,(¢) — p(¢). From (19) we have

i/2(9) = —1{psel,} 'Az,svg (60)

The following lemma greatly simplifies the task of evaluating the sample derivative
L} 1(0), since it can be obtained as a byproduct of the evaluation of L ;(0) in Theorem 4.1.

LEMMA 4.7 For a cycle that starts with & and contains events occurring at v;,i =
I,...,S:

0 if ps# U,
500) =<1 if pseU, and x(0;&) =0 (61)
—I(0) i pscUs and x(6:8) # 0

where 1,(0) is the class 1 loss incurred over the cycle.

Proof: See Appendix. |

4.3. Work Derivative

As we saw in Section 3.2, Q%(0) requires the evaluation of

4(0) = / 00 (62)

for every k = 1,...,K. Again, we drop the index k for convenience, as we consider a
typical cycle €. Regarding the first period, p,, in the cycle, there are two possibilities. If
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x(0; &) # 0, Cases 1 and 2 in Section 3.2 apply. In view of the fact that & = 0, by (26) and
(27) we have

X(0;1) =0 (63)

If, on the other hand, x(60; &) = 6, then either Case 3 or Case 4 of Section 3.2 applies. Either
way, from (28) and (29) we get

X(0;0) =1 (64)
If S > 1, observe that all endogenous events contained in a cycle are constrained to be such
that x(0; v;) = 0 (see also Figure 4). Thus, forall p;,i = 1,...,S — 1, either Case 3 or Case
4 of Section 3.2 applies. If x(6;¢) > 0 for tep?,i > 0, by (28) we have

K(0;1) =1 —A, (65)
Otherwise, if x(0;7) < 0 for tep?, i > 0, by (29) we have

Finally, consider the last period, pg, in the cycle. From (24) and (25), if pg ¢ U, then we
have

X(0;t) =0 (67)
and, otherwise,

X(0;6) =1 (68)
We can summarize this analysis in the following:

LEMMA 4.8 For a cycle that starts with ¢ and contains events occurring at v;,i =
1,...,S:

S—1
q'(0) = {x(0;&) =0} - (vi = &) + Z(‘G’H =) + Y{pseU} - (vsiq — V) (69)

where

_ U =Ayv, o if x(050) >0, tep?
i = 1—Aypvi,  if x(0;1) <0, tep?

Proof: The proof follows from (62) by combining (63)—(68). |
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Note that if x(0; &) = 0, by (43) we have v =0 for i =1,...,S — 1, and (70) implies
¢;=1fori=1,...,5 — 1. Therefore, in this case, by combining the first two terms of
(69) the total contribution of the first S periods of a cycle becomes vy — . The third item of
(69) is the contribution of pg which is its length if it happens to be a class 1 partial loss
period; in this case, the total contribution of the cycle is simply its full length.

THEOREM 4.2 The sample derivative Q% (0) is given by

04(0) = > ¢i(0) (1)

k=1

where K is the (random) number of cycles contained in [0,T], including a possibly
incomplete last one.

Proof: The result follows from (22) and Lemma 4.8, using the definitions in (69) and
(70). |

The expression in (71) provides the IPA estimator for the work metric defined in (4). Its
implementation requires the same information as that for the loss metric with the addition
of timers to measure the duration of the periods p;,i =0, ..., S.

5. IPA Estimator Unbiasedness

We now return to the general M-class case in order to prove the unbiasedness of the IPA
derivatives L], (0),m=1,...,M and Q7(0). In general, the unbiasedness of an IPA
derivative #’(0) is ensured by the following two conditions (see Rubinstein and Shapiro
[20], Lemma A2, p. 70):

Condition 1. For every 0 € ©, the sample derivative . (0) exists w.p.1.

Condition 2. W.p.1, the random function #(0) is Lipschitz continuous throughout ®, and
the (generally random) Lipschitz constant has a finite first moment.

We have already discussed the mild technical conditions required to ensure the existence
of L, +(0),m=1,...,M and Q7(0). Consequently, establishing the unbiasedness of
L,7(0),m=1,....M and Q}(0) as estimators of dE[L,;(0)]/d0,m=1,...,M and
dE[Q;(0)]/d0, respectively, reduces to verifying the Lipschitz continuity of
L,7(0),m=1,...,M and Qr(0) with appropriate Lipschitz constants.

The buffer content over the nominal sample path is denoted by x(0; ¢), while the buffer
content in a perturbed sample path is denoted by x(6 + A0; ¢) resulting when 0 is replaced
by 6+ AO. We superimpose two such sample paths and denote the combined
superimposed event times (e, and e,) by 7, <1, <--- <{yq), where ty =0, t;) =T.
Thus, J(T) is the random number of all superimposed events (exogenous and endogenous)
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in [0,7]. The interval [0,7] can, therefore, be divided into time intervals
L=[t;_y,t), j=1,...,J(T); we shall use I7=(#;_;,t;) to denote the corresponding
open intervals. Recalling the definitions of Type I and Type II intervals in Section 2, in
each /7, the nominal sample path is in either a Type I or a Type II interval and the same is
true for the perturbed sample path. Moreover, if /; is a Type I interval, for € /; we have

dx(;1)

72
dt+ (72)
while if /; is a Type Il interval and T,, < x(+;t) < T, for telf, we have
dx(-;1)
3D A 73)

Then, under the assumption that E[J(T)] < co, we shall establish next that
L, r(0),m=1,...,M and Q%(0) are indeed unbiased estimators.

At this point it is worth recalling that x(0; ) and x(0 + A0; r) are continuous functions of
t due to Assumption la. Next, we show that 0 < Ax(¢) < A6 for all t€[0,T], where
Ax(t) = x(0 + AB;t) — x(0; 1) and AO > 0 (the case AO < 0 is similarly handled). To do
so, we first need the following result (Lemma 5.1). In order to maintain the notation as
simple as possible, we define:

Bm(t)z ZO(”([) - ﬁ(t) and Cm(t)E Zdn(t) - :B(t)

n=n' n=n'
n>m n'<m

Recalling the definition of A,,(7) in (1), observe that

B, (1) <A, (1) < C\ (1)

LEMMA 5.1 Consider an interval I; = [t;_,,t;), and assume that 0 < Ax(t;_) < A0.
Then

0 < Ax(t) < A0 for all tel; (74)
Proof: See Appendix. |
We can now use this result to establish the same bound for Ax(¢) over all t€[0,T].
LEMMA 5.2 For all te[0,T)],

0 < Ax(r) < A0 (75)

Proof: See Appendix. |
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Finally, we can establish the unbiasedness of L;, 7(0),m = 1,...,M and Q7(0).

THEOREM 5.1 The IPA derivatives L, (0),m=1,....M and Qp(0) are unbiased
estimates of dE[L,, 1(0)]/d0,m =1,...,M and dE[Q7(0)]/d0, respectively. In other
words,

dEIL,,7(0)] dE[Qr(0)]

E[L,(0)) = =55 m=1,....M and E[Qy(0)] =5

Proof: See Appendix. |

6. Conclusions

We have considered in this paper a SFM of a queueing system with multiple customer
classes subject to threshold-based buffer control. We have developed IPA estimators for
class-specific loss metrics and for a work metric with respect to one of the threshold and
shown them to be unbiased. We have also shown that in the two-class case it is possible to
obtain closed-form expressions for the estimators (as opposed to evaluating them
recursively using Theorem 3.1). The simplicity of the estimators derived and the fact they
are not dependent on knowledge of the arrival or service processes makes them attractive
for on-line control and optimization in applications such as manufacturing and
communication networks. We emphasize again that the use of a SFM allows us to
obtain the form of a particular gradient estimator, but the actual implementation is carried
out using system data (e.g., observing events such as an actual buffer content crossing
some threshold 7,,) from the actual (discrete-event) system.

One of the limitations of IPA applied to SFMs to date is the absence of feedback
mechanisms in the models analyzed, i.e., the assumption that arrival and service processes
are not dependent on controllable parameters. Recent work (see Yu and Cassandras, 2003)
has shown that it is possible to still obtain relatively simple and unbiased IPA estimators in
such cases. This is a positive step towards the development of a more general theory for
applying PA techniques to SFMs, but the level of generality currently available is limited
to certain classes of models. The key elements of a general approach, however, would be
typified by the main steps seen in this paper: (i) Decomposing a sample path through
appropriately defined events that reflect changes in the time-driven dynamics of an
underlying system; (ii) deriving sample derivatives (assuming they exist) for the event
times and the state of the underlying system (in our case, the buffer content); (iii)
translating these derivatives into derivatives of performance metrics of interest (in our
case, loss and workload); and (iv) establishing the Lipschitz continuity of the performance
metrics if that holds, which, under generally mild conditions, leads to proving
unbiasedness of the IPA derivatives obtained in the previous step.
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Appendix

Proof of Lemma 4.1: The proof is based on Theorem 3.1 applied to the two-class
system as a special case, as well as the observation that all endogenous events occurring at
v; within a cycle must satisfy x(0; v;) = 0 (see also Figure 4). We begin with the first period

po = [, v,) where x(0;v,) = 0, for which there are three possibilities:

1. x(0;¢&) = 0. Since ¢ is an exogenous event, & =0, therefore by (36) and (34),

2. x(0;¢) = b. By (36) and (35) and in view of &’ = 0, we get

1 Ay
V1 0 A271 Au (77)

3. x(0;¢) = 0. By (36) and the facts that G, = 0 (see Theorem 3.1) and &’ = 0, we get
vi=0 (78)

Next, consider any p;,1 <i < S — 1. Since we must have x(6;v;) = x(6;v;,.,) =0, by
Theorem 3.1 we get G; = 0. We then have two possible cases:

1. p;eV,.In this case, x(0;¢) > 0 for tep?, and from (36) and (30) we get

The proof is completed by combining (76)—(80). |

Proof of Lemma 4.2:  For a cycle with x(0; &) = 0, Lemma 4.1 asserts that all event time
derivatives of interest are 0, so by (44) we immediately obtain (46). |

Proof of Lemma 4.3: Let /;(0) be the class 1 loss over an interval p;:

1(0) = / (00 (81)

Vi

Since x(0;vg) = 0, we have pge U,. Suppose S > 1 (the special case where S = 1 will
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easily follow). There are two possible cases regarding x(0; &), that is, x(6; &) = b or 0.
First, suppose x(8; ¢) = b. Then, the periods p;,i = 0,...,S — 1 belong to either W, or V,
and appear alternately with the first one py = [£,v,;) € V,. Thus, from (81) and in view of
11(057) = o (¢) from (14) we get

Ip(0) = oy (v vy
since v = & = 0. In light of (7) the above equation can be rewritten as
16(0) = A1,1V/1 - Az‘l"ll (82)
Also from (81), for all other full loss periods p,,,n > 1, we have
B (0) = 0y (Va4 1)V g1 = %1 (V2) Vs (83)
By (79) in the proof of Lemma 4.2,
A272n+ IV/211+1 - A2,2nvl2n =0
Adding the left-hand-side above to the right-hand-side of (83) and recalling (7), we get
llzn(@) = A]72n+ 1V/2n+1 —Al,znV’2n (84)
For the loss over the partial loss period pg, from (81) and 7, (0;¢) = A, (¢) in (12), we have
Iy = _Al,svls (85)

In addition, we know that p,, _; e W, for n > 1, therefore /},, _,(6) = 0. Using (7) and (80)
in the proof of Lemma 4.2, we have:

’ _ /
A1,2n —1Ym-1= Al,2nv2n (86)

The cumulative contribution of all full loss periods is given by combining (82), (84), and
(85). If S is odd (including S = 1), then pg_, €V, and the total contribution is

s s
21(0) = Zlf(@) = —A2,1V,1 + Z(— 1)l+1A1,iV; —ALSVIS
i=0 i=1
On the other hand, if S is even, then py_, € W, and the total contribution is

S S—1
M(G) = Zl;(@) = —A2.1V,1 + Z(— 1)l+1A1,iV; —Al,s"g

i=0 i=1
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The last two terms of the right-hand-side of the last two equations are equal to O by using
(86), so for both cases we get

i/1(9) = _AZ,]VII (87)

By Lemma 4.1, v; = 1/A, |, so the last equation yields 4;(0) = —1, which is precisely
47).

The second case is x(0; &) = 0, for which a similar argument also gives 2} (0) = —1,
completing the proof of (47).

Proof of Lemmas 4.4 and 4.5: We combine the proofs of these two lemmas since they
are similar in nature. First, note that if S = 1 the buffer content never reaches 0, therefore it
is easy to see that any class 1 loss is unaffected by 6 over this interval, which implies
21(0) = 0. This establishes (48) and (54). Next, for S > 1,p,,...,ps_, belong alternately
to V, and W,. Depending on the value of x(0; ¢) at £ and v, there are four cases to consider:

Case 1: x(0;&) = 0,x(0;vg) = 0. Since the buffer content never reaches b in this cycle,
this case is identical to the infinite buffer case studied in Cassandras et al. (2003), and (48),
(49) are precisely the results obtained in Lemma 3.3 of Cassandras et al. (2003).

Case 2: x(0;&) = 0,x(0;vs) = b. In this case, there is at least one no loss and one full
loss period before pg and S must be even with p,,_;, 1 <n <§/2, all being full loss
periods. It follows from (45) that the contribution of pg_; and pg together is

!
— oy (Ve )Vs_y
which we can rewrite, using (7), as

7AlﬁS—lV/S—l+A2,S—lV‘IS—l (88)

Using (81) and (7), the loss derivative contribution of any other full loss period is

S—2
_A],2n—lv/2n—l +Al,2nv/2m 1 <n ST (89)
Adding (89) foralln = 1,..., (S —2)/2 and (88) together and then using (86) obtained in
the proof of Lemma 4.3 gives

21(0) = —AV F Ay Vs (90)

We can now replace v| and v_, by (37) and (39) with n =S —2/2 in Lemma 4.1,
respectively, which immediately yields (51).

Case 3: x(0;&) =b,x(0;vs) =0. As in the previous case, S must be even and
DP2n, 0 <n<S—2/2, are all full loss periods. The loss derivative contribution of p, is
given in (82). The contribution of any other full loss period is given by (84):
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S—2
— AV H AL Va1, ] SHST (o1)

Adding (82) and (91) forall n = 1,...,(S — 2)/2 together and then using (86) gives

b

4(0) = =Ay Vi FA 5 vy

Replacing v| and vg_, by (40) and (42) with n = (S — 2)/2 in Lemma 4.1, respectively,
yields (53).

Case 4: x(0;¢) =b,x(0;vg)=b. In this case, S must be odd and
P, 0 < n < (S—1)/2, are all full loss periods. The loss derivative contribution of the
first full loss period [¢,v,) is given by (82). The contribution of the last full loss period
[Vs_1,Vs), together with the contribution of pg_;, is given by (88). The loss derivative
contribution of any other full loss period is as in (91):

§-3
— AV F A Va1, 1 <0< T (92)

Adding (82), (88), and (92) for all n = 1,..., (S — 3)/2 together and then using (86) we
get

21(0) = —Ay Vi + Ay Vs (93)

Finally, replacing v{ and v_, by (40) and (41) with n = (S —1)/2 in Lemma 4.1,
respectively, yields (55). The proof is now complete. |

Proof of Lemma 4.6: Let us focus on a cycle with x(0; &) # 0,x(0;vg) # 0 and S > 1,
since in all remaining cases /1 (0) = — 1 or 0 from Lemmas 4.2 and 4.3. For such a cycle,
at some v;, 1 <i < §— 1, the sample path crosses 0 from either below or above. If at v; the
sample path crosses 6 from below, this event corresponds to the start of a full loss period,
therefore A, ; > 0. Then, using (2), we have

A 245, >0
since o, (v;) > 0. Therefore,

A2.i

0<—=2<1 (94)

Li

If, on the other hand, at v; the sample path crosses 6 from above, this event corresponds to
the start of a No Loss period, implying that A; ; < 0. Thus, recalling (2), we get

Ay <A <0



PERTURBATION ANALYSIS 295

so that

Ay

0<-ti<1 (95)

2,i

For Cases 1 and 2 in the proof of Lemma 4.4, the cycle starts with x(6; &) = 0, thus event
times v,, _, correspond to crossing 6 from below, while event times v,,(6) correspond to
crossing 0 from above. For Cases 3 and 4 in the proof of Lemma 4.5, the cycle starts with
x(0; &) = b, so event times v,, _ | correspond to crossing 0 from above and event times v,,
correspond to crossing 0 from below. By using (94) and (95) in (49)—(553) it is easy to see
that — 1 < 47(0) < 0, which completes the proof. |

Proof of Lemma 4.7: First, if pg ¢ U,, then the first part of (61) immediately follows

from (60). Next, consider a cycle with pge U,, so x(0;vg) = b. If x(0; &) = 0, we must
have x(0;vs_,) = 0 and, by (43), vi_, = 0. Then by (32) we have

It follows from (60) that A5(0) = 1, which establishes the second part of (61).

It remains to consider the case x(0; &) # 0.If § = 1, we must have x(0; &) = b, which is
Case 8 in Section 3.3, and by (31) we have v = 0, since v, = & = 0. It follows from (60)
that

75(0) =0 (96)
This case also corresponds to (54) in Lemma 4.5, giving 1} (0) = 0, and we see that (61) is
satisfied.

On the other hand, if § > 1, during the cycle the buffer content hits 0 at least once; thus,
ps_ is a full loss period and the buffer content evolves from 0 to b with

Vs
/ Ay (1)dt =b—0

Upon taking derivatives, we get
Az,s"g - Az,sf 1V§71 =-1
Therefore, by (60) we get
i/2(9) =1 *AZ,S—IV{S—l (97)

The cycle satisfies either x(6; &) = 0 or x(6; £) = b. In the former case, (90) in the proof of
Lemma 4.4 applies and using Lemma 4.1 to get A; ;v} = 1, we have
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A(0)=—-1 +Ay5 vs_1(0) = —25(0)

where the second equality follows from (97). In the latter case, (93) in the proof of Lemma
4.5 applies and using Lemma 4.1 to get A, ;] = 1, we get the exact same expression for
J1(0) and we have

M(0) = =1+ Ay Vs = —75(0)
which satisfies (61) and completes the proof. |

Proof of Lemma 5.1: Recalling the definition of Ij, we know that there is no event
occurring in /7. Thus, within /7, both the original sample path and the perturbed sample
path are either at one of the thresholds or bounded between two adjacent thresholds. Next
we consider all possible combinations of different types which /; belongs to in nominal
sample path and in the perturbed sample path. There are four cases.

Case 1: For both sample paths, /; is in a Type I interval. By (72) we have

Case 2: For the nominal sample path, /; is in a Type I interval, but for the perturbed
sample path, it is in a Type II interval. Assuming x(0;¢) = T,,, we have

dx(0;1)

de+
A,(t)>0 and A, (1) <0

-0 (98)

There are two possibilities regarding T,:

1. If T,, = 0, then x(0;¢) = 0 over I;. By the assumption 0 < Ax(t;_;) < A0, we have
0 <x(0+A0;t;_;) <0+ A0O. Next we prove that x(0+ A0;t) >0+ A0 and
x(0+ A0;t) < 0 for tel? are both impossible. First, assuming x(0 + A0;7) >
0+ A0,rel?, we have

dx(0 + AO; 1)

dr+ :Bm+1(t)§Am+l([)<0

but since x(0 + A0; t;,_;) < 0+ A0, the above implies that
x(0 4+ AO;t) < 0+ A0, tel} (99)

Next, suppose x(0 + A0;t) < 0,tel?. Since AQ > 0, we have x(0 + A0; 1) < 0+ A0,
telj{’. It follows that

dx(0 + AB; 1)

o =C,(t) >4, >0

— m
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and since x(0 + A0;;_;) > 0, we conclude that
x(0+AO;t) >0, tel? (100)

Combining (99) and (100) we have 6 < x(0 + Af;t) < 0+ A0,tel?. In view of
x(0;t) = 0 over I; and the assumption 0 < Ax(t;_;) < A0 we immediately get
0 < Ax(r) < A0,tel,

2. IfT, # 0,wehave x(0;t) = T,, # 0. The perturbed sample path cannot cross T,, in 1,
therefore, /; is Type 1l means the perturbed sample path is either strictly above or
strictly below T, throughout /7. We consider each of these two cases next.

a. If x(0 + A0;t) > x(0;t) =T, for tel?, we have Ax(t) > 0. In addition, since
x(0 4+ AO;t) > T,, we must have

dx(0 + AO; ¢
%:Bm+l(t)§’4n1+l(t)<o (101)
Combining (98) and (101) we have Ax(r) < Ax(f;_,) < A0, telf. Thus, we get
0 < Ax(r) < A0, tel;.

b. If x(0 + A0;t) < x(0;1) =T, for tel?, we have Ax(t) < 0. Since we assume
Ax(t;_) > 0, by the continuity of the sample path we must have Ax(¢;_;) = 0.
In addition, since x(6 + A0;¢) < T,,, we have

m>

BOLRED €, 02 4,00 >0 (102)

Combining (98) and (102) we have Ax(¢) > Ax(t;_,) = 0. This contradicts our
previous conclusion that Ax(7) < 0. As a result, this case is impossible to occur.

Case 3: For the nominal sample path, /; is in a Type II interval, but for the perturbed
sample path, it is in a Type I interval. Assuming x(0 + A0;¢) = T,,, we have

dx(0 + A0; 1)
dt*
A,(f)>0 and A, (1) <0

=0 (103)

There are two possibilities regarding T,:

1. If T, = 0, then in the perturbed path we have x(0 + A0;t) = 0 + A0 over ;. By the
assumption 0 < Ax(¢;_;) < A0, we have 0 < x(0;t,_;) < 0+ A0. Next, we prove
that x(60;¢) > 0 + A0 and x(0; 1) < 0 for te{ are both impossible. First, suppose that

x(0;t) > 0+ A0, tel}. Since AG > 0, we have x(0;1) > 0,tel?. Thus,
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dx(0;1)
dt*

= Bm+1(t) < Am+1(t) <0

but since x(0; ¢

;—1) < 0+ A0, this implies that

X(0:0) <0+ A0, tel? (104)

Next, suppose x(0; ) < 0, tel?, in which case we must have

dx(0;1)
= >
0D 02 4,0 > 0

but since x(0;¢

,_1) > 0, we conclude that

x(0;6) >0, telf (105)

Combining (104) and (105) we have 0 < x(0;7) <0+ A0,tel?. In view of

x(0 4+ AO;t) = 0+ A0 over [; and the assumption 0 < Ax(t;_;) < A0 we get
0 < Ax(r) < A0, tel;.

If T,, # 6, then in the perturbed sample path we have x(6 + Af;t) =T,, # 6 + A6.
The nominal sample path cannot cross T, in [7, therefore, /; is Type II means the
nominal sample path is either strictly above or strictly below T, throughout /7. We
consider each of these two cases next.

a. If x(0;1) <x(0+A6;1) =T, for telf, then Ax(z) >0. In addition, since
x(6;t) < T,, we must have
dx(0;1)
dt

= Co(1) 2 A, (1) > 0 (106)

Combining (103) and (106) we have Ax(t) < Ax(t;_;) < A0, tel?. Therefore we
get 0 < Ax(r) < A0, tel;.

b. If x(0;¢) > x(0 + Ab;t) =T, for tel}, we have Ax(t) < 0. In addition, by the
assumption Ax(z; 1) > 0 and the continuity of the sample path we must have

Ax(t;_) = 0. Since x(0;¢) > T,, we must have

dx(0;1)
dt™

=By 1(1) S Ay 1) <0 (107)

Combining (103) and (107) we have Ax(f) > Ax(t;_;) = 0. This yields a
contradiction. As a result, this case is impossible to occur.

Case 4: For both sample paths, I; is in a Type II interval. Assume T, < x(60;1) <

T,

m

+17telj‘7. Then,
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dx(0;1)
di+ = Am+1(t)

IfT,, <x(0+ Ab;t) <T, . ,telf too, then clearly the dynamics of both sample paths are
identical and the result is trivial. Thus, let us consider the cases that the perturbed sample
path is either above T, , | or below T,,. Note that if either T,, or T, , ; is the threshold being
perturbed, then its value is 0 in the nominal and 6 + A0 in the perturbed path. Thus, we
have two cases to consider.

1. Ifx(0+A0;t) > T, fortel?, we have

dx(0 + AO; ¢
% =B, 11(1)

Then, since A,, (1) > A,,.,(t) > B,, (1), we get

dx(0;1) S dx(0 + AO; 1)
et~ dtt

Therefore, Ax(r) < Ax(t;_) < A0, tel;. Next we prove that Ax(r) > 0, tel;. If T,
is not the threshold being perturbed, then from x(0;¢t)<T,,, and
x(0+A0;t) > T, ., we immediately get x(0;¢) <x(0+ Ab;t) for rel?, so
Ax(t) > 0. If T, is the threshold which is perturbed, then we have x(6;7) < 0
and x(0 + A0;t) > 0 + A0, so that again we get x(0;¢) < x(0 + A0;1) for telf in
view of A0 > 0, so that Ax(r) > 0. Therefore, by combining this with Ax(7) < A0,
tel;and Ax(t; ;) > 0 we get 0 < Ax(7) < A0, tel,.

2. Ifx(0+ A0;t) <T,, for tel?, we have

dx(0 + AB; 1)

2 =C,(0) (108)

Then, from 4,,, (t) <A, (1) < C,(t) we get

dx(0;t) _ dx(0+ A0O; 1)

dt* = dt* (109)
Therefore, Ax(r) > Ax(tj_ 1) =0, tel .. Next, if T, is not the threshold being
perturbed, then x(0 + A0;t) < T, < x(0;1) for re 17, which implies Ax(¢) < 0. This,
however, contradicts Ax(¢) > 0, tel ; which we just established, therefore this case is
impossible to occur. Thus, T,, must be the threshold which is perturbed if this case
arises, so we have x(0;¢) > 0, and x(0 + A0;1) < 0 + A0 for tel}, which implies
Ax(t) < A for tel}. Therefore, by combining with Ax(7) > 0,z€/; and Ax(t;_) < 0
we get 0 < Ax(f) < A6, tel;.
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Since we have shown that 0 < Ax(r) < A6, tel; for all feasible cases, the proof is
complete. |

Proof of Lemma 5.2: The proof is by induction over all /;,j =1,... ,J(T). We have
Ax(ty) = 0, therefore, using Lemma 5.1, we get 0 < Ax(z) < A0 for all tel;. Next, we

assume that

0 < Ax(r) < A0, for all tel; (110)

We have already shown that the result holds for /;, so it remains to show that
0 < Ax(t) < A0 for all tel;, ;. Using the continuity of the sample path, from (110) we

have 0 < Ax(z;) < A0. In view of Lemma 5.1, we get 0 < Ax(z) < A0 for all tel; . and

complete the proof. |

Proof of Theorem 5.1:  We start with L;, ;(0) and recall that

T
uﬂww:A 1 (0 )t

Using our definition of time intervals [; = [t;_,,t;),j = 1,...,J(T) as before, we have
IT) o
Lur(0) = [ (0t
j=1Y%4-1

so that
AL, = " Ay, (1)dt (111)

where ALmT = LmT(G + AG) - Lm,T(e)? and AVm(t) = Vm(e + A07 t) - ym(e’ t)'

For any time interval / ', the nominal and perturbed sample paths can each be (i) above
T,, (i) at T,,, and (iii) below T,,. So there are nine cases to consider regarding the joint
state of the sample paths in /;:

Case 1: Both nominal and perturbed sample paths are below T,,. There is no class m loss,
so we have

i
/ﬁAmmmzo (112)
[/

Case2: Bothnominal and perturbed sample paths are above T,,. Class m experiences full
loss in both sample paths, so we also have
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5
/‘Ammmzo (113)
[/

j

Case 3: Both nominal and perturbed sample paths are at T,. We have y,(0;f) =
v (0 + AO; 1) = A, (1), so that

fj
/‘Ammm:o (114)
t_

Case 4: The nominal sample path is below T, while the perturbed sample path is above
T,,. Class m experiences no loss in the nominal sample path and full loss in the perturbed
sample path, so we have y,,(0) = 0 and y,,(0 + A0;t) = a,,(¢). Therefore

l‘j [/-
/ Ay, (H)dt = / o, (H)dt >0 (115)
ti1 fi1

j— J—

In this case, we also have

dx(0;t)
dt+ - Cm(t>
dx(0 + AO;
% =B, (1)

Therefore,

dx(0;1)  dx(0 + A0;t)
dt+ dr

= Cm(t) _Berl(t) > OCm(I)

so that

5

Ax(ty_ ) — Ax(z)) > / oy

iy

and it follows that

t

i I i
AO > Ax(ty ) > Ax(r) + / (1)t = Ax(t;) + / Ay (Ot > / Ay, (1)dt
Lo .

= 7 L1

(116)

where the last inequality is due to Ax(tj) > 0 from Lemma 5.2. Combining (115) and (116)
we get
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5
0 g/ Ay, (t)dt < AO (117)
li—1

Case 5: The nominal sample path is above T,, while the perturbed sample path is below
T,,. In view of 0 < Ax(¢) < A0 for t€[0,T] in Lemma 5.2, the only possibility for this case
is that T,, is the threshold being perturbed, that is, x(6; ) > 0 and x(0 + A0; ) < 0 + A0.
In this case, class m experiences full loss in the nominal sample path and no loss in the
perturbed sample path, so we have y,,(0) = «,,(¢) and y,,(0 + A6; ) = 0. Therefore

t/ f/
/ Ay, (H)dt = —/ o, (H)dt <0 (118)
ti_ Ly

7 j=

In addition, we have

dx(0;1)
dr+ :Ber l(t)
dx(0 + A0;t)
— ar Cp(t)
Therefore,

dx(0+ AO;t)  dx(0;1)
dt+ - dt+ :Cm(t) _Bﬂl+1(t) Z am([)

so that

therefore we get

t

t L j
20> Ax(t) = Axy )+ [ gy (e =axly )~ [ A1)
i, t

J= j—1

(119)
where the last inequality is due to Ax(;_;) > 0 from Lemma 5.2. Combining (118) and
(119) we get

{j
—A0< / Ay, ()dt <0 (120)
iy

Case 6: The nominal sample path is at T,, while the perturbed sample path is above T,,,.
Class m experiences partial loss in the nominal sample path and full loss in the perturbed



PERTURBATION ANALYSIS 303

sample path, so we have y,(0)=A4A,(1),y,(0+A0;t) =0,() and A, (1) <O.
Therefore

5 5 5 5
/ Ay, (H)dt = / o, (1)dt — / A, (t)dt = —/ A, (0dt>0 (121)
oy iy 7 iy

J J= j=

In this case, we also have

dx(0 + AO; ¢
T) =B,,;1()
dx(0;t)
drt

so we get

In view of
i i
| Bt [ a,a
-1 i1
we get
A0 > Ax(t;_y) > Ax(t;_y) — Ax(t))

4 4 4
:—/ mﬂmmz—/laﬂmm:/ Ay (1) (122)
t . t

where the second inequality is due to Ax(#;) > 0 from Lemma (5.2). Combining (121) and
(122) we get

7
0 </ Ay, ()dr < AO (123)

i1

Case 7: The nominal sample path is at T,, while the perturbed sample path is below 7. In
view of 0 < Ax(¢) < A0 for 7€ [0, T] in Lemma 5.2, the only possibility for this case is that
T,, is the threshold being perturbed, that is, x(0; 1) = 6 while 0 < x(0 + A0;t) < 0 + Af.In
this case, class m experiences partial loss in the nominal sample path and no loss in the
perturbed sample path, so we have y,,(0) =A,,(t),7,(0 + Ab;t) =0 and A,,(r) > 0.
Therefore
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l‘j t/-
/ Ay, (H)dt = —/ A, (H)dt <0 (124)
ti_ Ly

J j=

In this case we also have

dx(0 + A0 t)
— An(1)
dx(0;t)
a0
so we get

and it follows that

20> Ax(5) > Axty) ~ Axly ) = [ A== [ apoa (29

J= J=

where the second inequality is due to Ax(#;_;) > 0 from Lemma 5.2. Combining (124) and
(125) we get

U]
— A0 < / Ay, (H)dt <0 (126)
t

j—1

Case 8: The nominal sample path is above T,, while the perturbed sample path is at T,,.
In view of 0 < Ax(¢) < A0 for 1€ [0, T] in Lemma 5.2, the only possibility for this case is
that T, is the threshold being perturbed, that is, x(6 + A0;¢) = 6 + AO while 0 < x(0;1) <
0 + AQ6. In this case, class m experiences full loss in the nominal sample path and partial
loss in the perturbed sample path, so we have y,,(0) = a,,(t),7,,(0 + A0;t) = A,,(¢) and
A,,+1(t) < 0. Therefore

L L L
/ Ay, (t)dt = / A, (t)dt — / o, (2)dt
i t; t;

7 J—1 j—1

t/
:/ A, (H)dt <0 (127)
[/

J=

In this case, we also have
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dx(0 + A0;t) 0

and it follows that
4 4
MEAWQEM@%AA%Qz—/l%H@mz—/ Ay (Ndr (128)
iy iy
where the second inequality is due to Ax(#;_ ;) > 0 from Lemma 5.2. Combining (127) and
(128) we get
7
—A0< / Ay, (t)dt <0 (129)
f_
Case 9: The nominal sample path is below T, while the perturbed sample path is at T,,.

Class m experiences no loss in the nominal sample path and partial loss in the perturbed
sample path, so we have y,,(0) = 0,7y,,(0 + A0;t) = A,,(r) and A,,(¢t) > 0. Therefore

t,- t,
/ Ay, (t)dt = / A, (t)dt >0 (130)
[/ Ly

In this case, we also have

dx(0 + A1)
drt N
dx(0;1)
so we get

therefore,
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U] i lj
AO > Ax(ty ) > Ax(h, ) — Ax(r) = / C,(0)dt > / A, ()t = / Ay, (1)d
t, t_, ty

= J J

(131)

where the second inequality is due to Ax(¢;) > 0 from Lemma 5.2. Combining (130) and
(131) we get

5
0 </ Ay, (t)dt < AO (132)
iy

We may now combine the nine cases above, i.e., the inequalities (112)—(114), (117), (120),
(123), (126), (129), (132) with (111) and obtain

5
/ Ay (1)t
o

Next, we consider 0%(0) for which we can write

J(T)

|ALm.T| S Z

=1

<J(T)|A0]

T
0,(0) = / x(0: )dr
0
therefore by Lemma 5.2 we have

T
IAQ;(0)] = ‘ / Ax(0; 1)dt| < T)AO)
0

This completes the proof. u
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