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Abstract We consider a classic scheduling problem for optimally allocating a re-
source to multiple competing users and place it in the framework of Stochastic
Flow Models (SFMs). We derive Infinitesimal Perturbation Analysis (IPA) gradient
estimators for the average holding cost with respect to resource allocation parame-
ters. These estimators are easily obtained from a sample path of the system with-
out any knowledge of the underlying stochastic process characteristics. Exploiting
monotonicity properties of these IPA estimators, we prove the optimality of the
well-known cμ-rule for an arbitrary finite number of queues and stochastic processes
under non-idling policies and linear holding costs. Further, using the IPA derivative
estimates obtained along with a gradient-based optimization algorithm, we find
optimal solutions to similar problems with nonlinear holding costs extending current
results in the literature.

Keywords Hybrid systems · Discrete-event systems · Stochastic flow models ·
Perturbation analysis · Scheduling algorithms

1 Introduction

The classic prototypical stochastic scheduling problem involves a single resource
whose service capacity is to be optimally shared by N competing users. In a queueing
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theory framework, this problem is modeled as a system of N parallel queues, each
with its own arrival process, connected to a single server. The server processes tasks
from the nth queue with rate μn, n = 1, . . . , N, and uses a policy to select the next
queue to serve from. Each task requires a random amount of time to be processed.
The server may preempt a task by interrupting its processing to serve a new task
from some other queue. This model applies to a large group of applications in
communication networks, manufacturing, and computer processing.

The usual objective in this scheduling problem is to minimize the overall average
holding cost of the tasks in the system with cn denoting the cost per unit waiting time
in the nth queue. When the holding cost is a linear combination of the number of
tasks in the competing queues, the well-known cμ-rule has been shown, under certain
conditions, to give the optimal allocation sequence. Following this rule, the queues
are ordered according to the value of the product cnμn, from largest to smallest,
and the server always selects a task from the first non-empty queue with the largest
cnμn value. The cμ-rule is very attractive in that it is essentially static, except for
the knowledge of whether a queue is empty or not. Thus, establishing its optimality
in the most general possible setting is a goal that has been actively pursued through
many years. The optimality of the cμ-rule seems to have been first suggested in Smith
(1956) under a deterministic and static setting, i.e., all tasks are present at time 0
with fixed service times. Relaxing these assumptions, Cox and Smith (1961) later
proved the optimality of the cμ-rule for a multi-class M/G/1 system. Using classical
queueing models in a discrete time setting, the cμ-rule was shown to be optimal for
general arrival processes and geometrically distributed service times in Baras et al.
(1985) and Buyukkoc et al. (1985). There have since been various attempts to extend
these results. For example, it is shown in Hirayama et al. (1989) that for a discrete
time G/G/1 model with a non-idling and non-preemptive server with decreasing
failure rate the cμ-rule is still optimal. Along a different direction, the scheduling
problem above has been studied using a fluid flow abstraction in both a deterministic
context (Avram et al. 1995; Chen and Yao 1993) and a stochastic setting where
the optimality of the cμ-rule can be obtained using the heavy traffic (fluid limit)
arguments (Kingman 1961; Whitt 1968; Harrison 1986). A “generalized” cμ-rule can
then be shown to be asymptotically optimal (Mieghem 1995) not only for the linear
but also for convex cost objectives.

In Kebarighotbi and Cassandras (2009), we studied the basic stochastic scheduling
problem above using a Stochastic Fluid (or Flow) Model (SFM). Using this model,
it was shown that the cμ-rule is optimal in the two-queue case, extending previous
results in the literature to a broader class of stochastic processes and without any
heavy traffic conditions. Further, when the cost is nonlinear in the queue contents, it
was shown that the cμ-rule may no longer be optimal. Nevertheless, the techniques
used were based on easily obtainable gradient estimators that can be used to find an
optimal allocation policy.

Unlike a deterministic fluid model or a stochastic model that makes use of
heavy traffic assumptions, an SFM treats the arrival and service rates as stochastic
processes of arbitrary generality (except for mild technical conditions), even under
light traffic. The value of SFMs (introduced in Cassandras et al. (2002)) lies not in
deriving approximations of performance measures of the underlying discrete event
system, but rather in studying sample paths from which one can derive structural
properties and optimal policies by making use of Inf initesimal Perturbation Analysis
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(IPA). IPA provides derivative estimates of performance measures (e.g., workload,
loss) with respect to controllable parameters. These estimates are independent of
the probability laws of the stochastic rate processes, therefore the actual values of
these processes never enter the estimators, except (on occasion) for instantaneous
rates at certain observable event times. Moreover, they require minimal information
from the observed sample path. These properties, including the unbiasedness of
the estimators, were established in Cassandras et al. (2002) for queueing systems
with finite capacity and extended to serial networks (Sun et al. 2004), systems
with feedback control mechanisms (Yu and Cassandras 2006), and some multi-class
models (Sun et al. 2004; Cassandras et al. 2003; Panayiotou 2004).

This paper starts by extending the results in Kebarighotbi and Cassandras (2009)
to establish the optimality of the cμ-rule to N > 2 queues (which has proved to
be a somewhat surprising challenge.) Its contributions include the following. First,
because our results are independent of the stochastic nature of the arrival and service
rate processes, they provide evidence of the generality of the cμ-rule as an optimal
policy. In fact, our analysis is based on an arbitrary sample path of the system,
confirming prior conjectures that the optimality of the cμ-rule is a property relying
on the system and cost structure, not its stochastic characteristics. We should point
out, however, that our analysis relies on showing that perturbing away from the cμ-
rule policy increases the average linear holding cost, thus, it is possible that there
exist other optimal policies. This is not surprising and it arises in other proofs of
the cμ-rule as well (intuitively, one can see that more elaborate scheduling policies
can indeed reproduce the cost accumulated under the cμ-rule whose main appeal
is its simplicity). Second, the analysis is based on explicit sample state and event
time derivatives which can, therefore, be used to determine optimal schedules for
different cost structures and be extended to more complex scheduling problems (e.g.,
systems with loss due to finite capacities or problems with nonlinear costs) where the
cμ-rule no longer applies. In fact, we have used IPA derivative estimates to find
an optimal solution for a nonlinear cost metric which substantially outperforms the
solution obtained through the cμ-rule.

In Section 2, the basic scheduling problem is formulated in a SFM setting. In
Section 3, using IPA we first prove the optimality of the cμ-rule for two queues
using a different approach than that of Kebarighotbi and Cassandras (2009) which
subsequently allows the generalization to N > 2 queues by using this result as a base
case for an induction argument. In Section 4 we provide the general IPA scheme for
estimating cost gradients. We then use it in simulation examples to show how we can
recover the cμ-rule in the case of linear holding costs and, for nonlinear costs, to
obtain scheduling policies that are optimal within the class of policies that allocate
fractions of the service capacity to each queue.

2 Problem formulation

Consider a SFM comprised of N queues competing for a shared resource as shown in
Fig. 1. We will be studying this system over a finite time interval [0, T]. User requests
from different classes n = 1, . . . , N are abstracted into uncontrollable inf lows {αn(t)}
capturing the instantaneous rate of arriving tasks and treated as random processes.
The associated fluid content random processes are denoted by {xn(t)} with xn(t) ≥ 0.
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Fig. 1 Stochastic Flow Model
(SFM) for the scheduling
problem

At each time t, the rate at which the resource is processing the fluid from the queue
n is denoted by un(t) ∈ [0, μn]. Here, μn > 0 denotes the maximum processing rate
for queue n. The processing rates are subject to the capacity constraint

N∑

n=1

un(t)
μn

≤ 1, ∀ t ∈ [0, T]. (1)

The outf low rate from the resource is denoted by {β(t)} and is defined as β(t) =∑N
n=1 un(t) for all t. All random processes in the SFM are defined on a common

probability space (�,F , P). We define control functions θn(t) ∈ [0, 1] to represent
the maximum fraction of μn at which the resource processes the fluid from the nth
queue. Therefore, we have un(t) ≤ μnθn(t) for all t.

Viewed as a stochastic hybrid system, each queue can only be in one of two
discrete states: either xn(t) = 0 over some Empty Period (EP) or xn(t) > 0 over some
Non-Empty Period (NEP). We assume that all the EPs and NEPs are close-left and
open-right intervals. Given a sample path over [0, T], we define �n to be the set of
all NEP start times and �n to be the set of all NEP end times for queue n = 1, . . . , N.
Regarding the controllability of event times in the SFM, they can be divided into two
categories: (1) Exogenous events which are due to an uncontrollable discontinuity in
some inflow rate and are assumed locally independent of θn(t), and (2) Endogenous
events whose occurrence times can be controlled by θn(t) for some n. There are two
further cases possible for an exogenous event: (a) an event that changes the discrete
state of queue n by initiating a NEPn and (b) one due to a possible discontinuity in
αn(t) which leaves the discrete state intact. We denote the set of all event times in
category (b) by �n. Also, there are two possibilities for an endogenous event: (a)
one that ends a NEP at some queue n and (b) one that starts a NEP at some time t
but is not caused by any uncontrolled discontinuity in the inflow rates. We make the
following mild technical assumptions.

Assumption 1 With probability 1, no two events can occur at the same time unless
the occurrence of one causes that of the other.

Assumption 2 The inflow processes {αn(t)} are piecewise continuous in [0, T], with
a finite number of discontinuities.
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The queue contents xn(t; θn(t)), n = 1, . . . , N evolve according to the one-sided
differential equations

dxn(t; θn(t))
dt+

= fn(t; θn(t)) = αn(t) − un(t; θn(t)) (2)

where, according to the definition of the rate processes, we can write for any n =
1, . . . , N and t ∈ [0, T]:

un(t; θn(t)) =
⎧
⎨

⎩

αn(t) if xn(t; θn(t)) = 0
and αn(t) ≤ μnθn(t)

μnθn(t) otherwise
(3)

In what follows, we drop θn(t) from the arguments of the functions un(t; θn(t)),
xn(t; θn(t)) and fn(t; θn(t)) to keep the notation manageable. Notice that by Eqs. 2
and 3, we can write

fn(t) =
⎧
⎨

⎩

0 if xn(t; θn(t)) = 0
and αn(t) ≤ μnθn(t)

αn(t) − μnθn(t) otherwise
(4)

Let us consider a sample path ω ∈ � generated under some fixed functions θn(t),
n = 1, . . . , N. We define 0 = t0 < t1 < . . . < tM = T to be the occurrence times of all
events that either start or end NEPs over all queues in the interval (0, T) with the
addition of the points 0 and T. Notice that M generally depends on the functions
θn(t). We further define:

θn,m(t) = θn(t), t ∈ [tm, tm+1), m = 0, . . . , M − 1 (5)

to be the control used over each interval [tm, tm+1) between any two successive events
that start/end some NEP.

The cost objective for any sample path ω ∈ � is the total holding cost and takes
the following general nonlinear form:

Q(θ, ω) =
∫ T

0

N∑

n=1

cngn(xn(t, θ(t), ω))dt (6)

where cn > 0 is a cost rate associated with the queue n and gn(·) is a differentiable
and generally nonlinear function in xn(t) over its domain. For any n = 1, . . . , N
we assume that gn(0) = 0 and gn(xn(t)) > 0 whenever xn(t) > 0. Notice that when
gn(xn(t)) = xn(t) for all t ∈ [0, T], the objective becomes a linear total holding cost for
which, as discussed in Section 1, it is shown that the cμ-rule determines the optimal
allocation policy under many settings. Regardless of the cost objective being linear or
nonlinear, we let the queues be indexed according to their cμ products in descending
order, i.e.,

c1μ1 > c2μ2 > . . . > cNμN. (7)

Motivated by the fact that our goal is the minimization of the total holding cost, we
assume that all the resource capacity is used if at least one queue is non-empty. Thus,

N∑

n=1

θn,m(t) = 1, t ∈ [tm, tm+1) if ∃n : xn(t) > 0. (8)
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In this case we can write θN,m(t) = 1 − ∑N−1
n=1 θn,m(t) and define the controllable

vector:

θ(t) = [v0(t), . . . , vM−1(t)]
with vm(t) = [θ1,m(t), . . . , θN−1,m(t)].

Henceforth, we omit ω from the arguments of all processes with the understanding
that our full analysis is carried out over some arbitrary but fixed sample path
associated with it.

3 Infinitesimal perturbation analysis (IPA)

Let us rewrite Eq. 6 as

Q(θ) =
M−1∑

k=0

∫ tk+1

tk

N∑

n=1

cngn(xn(t))dt.

Differentiating with respect to θi,m(t) for any pair of indices i = 1, . . . , N − 1 and
m = 0, . . . , M − 1 gives

∂ Q(θ)

∂θi,m
=

M−1∑

k=0

∫ tk+1

tk

N∑

n=1

cn
∂gn(xn(t))

∂xn

∂xn(t)
∂θi,m

dt. (9)

where ∂gn(xn(t))
∂xn

is a known function. By Eqs. 4 and 5 the control θi,m(t) can only affect
the queue content evolutions for t ≥ tm, so we conclude that

∂xn(t)
∂θi,m

= 0 ∀t < tm. (10)

However, the IPA derivative (Eq. 9) still requires evaluating the derivatives
∂xn(t)
∂θi,m

, n = 1, . . . , N for t ≥ tm. Integrating Eq. 4 for any n and t ∈ [tk, tk+1) with k ≥ m
yields

xn(t) = xn(tk) +
∫ t

tk
fn(τ )dτ. (11)

Note that within (tk, tk+1) a number of events corresponding to discontinuities in
arrival rate processes may occur. Thus, let τk,1, . . . , τk,Rk , with τk,l ∈ ∪N

n=1�n, be the
associated event times and set τk,0 = tk and τk,Rk+1 = tk+1 for convenience. Suppose
t ∈ [τk,l∗ , τk,l∗+1) for some l∗ ∈ {0, . . . , Rk}, so that

xn(t) = xn(tk) +
l∗−1∑

l=0

∫ τk,l+1

τk,l

fn(τ )dτ +
∫ t

τk,l∗
fn(τ )dτ.

Next, define, for any function h(t), the limits h(t+) = limτ↓t h(τ ) and h(t−) = limτ↑t

h(τ ). Differentiating the term above with respect to θi,m(t) gives

∂xn(t)
∂θi,m

= ∂xn(t−k )

∂θi,m
+

l∗∑

l=0

∂τk,l

∂θi,m

[
fn

(
τ−

k,l

) − fn
(
τ+

k,l

)] +
∫ t

τk,l∗

∂ fn(τ )

∂θi,m
dτ.
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All events occurring at τk,l , l = 1, . . . , l∗ are exogenous and independent of θi,m(t),
hence ∂τk,l

∂θi,m
= 0, leaving only the term corresponding to τk,0 = tk. Thus, we find

∂xn(t)
∂θi,m

= ∂xn(t−k )

∂θi,m
+ ∂tk

∂θi,m

[
fn

(
t−k

) − fn
(
t+k

)] +
∫ t

tk

∂ fn(τ )

∂θi,m
dτ. (12)

Observe that in Eq. 12 the integrands ∂ fn(τ )

∂θi,m
are readily obtained from Eq. 4 de-

pending on information about xn(τ ) for τ ∈ [tk, t). To use Eq. 12, we also need to
evaluate the event time derivatives ∂tk

∂θi,m
. Whenever at tk the associated event is exoge-

nous, we have:

∂tk
∂θi,m

= 0 if tk is exogenous. (13)

However, if tk ∈ �n for some n, we have xn(tk) = 0. Differentiating both sides with
respect to θi,m(t), we get

∂xn(t−k )

∂θi,m
+ ∂xn(t)

∂t
∂t

∂θi,m
|t=t−k = 0

which results in

∂tk
∂θi,m

= −∂xn(t−k )/∂θi,m

fn(t−k )
if tk ∈ �n. (14)

If, on the other hand, tk ∈ �n, the following result shows tk does not affect the deriva-
tive (Eq. 12).

Lemma 1 Let tk be the start of a NEP for some queue n. Then, ∂tk
∂θi,m

[ fl(t−k )− fl(t+k )] = 0
for all pairs (i, m) and l = 1, 2, . . . , N.

Proof See Appendix. ��

In the next two sections we assume gn(xn(t)) = xn(t) for all n = 1, . . . , N, thus
limiting ourselves to the linear holding cost

Q(θ) =
M−1∑

k=0

∫ tk+1

tk

N∑

n=1

cnxn(t)dt. (15)

Accordingly, we investigate the optimality of the cμ-rule using the SFM and IPA
framework extending the available results in the literature.

In this section, we will first limit ourselves to a SFM with two queues. This was
analyzed by Kebarighotbi and Cassandras (2009) where the sample performance
function Q(θ) was expressed in terms of a single parameter θ , defined as the fraction
of resource capacity allocated to queue 1. An explicit IPA derivative dQ/dθ was
derived and it was shown that if c1μ1 > c2μ2 then dQ/dθ < 0. This result applies to
any sample path, leading to the conclusion that θ∗ = 1 and the cμ-rule is therefore
optimal. In order to extend this result to an arbitrary number of queues, we use
the setting proposed in the previous section, slightly different from the one in
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Kebarighotbi and Cassandras (2009), which allows us to re-derive the IPA derivative
and the optimality of the cμ-rule in a simpler way. Our result will then be used in the
following section as a base step for an inductive argument generalizing the optimality
of the cμ-rule to any N > 2 queues while also providing explicit IPA derivatives as
performance gradient estimators in other problems where the cμ-rule is no longer
optimal. We prove the cμ-rule based on a backward recursion in time in the spirit of
a dynamic programming argument. Let us define

q(t) =
N∑

n=1

cnxn(t), ∀t ∈ [0, T]

and introduce the following recursion for the cost in Eq. 15:

QM = 0 (16a)

Qm = hm+1(v0, . . . , vm) + Qm+1, (16b)

where

hm+1(v0, . . . , vm) =
∫ tm+1

tm
q(t, θ(t))dt,

Q0 = Q(θ).

where, for any m ∈ {0, . . . , M − 1}, the function hm+1(·) is dependent on the past
controls v0, . . . , vm. Additionally, the recursion defined by Eqs. 16a and 16b implies
that the functions Qm(·) are generally dependent on v0, . . . , vM−1. In the sequel, we
omit the control vectors from the arguments of the functions hm(·), Qm(·) and Q(·)
for brevity. Noting that the control vector vm can only affect the queue contents in the
interval [tm, T), we can use Eqs. 16a and 16b to minimize Q(·) through the following
(dynamic programming) recursion:

Q∗
M = 0 (17a)

Q∗
m = min

vm

{
hm+1 + Q∗

m+1

}
, m = 1, . . . , M − 1 (17b)

where Q∗
0 = minv1,...,vM−1 Q(v0, . . . , vM−1). In simple terms, minimization of Q(·) boils

down to recursively finding the optimal controls vm+1, . . . , vM−1 for the interval
[tm+1, T) and the best vm for the interval [tm, tm+1) assuming that the optimal controls
for the interval [tm+1, T) have already been implemented. Notice that when N = 2,
vm(t) = θ1,m(t) for any m = 0, . . . , M − 1.

3.1 IPA for two-queue system and the cμ-rule

For any interval [tm, tm+1) let Nm be the number of non-empty queues in it. Using
IPA, we establish the optimality of the cμ-rule for two queues through the following
theorem.

Theorem 1 The cμ-rule minimizes the cost (Eq. 15) for a two-queue system with
dynamics (Eq. 4), controls (Eq. 5) and constraint 8.
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Proof We start with the last interval [tM−1, tM). We then use the recursions 17a
and 17b to extend the optimality of the cμ-rule to the whole sample path. Considering
the interval [tM−1, tM), the following four cases are possible:

Case 1 If NM−1 = 0 by Eq. 3, it is trivially concluded that any pair (θ1,M−1(t),
θ2,M−1(t)) keeping the queue contents at zero is optimal. In other words, if θ1,M−1(t) ≥
α1(t)
μ1

and θ2,M−1(t) ≥ α2(t)
μ2

, the allocation parameters θ1,M−1(t) and θ2,M−1(t) are opti-
mal for any t ∈ [tM−1, tM). The pair

θ∗
1,M−1(t) = α1(t)

μ1
, θ∗

2,M−1(t) = α2(t)
μ2

for any t ∈ [tM−1, tM) is a special case in this set of solutions. This is consistent with
the cμ-rule.

Case 2 If NM−1 = 1 and x1(t) > 0 for all t ∈ [tM−1, tM), by Eq. 8, we have a one-
dimensional problem with control θ1,M−1(t). Note that, by Eq. 10 with i = 1 and m =
M − 1, ∂xn(t−M−1)

∂θ1,M−1
= 0 for n = 1, 2. Moreover, at tM−1 only two events are possible: (i)

If tM−1 ∈ �1, by Lemma 1 we have ∂tM−1
∂θ1,M−1

[ fn(t−M−1) − fn(t+M−1)] = 0 for n = 1, 2, and

(ii) If tM−1 ∈ �2, since ∂xn(t−M−1)

∂θ1,M−1
= 0 for n = 2, it follows from Eq. 14 that ∂tM−1

∂θ1,M−1
= 0.

Also, from Eq. 4, we get f2(τ ) = 0 for all τ ∈ [tM−1, tM) which gives ∂ f2(τ )

∂θ1,M−1
= 0. On

the other hand, f1(τ ) = α1(τ ) − μ1θ1,M−1(τ ), yielding ∂ f1(τ )

∂θ1,M−1
= −μ1. Inserting these

results into Eq. 12 for any t ∈ [tM−1, tM) yields ∂x1(t)
∂θ1,M−1

= −μ1(t − tM−1) and ∂x2(t)
∂θ1,M−1

= 0.
It then follows from the derivative (Eq. 9) with gn(xn(t)) = xn(t) that

∂ Q(θ)

∂θ1,M−1
= −c1μ1

(tM − tM−1)
2

2
< 0

thus, increasing θ1,M−1(t) has a decreasing effect on the linear holding cost.

Case 3 If NM−1 = 1 but x2(t) > 0 for all t ∈ [tM−1, tM), using Eq. 4 for any τ ∈
[tM−1, t) we find f1(τ ) = 0 and f2(τ ) = α2(τ ) − μ2(1 − θ1,M−1(τ )), giving ∂ f1(τ )

∂θ1,M−1
= 0

and ∂ f2(τ )

∂θ1,M−1
= μ1. Similar to the previous case, we also find that ∂tM−1

∂θ1,M−1
[ fn(t−M−1) −

f (t+M−1)] = 0. Using these results in Eq. 12 for any t ∈ [tM−1, tM) gives ∂x1(t)
∂θ1,M−1

= 0 and
∂x2(t)

∂θ1,M−1
= μ2(t − tM−1). Application of Eq. 9 gives the final result:

∂ Q(θ)

∂θ1,M−1
= c2μ2

(tM − tM−1)
2

2
> 0,

hence, decreasing θ1,M−1(t) has a decreasing effect on the holding cost.

Case 4 If NM−1 = 2 (both queues nonempty), then using Eqs. 3, 4 and 8 we
find that f1(τ ) = α1(τ ) − μ1θ1,M−1(τ ) and f2(τ ) = α2(τ ) − μ2(1 − θ1,M−1(τ )) for any
τ ∈ [tM−1, tM). Therefore, ∂ f1(τ )

∂θ1,M−1
= −μ1 and ∂ f2(τ )

∂θ1,M−1
= μ2. Moreover, if NM−1 = 2

we must have tM−1 ∈ �1 or �2 which, using Lemma 1, in either case implies that
∂tM−1

∂θ1,M−1
[ fn(t−M−1) − fn(t+M−1)] = 0 for n = 1, 2. Furthermore, by Eq. 10 with i = 1 and
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m = M − 1, we get ∂xn(tM−1)

∂θ1,M−1
= 0. Combining these results in Eq. 12 gives ∂x1(t)

∂θ1,M−1
= −μ1

(T − tM−1) and ∂x2(t)
∂θ1,M−1

= μ2(t − tM−1). It follows from Eq. 9 for m = M − 1 that

∂ Q(θ)

∂θ1,M−1
= − (c1μ1 − c2μ2)

(tM − tM−1)
2

2
< 0

hence, increasing θ1,M−1(t) has a decreasing effect on the cost.
Collecting all above results for all four cases, we obtain the following optimal

allocation policy, proving the cμ-rule for t ∈ [tM−1, T):

θ∗
1,M−1(t) =

{
α1(t)
μ1

if x1(t) = 0
1 otherwise

θ∗
2,M−1(t) = 1 − θ∗

1,M−1(t)

Next, we show that if the cμ-rule is optimal and is applied to the interval [tm+1, T),
it is also optimal for the interval [tm, T). The case of Nm = 0 is trivial and excluded.
When Nm = 1 and x1(t) > 0, applying the same analysis as we did for tM−1 results in
∂x1(t)
∂θ1,m

= −μ1(t − tm) < 0 and ∂x2(t)
∂θ1,m

= 0 for any t ∈ [tm, tm+1). At tm+1 the following two
events are possible:

First, tm+1 ∈ �1, i.e., the end of a NEP1. In this case fn(τ ) = 0 for all τ ∈ [tm+1,

tm+2) yielding ∂ fn(τ )

∂θ1,m
= 0. Using Eqs. 14 and 12 for t ∈ [tm+1, tm+2) gives

∂x1(t)
∂θ1,m

= ∂x1(t−m+1)

∂θ1,m
+

−∂x1(t
−
m+1)

∂θ1,m

f1(t−m+1)

[
f1(t−m+1) − 0

] = 0

∂x2(t)
∂θ1,m

= ∂x2(t−m+1)

∂θ1,m
+ ∂tm+1

∂θ1,m
[0 − 0] = 0

Using Eq. 9, we conclude that ∂ Q(θ)

∂θ1,m
= −c1μ1

(tm+1−tm)2

2 < 0.

Second, if tm+1 ∈ �2 (start of a NEP2) by Lemma 1 we get ∂tm+1
∂θ1,m

[ fn(t−m+1) −
fn(t+m+1)] = 0 for n = 1, 2. Moreover, noticing that θ1,m(t) only affects the dynamics
inside [tm, tm+1), we have ∂ fn(τ )

∂θ1,m
= 0 for τ > tm+1. Using these results in Eq. 12 gives

∂x1(t)
∂θ1,m

= ∂x1(t
−
m+1)

∂θ1,m
= −μ1(tm+1 − tm) and ∂x2(t)

∂θ1,m
= ∂x2(t

−
m+1)

∂θ1,m
= 0 for any t ∈ [tm+1, tm+2).

Next, if tm+2 ∈ �2, we get x2(t) = 0 for t ∈ [tm+2, tm+3) which yields ∂x2(t)
∂θ1,m

= 0 on the

same interval. Since we have shown ∂x2(t)
∂θ1,m

= 0 in [tm+1, tm+2), we conclude ∂x2(t
−
m+2)

∂θ1,m
= 0.

Using this in Eq. 14 gives ∂tm+2
∂θ1,m

= 0. Also, because f1(τ ) is independent of θ1,m(τ )

for τ > tm+1, we get ∂ f1(τ )

∂θ1,m
= 0. Using these in Eq. 12 with tk = tm+2 gives ∂x1(t)

∂θ1,m
=

−μ1(tm+1 − tm) for any t ∈ [tm+2, tm+3). If, on the other hand, we have tm+2 ∈ �1 (end
of a NEP1), we get into a state where both queues are empty. In this case simple
calculations reveal ∂xn(t)

∂θ1,m
= 0 for t ∈ [tm+2, tm+3) and n = 1, 2. Since ∂ fn(τ )

∂θi,m
= 0, for the

rest of the sample path no perturbation can be generated with respect to θn,m. Thus,
repeating the same analysis on all subsequent intervals, i.e. considering the possible
events at tm+i, for i > 2 reveals that ∂x2(t)

∂θ1,m
remains zero for the rest of the sample

path and ∂x1(t)
∂θ1,m

remains constant until the first time queue 1 becomes empty at some
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point t < T and remains zero afterwards. If queue 1 never becomes empty ∂x1(t)
∂θ1,m

stays
constant for all t ∈ [tm+1, T). Hence, after applying Eq. 9, we get

∂ Q(θ)

∂θ1,m
= −c1μ1

[
(tm+1 − tm)2

2
+ (tm+1 − tm)(η − tm+1)

]
< 0

where η is either the first time queue 1 goes empty after tm+1 or η = T if it never
happens. The derivative found is negative, so we get θ∗

1,m(t) = 1, obeying the cμ-rule.
If Nm = 1 and x2(t) > 0, following the same procedure as in the interval [tM−1, tM)

we find that ∂x1(t)
∂θ1,m

= 0 and ∂x2(t)
∂θ1,m

= μ2(t − tm) for any t ∈ [tm, tm+1). At tm+1 either
tm+1 ∈ �2 (NEP2 ends) or tm+1 ∈ �1 (NEP1 starts). In the former case, proceeding
exactly as in the previous case, we get ∂xn(t)

∂θ1,m
= 0 for any t ∈ [tm+1, T) which, after

applying Eq. 9, gives ∂ Q(θ)

∂θ1,m
= c2μ2

(tm+1−tm)2

2 . Then, with the same analysis as in interval

[tM−1, tM), we find that a1(t) = α1(t)
μ1

is an attractive upper bound for θ2,m(t). If
tm+1 ∈ �1, with exactly the same procedure in the case with Nm = 1 and x1(t) > 0,

we get ∂xn(t)
∂θ1,m

= ∂xn(t−m+1)

∂θ1,m
= μ2(tm+1 − tm) for any t ∈ [tm+1, tm+2). Following the same

procedure as in the previous case we get

∂ Q(θ)

∂θ1,m
= c2μ2

[
(tm+1 − tm)2

2
+ (tm+1 − tm)(η − tm+1)

]
> 0

where η is either the first time queue 2 becomes empty or η = T if it never
happens. This is a positive term, hence θ∗

1,m(t) = α1(t)
μ1

and θ∗
2,m(t) = 1 − θ∗

1,m(t) for all
t ∈ [tm, tm+1) which obeys the cμ-rule.

Finally, if Nm = 2, we find f1(τ ) = α1(τ ) − μ1θ1,m(τ ) and f2(τ ) = α2(τ ) − μ2(1 −
θ1,m(τ )) for any τ ∈ [tm, tm+1). Therefore, ∂ f1(τ )

∂θ1,m
= −μ1 and ∂ f2(τ )

∂θ2,m
= μ2. Since Nm =

2, the event at tm is such that tm ∈ �1 or �2 and application of Lemma 1 im-
plies ∂tm

∂θ1,m
[ fn(t−m) − fn(t+m)] = 0 for n = 1, 2.. Moreover, by Eq. 10 with i = 1 we

get ∂xn(t−m)

∂θ1,m
= 0. Using these results in Eq. 12 for t ∈ [tm, tm+1), we obtain ∂x1(t)

∂θ1,m
=

−μ1(t − tm) and ∂x2(t)
∂θ1,m

= μ2(t − tm) for any t ∈ [tm, tm+1). At tm+1, we either have

tm+1 ∈ �1 or �2. In the former case, applying Eq. 12 for [tm+1, tm+2) gives ∂x1(t)
∂θ1,m

=
0. Regarding x2(t), application of Eq. 4 at t−m+1 results in f2(t−m+1) = α2(t−m+1) −
μ2(1 − θ1,m(t−m+1)). After tm+1 the cμ-rule applies (by the induction hypothesis)

and we have f2(t+m+1) = α2(t+m+1) − μ2(1 − α1(t
+
m+1)

μ1
). Therefore, f2(t−m+1) − f2(t+m+1) =

−μ2
μ1

[α1(t+m+1) − θ1,m(t+m+1)μ1]. Since, by Assumption 1, α1(t) is continuous at tm+1,
we get f2(t−m+1) − f2(t+m+1) = −μ2

μ1
f1(t−m+1). Moreover, by the definition of θ1,m(τ ), we

also have ∂ fn(τ )

∂θ1,m
= 0 for all τ ∈ [tm+1, tm+2), n = 1, 2. Using these results in Eqs. 14

and 12 for n = 2 and t ∈ [tm+1, tm+2), we get

∂x2(t)
∂θ1,m

= ∂x2(t−m+1)

∂θ1,m
+

− ∂x1(t
−
m+1)

∂θ1,m

f1(t−m+1)

(
−μ2

μ1
f1

(
t−m+1

))
.

If we insert the derivatives ∂x1(t
−
m+1)

∂θ1,m
= −μ1(tm+1 − tm) and ∂x2(t

−
m+1)

∂θ1,m
= μ2(tm+1 − tm) in

the above equation, we find ∂x2(t)
∂θ1,m

= 0 for all t ∈ [tm+1, tm+2). Using the same analysis
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in all subsequent intervals reveals that the derivatives obtained remain zero for the
rest of the sample path. Therefore, application of Eq. 9 gives

∂ Q(θ)

∂θ1,m
= −(c1μ1 − c2μ2)

(tm+1 − tm)2

2
< 0.

The last case pertaining to tm+1 ∈ �2 is similar and the analysis results in the same
expression for ∂ Q(θ)

∂θ1,m
, so it is omitted. Therefore, when Nm = 2 we conclude that

θ∗
1,m(t) = 1 and θ∗

2,m(t) = 0. Gathering all the results, one can summarize the optimal
allocations in the following equations for all t ∈ [0, T]:

θ∗
1 (t) =

{
1 if x1(t) > 0
α1(t)
μ1

otherwise , θ∗
2 (t) =

⎧
⎪⎨

⎪⎩

0 if x1(t) > 0
1 − α1(t)

μ1
if x1(t) = 0, x2(t) > 0

α2(t)
μ2

otherwise
(18)

This is precisely the cμ-rule, so the proof is complete. ��

3.2 IPA for N > 2 queues and the cμ-rule

Outline of the analysis Considering the result of Theorem 1 (N = 2) as the base
step, we set up the induction hypothesis by assuming that the cμ-rule is optimal
for arbitrary K = 2, . . . , N − 1 queues. In the inductive step, we combine Eqs. 17a
and 17b with the induction hypothesis to show that when N queues are present and
the cμ-rule is optimal and is implemented in the interval [tm+1, T), it is also optimal
for the interval [tm, T). We do this by showing that deviating from the cμ-rule in
the interval [tm, tm+1) increases the cost Q(u0, . . . , uM−1). Specifically, we perturb
θ1,m(t) away from its value under the cμ-rule by δ1,m(t) > 0 and θn,m(t) by δn,m(t) ≥ 0
for n > 1 such that no event order change results at and after tm+1. Moreover, this
perturbation is such that Eq. 8 is preserved. Notice that under the cμ-rule no two
queues can end their NEPs at the same time, thus, we can always find such arbitrary
perturbations δn,m(t). Next, stepping backwards in time, the induction hypothesis
applies to all intervals with fewer than N non-empty queues. Thus, we need only
examine those intervals where all N queues are non-empty. To this end, let us
consider an interval [tm, tm+1) with Nm = N and let ηn,m be the first time at which
the nth queue becomes empty after tm. We assume that the newly added queue
has the lowest cμ product, that is, cNμN < cnμn for any n = N. This is simply for
convenience and does not restrict generality because, knowing the products cnμn of
all the queues, one can do this after sorting them out instead of randomly adding a
queue.

To apply the above mentioned idea, we will introduce a series of lemmas all
of which apply to the following setting: Consider an interval [tm, tm+1) with Nm =
N. Also, assume that the cμ-rule is applied for t ≥ tm+1. Moreover, let θ1,m(t) be
perturbed as explained above. Thus, as shown in Fig. 2, queues are served according
to their cμ value highest to lowest and NEPs end at η1,m, η2,m, . . . , ηN,m such that

tm+1 = η1,m < η2,m < . . . < ηN,m. (19)

Fig. 2 Time line of events in
and after the interval [tm, tm+1)
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Now let us define for any event time tk, k = 1, . . . , M − 1:

�θn(tk) = θn
(
t+k

) − θn
(
t−k

) = θn,k
(
t+k

) − θn,k−1
(
t−k

)
. (20)

representing the amount by which a control changes when this event occurs and
affecting the queue content derivatives in Eq. 12. The first lemma gives explicit
expressions for this quantity at the event times η1,m, . . . , ηN,m.

Lemma 2

(a)

�θn(η1,m) =

⎧
⎪⎨

⎪⎩

α1(η1,m)

μ1
− θ1(η

−
1,m) if n = 1

1 − α1(η1,m)

μ1
− θ2(η

−
1,m) if n = 2

−θn(η
−
1,m) if n > 2.

(b) For n = 3, . . . , N, �θn(ηn,m) = −(
1 − ∑n

k=1
αk(ηn,m)

μk

)
, �θn(ηn−1,m) = 1−

∑n−1
k=1

αk(ηn,m)

μk
and �θn(ηk,m) = 0 for all k = n, n − 1.

Proof See Appendix. ��

In the next three lemmas we derive convenient expressions for the queue content
derivatives with respect to a parameter θi,m inside the intervals [tm, η1,m), [η1,m, ηN,m)

and [ηN,m, T), respectively.

Lemma 3 For all t ∈ [tm, η1,m) with Nm = N,

∂xn(t)
∂θi,m

=
⎧
⎨

⎩

−μi(t − tm) if n = i
μN(t − tm) if n = N
0 otherwise

(21)

for any n = 1, . . . , N, i = 1, . . . , N − 1.

Proof See Appendix. ��

An immediate corollary of Lemma 3 which will be used in the sequel is that for
i = 1, . . . , N − 1 and t ∈ [tm, η1,m):

∂xi(t)
∂θi,m

= μi

μ1

∂x1(t)
∂θ1,m

(22)

∂xN(t)
∂θi,m

= −μN

μ1

∂x1(t)
∂θ1,m

(23)

Lemma 4 For any t ∈ [η j,m, η j+1,m), j = 1, . . . , N − 1,

∂xn(t)
∂θi,m

= ∂xn(η
−
1,m)

∂θi,m
+

j∑

k=1

∂ηk,m

∂θi,m
μn�θn(ηk,m) (24)

for any n = 1, . . . , N, i = 1, . . . , N − 1.
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Proof See Appendix. ��

Lemma 5 For any t ∈ [ηN,m, T), we have ∂xn(t)
∂θi,m

= 0, n = 1, . . . , N, i = 1, . . . , N − 1.

Proof See Appendix. ��

Observe that the evaluation of Eq. 24 involves some event time derivatives.
Lemmas 6 and 7 allow us to evaluate derivatives of the form ∂ηn,m

∂θi,m
depending on

whether n < i or n ≥ i.

Lemma 6 For any i = 2, . . . , N − 1,

∂ηn,m

∂θi,m
= 0, n < i (25)

Proof See Appendix. ��

In what follows, we will make use of the following definition for any k and m,

rk,m = −μk

fk(η
−
k,m)

> 0 (26)

where the inequality is due to the fact that at t = ηk,m queue k becomes empty,
therefore, recalling Eqs. 2 and 3, fk(η

−
k,m) = αk(η

−
k,m) − μkθk,m(η−

k,m) < 0.

The following lemma gives necessary tools to determine ∂ηn,m

∂θi,m
when n ≥ i.

Lemma 7 For n = 1, . . . , N − 1 and i ≤ n,

∂ηn,m

∂θi,m
= ri,m

μ1

∂x1(η
−
1,m)

∂θ1,m

n∏

k=i+1

rk,m�θk(ηk−1,m), (27)

where by convention, when n = i we def ine the product term in the above equation
as 1.

Proof See Appendix. ��

We are now in the position to prove the main theorem of this section.

Theorem 2 The cμ-rule minimizes the cost (Eq. 15) for a system of N parallel queues
with dynamics (Eq. 4), control parameters (Eq. 5) and the constraint 8.

Proof As mentioned in the outline of the analysis, we use an induction argument
along with a backward recursion in time through Eqs. 17a and 17b to prove the
theorem. We first consider the last interval.

Last interval [tM−1, tM): If NM−1 < N, by the induction hypothesis the cμ-rule is
already optimal. If Nm = N, we have

∂q(t)
∂θi,M−1

=
N∑

n=1

cn
∂xn(t)
∂θi,M−1

, i = 1, . . . , N − 1.
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Using Lemma 3 for each i = 1, . . . , N − 1 we get

∂q(t)
∂θi,M−1

= −(ciμi − cNμN)(t − tM−1)

Since ciμi > cNμN for all i = 1, . . . , N − 1, we conclude that

∂q(t)
∂θi,M−1

< 0, if t ∈ [tM−1, tM), i = 1, . . . , N − 1. (28)

Moreover, according to the cμ order in Eq. 7, we can write (ciμi − cNμN) > (c jμ j −
cNμN), 1 ≤ i < j ≤ N − 1. Hence, for t ∈ [tM−1, tM) we have

∂q(t)
∂θi,M−1

<
∂q(t)

∂θ j,M−1
, if 1 ≤ i < j ≤ N − 1. (29)

Since, ∂ QM−1
∂θi,M−1

= ∫ tM

tM−1

∂q(t)
∂θ j,M−1

dt, the inequalities 28 and 29 pertaining to q(t) are in-

herited by QM−1(θ) and we get ∂ QM−1(θ)

∂θ1,M−1
<

∂ QM−1(θ)

∂θi,M−1
< 0 for i = 2, . . . , N − 1. There-

fore, increasing θ1,m has the greatest minimizing effect on Q(θ), i.e., v∗
M−1(t) =

[1, 0, . . . , 0], t ∈ [tM−1, T).

Arbitrary interval [tm, tm+1), m ≤ M − 2: Suppose the cμ-rule is optimal and al-
ready applied to the interval [tm+1, tM). We will show that it is also optimal in
the interval [tm, tM) for any m ≤ M − 2. If Nm < N we can apply the induction
hypothesis to the interval [tm, tm+1) and prove the optimality of the cμ-rule over
[tm, T). If Nm = N, we prove the theorem by first following the same procedure as
for [tM−1, tM) and apply Lemma 3 to show for any t ∈ [tm, tm+1)

∂q(t)
∂θi,m

<
∂q(t)
∂θl,m

< 0, if 1 ≤ i < l ≤ N − 1.

Next, we show that for any t ∈ [η j,m, η j+1,m)

∂q(t)
∂θ1,m

≤ ∂q(t)
∂θ2,m

= . . . = ∂q(t)
∂θ j+1,m

< . . . <
∂q(t)

∂θN−1,m
< 0 (30)

with j = 1, . . . , N − 2. This relation covers the interval [η1,m, ηN,m). Note that by
Eq. 10 and Lemma 5, we need not consider the rest of the sample path. Using
these relations in Eq. 9 establisehs that ∂ Q(θ)

∂θ1,m
<

∂ Q(θ)

∂θi,m
< 0 for any i = 2, . . . , N − 1

and proves the theorem. We omit the analysis for the interval [tm, η1,m) due to its
similarity to the one for [tM−1, tM) and focus on the interval [η1,m, ηN,m).

Let us obtain an expression for ∂q(t)
∂θi,m

over the interval [η j,m, η j+1,m) where j ∈
{1, . . . , N − 1} is fixed. If xn(t) = 0 for all n ≤ j and t ∈ [η j,m, η j+1,m), we see that
∂xn(t)
∂θi,m

= 0 which gives

∂q(t)
∂θi,m

=
N∑

n= j+1

cn
∂xn(t)
∂θi,m

, t ∈ [η j,m, η j+1,m). (31)

If there is an interval [tl∗ , tl) ⊂ [η j,m, η j+1,m) over which xn(t) > 0 with n ≤ j, we show
that ∂xn(t)

∂θi,m
= 0 and Eq. 31 is still valid. This is the case where a queue n depleted
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Fig. 3 A re-start of a NEPn,
n ≤ j in interval [η j,m, η j+1,m)

by or at ηn,m with n ≤ j has become non-empty again (as illustrated in Fig. 3). We
only consider one such interval, thereby having tl∗ = tl−1, since the extension to
multiple intervals is straightforward. By the cμ-rule, this queue should make full
use of the resource at tl−1 and return it to the ( j + 1)th queue after it becomes
empty again at tl . It suffices to show that ∂xn(t)

∂θi,m
= 0 over [tl−1, tl) because xn(t) = 0

right before and after this interval. Since tl−1 is the start of a NEPn, Lemma 1 gives
∂tl−1
∂θi,m

[ fn(t−l−1) − fn(t+l−1)] = 0. Moreover, xn(t) = 0 for t ∈ [η j,m, tl−1) and
∂xn(t−l−1)

∂θi,m
= 0.

In addition, because tl ≥ η1,m, by Eqs. 4 and 5, fn(τ ) is not a function of θi,m for any
τ ∈ [tl−1, tl). Therefore, ∂ fn(τ )

∂θi,m
= 0. Using these results in Eq. 12 with tk = tl−1 and

t = tl we find that when n ≤ j, ∂xn(t)
∂θi,m

= 0 for any t ∈ [tl−1, tl), hence, t ∈ [η j,m, η j+1,m)

and Eq. 31 still holds.
By Lemma 6 we have ∂ηk,m

∂θi,m
= 0 for k ≤ i. Using this in Lemma 4, i.e., Eq. 24, and

inserting the result in Eq. 31 gives:

∂q(t)
∂θi,m

=
N∑

n= j+1

cn

[
∂xn(η

−
1,m)

∂θi,m
+

j∑

k=i

∂ηk,m

∂θi,m
μn�θn(ηk,m)

]
. (32)

There are now two cases regarding the range of i:

• i > j: In this case, the inner sum in Eq. 32 vanishes. Moreover, by Lemma 3,
∂xn(η−

1,m)

∂θi,m
= 0 unless we have either n = i or n = N. Using these facts in Eq. 32

yields:

∂q(t)
∂θi,m

= ci
∂xi(η

−
1,m)

∂θi,m
+ cN

∂xN(η−
1,m)

∂θi,m
.

Invoking Eqs. 22 and 23 this further reduces to

∂q(t)
∂θi,m

= 1
μ1

∂x1(η
−
1,m)

∂θ1,m
(ciμi − cNμN). (33)

By Lemma 3,
∂x1(η

−
1,m)

∂θ1,m
< 0. In view of Eq. 7, it follows that for t ∈ [η j,m, η j+1,m):

∂q(t)
∂θ j+1,m

<
∂q(t)

∂θ j+2,m
< . . . <

∂q(t)
∂θN−1,m

< 0. (34)
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• i ≤ j : We consider two subcases:

(a) j ≥ 2: In this case, since the sum in Eq. 32 is such that n ≥ j + 1, the
condition n = i cannot be true. Using Lemma 3, we find that the first sum
in Eq. 32 becomes

N∑

n= j+1

cn
∂xn(η

−
1,m)

∂θi,m
= cN

∂xN(η−
1,m)

∂θi,m
.

Concerning the inner sum in Eq. 32 we can use part (b) of Lemma 2 to see that
�θn(ηk,m) = 0 except for when n = j + 1 and k = j where we have �θ j+1(η j,m) = 1 −∑ j

k=1
αk(η j,m)

μk
. Using these results in Eq. 32 we conclude that, for t ∈ [η j,m, η j+1,m),

∂q(t)
∂θi,m

= c j+1μ j+1
∂η j,m

∂θi,m
�θ j+1(η j,m) + cN

∂xN(η−
1,m)

∂θi,m
. (35)

By Eq. 23, we have
∂xN(η−

1,m)

∂θi,m
= −μN

μ1

∂x1(η
−
1,m)

∂θ1,m
. The derivative ∂η j,m

∂θi,m
can be calculated by

Lemma 7 for j ≥ i. For convenience, we also define:

Ai, j =
j∏

k=i+1

rk,m�θk(ηk−1,m)

Combining these expressions in (35) we find for any t ∈ [η j,m, η j+1,m),

∂q(t; θ)

∂θi,m
= 1

μ1

∂x1(η1,m)

∂θ1,m

[
c j+1μ j+1ri,m Ai, j�θ j+1

(
η j,m

) − cNμN
]

(36)

By Lemma 3 we have
∂x1(η

−
1,m)

∂θ1,m
< 0. We shall next show that ri,m Ai, j�θ j+1(η j,m) = 1

for 1 < i ≤ j and ri,m Ai, j�θ j+1(η j,m) ≥ 1 for 1 = i ≤ j which yields

∂q(t)
∂θ1,m

≤ ∂q(t)
∂θ2,m

= . . . = ∂q(t)
∂θ j−1,m

= ∂q(t)
∂θ j,m

< 0 (37)

for any t ∈ [η j,m, η j+1,m), j = 2, . . . , N − 1. To accomplish this, we show that,

r1,m�θ2(η1,m) ≥ 1, (38)

rk−1,m�θk(ηk−1,m) = 1 if k = 3, . . . , j. (39)

Using part (a) of Lemma 2 and (26) with k = 1 we get

�θ2(η1,m)r1,m = −μ1
[
1 − θ2(η

−
1,m) − α1(η1,m)

μ1

]

α1(η1,m) − μ1θ1(η
−
1,m)

and by factoring out −μ1 in the denominator we find

�θ2(η1,m)r1,m = 1 − θ2(η
−
1,m) − α1(η1,m)

μ1

θ1(η
−
1,m) − α1(η1,m)

μ1

.

As discussed in the outline of the analysis, in [tm, η1,m) we deviate from the cμ-rule
by perturbing θn,m(t) by δn,m(t) while preserving Eq. 8. It follows that θ1(η

−
1,m) ≤ 1 −

θ2(η
−
1,m), hence, Eq. 38 is proven. ��
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Next, recalling Eq. 4, we have

fk−1
(
η−

k−1,m

) = αk−1
(
η−

k−1,m

) − μk−1

[
1 −

k−2∑

l=1

αl(ηk−1,m)

μl

]

or

fk−1
(
η−

k−1,m

) = −μk−1

[
1 −

k−1∑

l=1

αl(ηk−1,m)

μl

]

By part (b) of Lemma 2, for k = i + 1, . . . , j we have �θk(ηk−1,m) = 1 − ∑k−1
l=1

αl(ηk−1,m)

μl

and by Eq. 26, we have rk−1,m = −μk−1

fk−1(η
−
k−1,m)

. Therefore, the equation above yields

rk−1,m�θk(ηk−1,m) = 1

which verifies Eq. 39.
Using Eq. 39 when i > 1 in the definition of Ai, j, it is easy to check that ri,m Ai, j =

r j,m. Therefore, invoking Eq. 39 again, we get ri,m Ai, j�θ j+1(η j,m) = r j,m�θ j+1(η j,m) =
1. Applying this to Eq. 36 for i > 1, gives

∂q(t)
∂θi,m

= ∂x1(η1,m)

μ1∂θ1,m
[c j+1μ j+1 − cNμN], ∀t ∈ [η j,m, η j,m+1).

which is independent of i. This proves the equalities in Eq. 37. In a similar way,
we find that when i = 1 (Eq. 38) yields ri,m Ai, j�θ j+1(η j,m) ≥ 1. Using this in Eq. 36
proves the inequality in Eq. 37. Combining Eqs. 34 and 37, for any t ∈ [η j,m, η j+1,m)

with j ≥ 2 we have

∂q(t)
∂θ1,m

≤ ∂q(t)
∂θ2,m

= . . . = ∂q(t)
∂θ j+1,m

< . . . <
∂q(t)

∂θN−1,m
< 0.

We complete the proof by showing that the above relationship is also true for j = 1.
(b) j = 1: Since we are considering a subcase of i ≤ j, we have i = j = 1. Using this
in Eq. 32 results in

∂q(t)
∂θ1,m

=
N∑

n=2

cn

[
∂xn(η

−
1,m)

∂θ1,m
+ ∂η1,m

∂θ1,m
μn�θn(η1,m)

]
.

According to Lemma 3,
∂xn(η−

1,m)

∂θ1,m
= 0 only when n = 1 or n = N. However, since the

summation in the above equation has its lower limit at n = 2, the case n = 1 is not
possible and it follows that

∂q(t)
∂θ1,m

= cN
∂xN(η−

1,m)

∂θ1,m
+ ∂η1,m

∂θ1,m

N∑

n=2

cnμn�θn(η1,m).

Applying Eq. 23 with t = η−
1,m and Eq. 14 with tk = η1,m, this reduces to

∂q(t)
∂θ1,m

= 1
μ1

∂x1(η
−
1,m)

∂θ1,m

⎡

⎣
∑N

n=2 cnμn�θn(η1,m)

θ1(η
−
1,m) − α1(η

−
1,m)

μ1

− cNμN

⎤

⎦ . (40)
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By Lemma 3,
∂x1(η

−
1,m)

∂θ1,m
< 0, therefore it remains to establish the negativity of the above

derivative by showing that the bracketed term is positive. We accomplish this by

finding a lower bound Lm <
∑N

n=2 cnμn�θn(η1,m)

θ1(η
−
1,m)− α1(η

−
1,m)

μ1

such that Lm − cNμN > 0. Using part

(a) of Lemma 2, we have �θ2(η1,m) > 0 and �θn(η1,m) < 0 for n > 2. Using the fact

that c2μ2 > cnμn for n > 2, we find a lower bound Lm = c2μ2

∑N
n=2 �θn(η1,m)

θ1(η
−
1,m)− α1(η

−
1,m)

μ1

. Applying

part (a) of Lemma 2 to replace �θn(η1,m), n ≥ 2, gives:

Lm = c2μ2
1 − ∑N

n=2 θn(η
−
1,m) − α1(η1,m)

μ1

θ1(η
−
1,m) − α1(η

−
1,m)

μ1

.

According to Eq. 8 we have θ1(η
−
1,m) = 1 − ∑N

n=2 θn(η
−
1,m), thus, we get Lm = c2μ2.

Finally, noting that c2μ2 > cNμN reveals that the bracketed term in Eq. 40 is indeed
positive, therefore, ∂q(t)

∂θ1,m
< 0. To complete the proof of this part it remains to show

that ∂q(t)
∂θ1,m

<
∂q(t)
∂θi,m

for all t ∈ [η1,m, η2,m) and i = 2, . . . , N − 1. Since in this case j = 1 <

i, Eq. 34 holds and it suffices to show that ∂q(t)
∂θ1,m

<
∂q(t)
∂θ2,m

over [η1,m, η2,m). Using j = 1 in

Eq. 33 we get ∂q(t)
∂θ2,m

= ∂x1(η
−
1,m)

μ1∂θ1,m
[c2μ2 − cNμN]. Recalling that Lm = c2μ2, it is then easy

to see that ∂q(t)
∂θ1,m

< 1
μ1

∂x1(η
−
1,m)

∂θ1,m
[Lm − cNμN] = ∂q(t)

∂θ2,m
.

This completes the proof of Eq. 30 and it follows that increasing θ1,m(t) has
the most decreasing effect on the holding cost so that θ∗

1,m(t) = 1. This proves the
optimality of the cμ-rule and the theorem. ��

4 IPA in a general scheduling setting

In the previous section, our goal was to use IPA for the purpose of proving the cμ-
rule when the total holding cost is a linear function of queue contents. In doing so,
we took advantage of the fact that the cμ-rule was a given “target policy” whose
optimality we established. In this section, we turn our attention to the use of IPA
as a derivative estimation method which, combined with standard gradient-based
optimization schemes, can lead to scheduling policies in more general settings where
the holding cost is nonlinear and where no target scheduling policy is specified a
priori. We proceed by redefining the control vector θn(t) in a manner more suitable
for this goal. Using this modified setting, we first show that the IPA derivative
estimates, combined with a gradient-based algorithm, allow us to naturally recover
the cμ-rule. Next, we use the same approach to find the best set of control parameters
in a general scheduling setting seeking to minimize a nonlinear holding cost metric.

The control policy we use in this section is based on a state partition with states
being the queue contents xn(t), n = 1, . . . , N. Considering the system of Fig. 1, we
view each queue as in either an empty or non-empty discrete state (or mode). Since
we have N queues, there are 2N modes or discrete states possible for this system. We
denote the mode of the system at time t ∈ [0, T] by M(t) ∈ {0, . . . , 2N − 1}. When
xn(t) > 0 for some n, we set θn,M ∈ [0, 1] to be the fraction of service received by
queue n when the system is operating in mode M, i.e. un(t) = μnθm,M. On the other
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hand, when xn(t) = 0, we let un(t) = αn(t) so that dxn(t)
dt+ = 0 is satisfied. We define

the set

Zn = {M : xn(t) = 0 when M(t) = M}
to be the collection of mode indices associated with the case where queue n is empty.
Thus, the queue content dynamics in Eq. 4 can be rewritten as

dxn(t)
dt+

= fn(t) =
{

0 if M(t) ∈ Zn

αn(t) − μnθn,M(t) otherwise
(41)

Observe that we choose the control parameters such that the resource capacity
constraint 1 is always satisfied. However, rather than imposing the maximum utility
constraint 8 in Section 2, we use a more general constraint set:

N∑

n=1

θn,M = 1 only when xn(t) > 0, ∀n = 1, . . . , N. (42)

and, otherwise:

N∑

n=1
n:M ∈Zn

θn,M +
N∑

n=1
n:M∈Zn

αn(t)
μn

≤ 1 (43)

In this way, we make it possible to include a large class of idling policies where some
of the resource capacity may remain unutilized.

Similar to the setting in Section 2, let us define events as either the starts or ends
of NEPs in the queues and let tk be the occurrence time of the kth such event.
Notice that M(t) remains constant inside [tk, tk+1) for any k. Similar to Eq. 9 we can
differentiate the cost and write

∂ Q(θi,M)

∂θi,M
=

M−1∑

k=0

∫ tk+1

tk

N∑

n=1

cn
∂xn(t)
∂θi,M

∂gn(xn(t))
∂xn

dt, ∀i = 1, . . . , N and ∀M ∈ Oi.

(44)
where the functions gn(·) are known, therefore, ∂gn(xn(t))

∂xn
is also known for any xn(t).

Since in the underlying DES xn(t) is actually an integer value Xn(t) = 0, 1, . . ., we can
pre-compute the values ∂gn(0)

∂xn
, ∂gn(1)

∂xn
, . . . and use them to estimate ∂gn(xn(t))

∂xn
in Eq. 44

for any t ∈ [0, T]. On the other hand, for any t ∈ [tk, tk+1), the state derivatives ∂xn(t)
∂θi,M

in Eq. 44 can be obtained by differentiating Eq. 11 with respect to any θi,M, M ∈ Zi.
This is done in the same manner through which Eq. 12 was obtained resulting in:

∂xn(t)
∂θi,M

= ∂xn(t−k )

∂θi,M
+ ∂tk

∂θi,M

[
fn

(
t−k

) − fn
(
t+k

)] +
∫ tk+1

tk

∂ fn(τ )

∂θi,M
dτ (45)

where we assume that ∂xn(0−)

∂θi,M
= 0, i.e., the IPA derivatives are reset at the start of

each sample path. It is also easy to check that Lemma 1 is still in effect so the start of
NEPs do not affect the IPA derivatives. Finally, at times when a NEP ends, similar
to Eq. 14 we find

∂tk
∂θi,M

= −∂xn(t−k )/∂θi,M

fn(t−k )
if tk ∈ �n. (46)
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It is now easy to see that Eqs. 45 and 46 constitute the IPA derivative estimation
process. Proceeding on an event-by-event basis, these two equations allow us to
recursively obtain the state derivatives required in Eq. 44 to evaluate the sample cost
derivatives used in a gradient-based optimization algorithm. We omit proofs that
these derivatives are unbiased estimates of the derivatives of the average holding
cost E[Q(θi,M)].

5 Numerical examples

5.1 IPA and online optimization for average linear holding cost

In what follows, we consider a system consisting of two queues (N = 2; applying a
similar approach to N > 2 is straightforward) and provide simulation results in which
IPA is used in conjunction with a simple gradient-based algorithm to minimize a
linear holding cost metric:

Q(θ) = 1
T

∫ T

0
[c1x1(t) + c2x2(t)] dt (47)

with c1 = 2 and c2 = 5. The stochastic service processes for the queue 1 and 2
are modeled by exponential distributions with average rates μ1 = 3 and μ2 = 1,
respectively, yielding the cμ product relation c1μ1 > c2μ2. The arrival processes
are Poisson with average rates ᾱ1 = 1.2 and ᾱ2 = 0.4. Notice that since the arrival
rates satisfy the capacity constraint ᾱ1

μ1
+ ᾱ2

μ2
= 0.8 < 1, the system is deemed to be

stabilizable with a proper choice of resource allocation parameters. For this system,
we define the modes according to the following table:

Mode(M) Condition
0 x1(t) = 0, x2(t) = 0
1 x1(t) > 0, x2(t) = 0
2 x1(t) = 0, x2(t) > 0
3 x1(t) > 0, x2(t) > 0

Associated with mode 1, we define θ1,1 to be the fraction of the service received
by queue 1. Since queue 2 is empty in this mode, we also get u2(t)

μ2
= α2(t)

μ2
≤ 1 − θ1,1.

Similarly, we let θ2,2 be the fraction of the service received by queue 2 when M(t) = 2
and let u1(t)

μ1
= α1(t)

μ1
≤ 1 − θ2,2. Also, when M(t) = 3, we let θ1,3 and θ2,3 = 1 − θ1,3 be

the service fractions received by queue 1 and queue 2, respectively.
We next show that utilizing the resulting IPA derivatives evaluated through

Eqs. 45, 46 and 44 in a gradient descent optimization algorithm recovers the cμ-rule
as the optimal resource allocation policy. We have averaged the estimated values
over eight different intervals of length T = 80,000. As shown in Figs. 4 and 5, we
have put the obtained estimates to test by using them in a gradient optimization
algorithm. Three initial conditions are considered for the allocation parameters:
(a) θ1,1 = θ2,2 = θ1,3 = 0.77; (b) θ1,1 = 0.47, θ2,2 = 0.66 and θ1,3 = 0.51; (c) θ1,1 = 0.23,
θ2,2 = 0.36 and θ1,3 = 0.17. Notice that the system starting with the initial conditions
(b) or (c) is at first unstable which incurs a very high cost not shown in Fig. 4.
Moreover, in case (a) θ1,1 and θ2,2 evolve very close to each other making it difficult to
differentiate them in the figure. One can see that, regardless of the starting point, the
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Fig. 4 Average linear holding
cost vs. optimization iteration
obtained for three different
initial conditions: a Solid,
b Dashed and c Dotted

optimization algorithm recovers the cμ-rule. The obtained optimal solution matches
that of the cμ-rule directly applied to the underlying DES (black dash-dot line).
Notice that whether the initial conditions are non-idling or not the optimal solution
turns out to be non-idling.

5.2 IPA and online optimization for average non-linear holding cost

In this section, we apply the same IPA estimation approach to a nonlinear holding
cost

Q(θ) = 1
T

∫ T

0

[
c1x1(t) + c2x2

2(t)
]

dt (48)

in which we have g1(x1(t)) = x1(t) and g2(x2(t)) = x2
2(t), therefore, ∂g2(x2(t))

∂x2
= 2x2(t)

for all t ∈ [0, T] and show that cμ-rule is no longer optimal. Although using IPA
derivatives we can find an optimal solution to this problem, we emphasize that,

(a) (b) (c)

Fig. 5 Allocation parameters vs. optimization iteration for three different initial conditions. (θ1,1:
Solid, θ2,2: Dash, θ1,3: Dot)
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Fig. 6 Section 5.2—average
nonlinear holding cost vs.
optimization iteration
obtained for three different
initial conditions: a Solid,
b Dashed and c Dotted

in general, the solution will be a local optimum. When carrying out the numerical
examples we treat the values of the allocation parameters as the probability that
the resource is given to their associated queue. For example, if θ1,1 = 0.5 we use a
randomization technique which, with probability 0.5, chooses queue 1 to serve from.

Figures 6 and 7 summarize the results by showing the convergence of the online
optimization algorithm to a solution far lower than the benchmark obtained from
applying the cμ-rule to minimize the cost (Eq. 48). This can be further amplified
when the system on hand is unstable, i.e., when

ᾱ1

μ1
+ ᾱ2

μ2
> 1.

Notice that θ∗
1,1 = 1 and θ∗

2,2 = 1 indicate that the optimal policy should be non-idling.

(a) (b) (c)

Fig. 7 Allocation parameters vs. optimization iteration for three different initial conditions. (θ1,1:
Solid, θ2,2: Dashed, θ1,3: Dotted)
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The above experiments unveil the ability of the IPA estimates along with simple
online optimization algorithms to recover the optimal solutions for nonlinear prob-
lems which are very difficult to find theoretically. It should be pointed out that when
the number of queues grows larger this approach can become cumbersome. In fact
the number of parameters to be optimized for a problem with N queues can be found
to be:

D =
N∑

n=1

n
(

N
n

)
− 1 = N2N−1 − 1.

Nevertheless, we usually do not face dimensions high enough to make the opti-
mization a difficult task. Finally, we should mention that, as in all gradient-based
optimization, the optimal solutions obtained are generally local. However, finding a
local optimal solution can be the best to serve solving a highly nonlinear problem and
as Section 5.2 suggest can outperform the heuristic solutions.

6 Conclusions

We have considered a classic scheduling problem with a single resource shared by
N competing queues in the context of SFMs. By means of the IPA methodology,
we have derived explicit sample derivatives of the cost function with respect to a
controllable set of parameters in the scheduling policy. In case of the linear total
holding cost objective, exploiting the monotonicity of these sample derivatives we
have proved the optimality of the well-known cμ-rule not only for the two-queue
case (as in earlier work Kebarighotbi and Cassandras 2009) but for an arbitrary finite
number of queues and stochastic processes under non-idling policies. The generality
of our results confirms the validity of the cμ-rule without having to make explicit
distributional assumptions on the random processes involved or resort to heavy
traffic analysis. It is worth pointing out, however, that the optimality of the cμ-rule
for an arbitrary number of queues does not exclude the existence of other optimal
policies.

The use of SFMs and IPA opens up a spectrum of possibilities for studying com-
plex stochastic scheduling problems without having to resort to explicit probabilistic
models. As a first step, we have shown that IPA derivatives can be used to determine
optimal scheduling policies for the case where the holding costs are nonlinear and
the cμ-rule is no longer optimal. The same approach can also be applied to settings
with finite queue capacities and different performance metrics.

Appendix: Proofs of the Lemmas

Proof of Lemma 1 If the start of a NEPn is due to a positive jump in αn(t) at tk, it is an
exogenous event and by Eq. 13 the Lemma’s statement immediately follows. If αn(t)
is continuous at tk, we have αn(t−k ) = αn(t+k ) = μnθn,m(tk). Then, using Eq. 4, we see
that fn(t−k ) − fn(t+k ) = 0. By Assumption 1 no other inflow rate can be discontinuous
at tk. Therefore, αl(t−k ) = αl(t+k ) for all l = n. Looking at Eq. 3, we find that ul(t−k ) =
ul(t+k ) for l = n, so that from Eq. 4 we get fl(t−k ) − fl(t+k ) = 0. Therefore, in the case
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of an endogenous event at tk we find that [ fl(t−k ) − fn(t+l )] = 0 for all l = 1, . . . , N
and the proof is complete. ��

Proof of Lemma 2 Starting with part (a) for n = 1, by the definition of η1,m we have
θ1(η

+
1,m) = α1(η1,m)

μ1
. Consequently, �θ1(η1,m) = α1(η1,m)

μ1
− θ1(η

−
1,m). At η1,m the system

switches to the cμ-rule, so the total residual resource capacity is allocated to queue
2, i.e., θ2(η

+
1,m) = 1 − α1(η1,m)

μ1
, θn(η

+
1,m) = 0 for n > 2. Applying Eq. 20, part (a) of the

lemma is proved.
For part (b), let us first prove �θn(ηk,m) = 0 for all k = n, n − 1. If n < k then by

Eq. 19 queue n is empty before ηk,m. By Assumption 1, αn(t) is continuous at ηk,m, so
Eq. 3 gives θn(η

−
k,m) = θn(η

+
k,m) = αn(ηk,m)

μk
which in turn results in �θn(ηk,m) = 0 for n <

k. On the other hand, when n > k + 1, according to the cμ-rule, no resource is given
to queue n before or after ηk,m and we get θn(η

−
k,m) = θn(η

+
k,m) = 0, thereby, yielding

�θn(ηk,m) = 0 for n > k + 1. Combining these two results establishes �θn(ηk,m) =
0 for all k = n, n − 1. Next, since n > 2, the cμ-rule applies to the interval be-
fore and after ηn−1,m. At η−

n−1,m according to the cμ-rule we have θn(η
−
n−1,m) = 0.

Right after ηn−1,m, queue n takes over the total residual resource capacity, which
gives θn(η

+
n−1,m) = 1 − ∑n−1

k=1
αk(ηn−1,m)

μk
and �θn(ηn−1,m) = 1 − ∑n−1

k=1
αk(ηn−1,m)

μk
. Finally,

by the cμ-rule, we have θn(η
−
n,m) = 1 − ∑n−1

k=1
αk(ηn,m)

μk
. After ηn,m, queue n enters an

EP and, according to Eq. 3, θn(η
+
n,m) = αn(ηn,m)

μn
. It follows that �θn(ηn,m) = −(

1 −
∑n

k=1
αk(ηn,m)

μk

)
. This completes part (b) of the proof. ��

Proof of Lemma 3 Consider Eq. 12 with tk = tm. By Eq. 10 we have ∂xn(t−m)

∂θi,m
= 0 for

any i. Moreover, tm is the start of a NEP because Nm = N, i.e., all queues are non-
empty in [tm, tm+1). Therefore, by Lemma 1, we have ∂tm

∂θi,m
[ fn(t−m) − fn(t+m)] = 0 for all

i = 1, . . . , N − 1. Finally, by Eqs. 3, 4, and 8 only fi(τ ) and fN(τ ) are dependent
on θi,m(t) in the interval [tm, η1,m). Specifically, we have fi(τ ) = αi(t) − μiθi,m(τ )

and fN(τ ) = αN(τ ) − μN(1 − ∑N−1
n=1 θn,m(τ )) resulting in ∂ fi(τ )

∂θi,m
= −μi and ∂ fN(t)

∂θi,m
= μN .

The proof is complete by applying Eq. 12. ��

Proof of Lemma 4 Let us define the set A = {η1,m, . . . , ηN,m}. In view of Eq. 12, we
first show that ∂tl

∂θi,m
[ fn(t−l ) − fn(t+l )] = 0 for any l ≥ m + 1 such that tl ∈ A. There are

only two possibilities for this:

Case 1 tl ∈ �p, p = 1, . . . , k and k ≤ j. In this case, queue p which was emptied
at some ηp,m ≤ ηk,m becomes non-empty again, i.e., tl is the start of an NEP. It then
follows from Lemma 1 that ∂tl

∂θi,m
[ fn(t−l ) − fn(t+l )] = 0, for all i = 1, . . . , N − 1.

Case 2 tl ∈ �p, p = 1, . . . , k and k ≤ j. This case is contingent upon the previous
one, since it corresponds to the end of a NEP for a queue p with the NEP starting at
some time tl∗ < tl such that tl∗ ∈ (ηk,m, ηk+1,m) (as illustrated in Fig. 8) for some k ≤ j.
We limit ourselves to only one such event occurring in (ηk,m, ηk+1,m), thereby having
tl∗ = tl−1, since the extension to more events of this kind is straightforward. Since the
cμ-rule applies for t ≥ η1,m, the resource switches all its available capacity from queue
k + 1 to queue p in the interval [tl−1, tl). Using Eq. 14, we will show that ∂tl

∂θi,m
= 0.

Since tl−1 is the start of a NEPp, by Lemma 1 we have ∂tl−1
∂θi,m

[ fn(t−l−1) − fn(t+l−1)] = 0.



572 Discrete Event Dyn Syst (2011) 21:547–576

Fig. 8 Lemma 4—a re-start of a NEP of a higher priority queue in an interval [ηk,m, ηk+1,m)

Moreover, xp(t) = 0 for t ∈ [ηk,m, tl−1) and
∂xp(t−l−1)

∂θi,m
= 0. In addition, by Eqs. 4 and 5,

for any τ ∈ [tl−1, tl), fp(τ ) is not a function of θi,m and we have ∂ fp(τ )

∂θi,m
= 0. Utilizing

these results in Eq. 12 with tk = tl−1 and n = p, we get

∂xp(t−l )

∂θi,m
= ∂xp(t−l−1)

∂θi,m
= 0.

Using this in Eq. 14 gives ∂tl
∂θi,m

= 0.
We can now directly focus on proving Eq. 24. Let t ∈ [η j,m, η j+1,m) and suppose

the last NEP start or end event prior to t occurs at tl ≥ tm+1. Clearly, ∂ fn(τ )

∂θi,m
= 0 for

any τ ∈ [tl, t) and any n. Therefore, applying Eq. 12 at tl gives

∂xn(t)
∂θi,m

= ∂xn(t−l )

∂θi,m
+ ∂tl

∂θi,m

[
fn

(
t−l

) − fn
(
t+l

)]
, t ∈ [tl, t).

Based on our analysis of the two cases above, if tl ∈ A we get ∂tl
∂θi,m

[ fn(t−l ) − fn(t+l )] =
0 which yields ∂xn(t)

∂θi,m
= ∂xn(t−l )

∂θi,m
. If tl ∈ A, since t ∈ [η j,m, η j+1,m), it follows that tl ≡ η j,m.

In this case, by Assumption 1, αn(t) is continuous at η j,m and fn(η
−
j,m) − fn(η

+
j,m) =

μn�θn(η j,m). Regarding ∂xn(t−l )

∂θi,m
in the equation above, we look at the interval [tl−1, tl)

and apply the same analysis at tl−1. It is now clear that by doing this recursively back-
wards in time we either encounter an event at tr < tl−1 with ∂tr

∂θi,m
[ fn(t−r ) − fn(t+r )] = 0

or some ηk,m with k ≤ j, in which case a term μn�θn(ηk,m) is added on. The recursion
ends at η1,m where Eq. 24 is recovered and the lemma is proved. ��

Proof of Lemma 5 The case where ηN,m > T is trivial since after T the derivatives
vanish. When ηN,m ≤ T, recall that all queues become empty right after ηN,m, i.e.,
xn(ηN,m) = 0 for all n = 1, . . . , N and ∂xn(ηN,m)

∂θi,m
= 0. Since ηN,m > tm+1, all functions

fn(τ ) in Eq. 4 become independent of θi,m for every τ ∈ [ηN,m, T). As a result, all
xn(t) are independent of θi,m for the same interval. Let us consider the event time
derivatives ∂tk

∂θi,m
for tk > ηN,m. If tk ∈ �n or �n, Eq. 13 or Lemma 1 gives ∂tk

∂θi,m
[ fn(t−k ) −

fn(t+k )] = 0 for any n and i. If tk ∈ �n for some n, its associated NEP must have
started at some tl such that after ηN,m < tl < tk. Since, xn(t) = 0 for t ∈ [ηn,m, tl), we
get ∂xn(t)

∂θi,m
= 0. Moreover, by Lemma 1 we have ∂tl

∂θi,m
[ fn(t−l ) − f (t+l )] = 0. Also, by the

definition of θi,m(t), fn(τ ) is independent of θi,m(t) over the interval [tl, tk). Starting
from tl and using all these observations in Eq. 12, we find that ∂xn(t)

∂θi,m
= 0 over the

associated NEPn. Specifically, we find ∂xn(t−k )

∂θi,m
= 0. Using this in Eq. 14 implies that

∂tk
∂θi,m

= 0 for all tk > ηN,m such that tk ∈ �n for some n. Since the event time derivatives
do not contribute a nonzero value for any k such that tk > ηN,m and since fn(τ ) is
independent of θi,m for all τ ∈ [ηN,m, T), the lemma’s statement is easily concluded
by Eq. 12. ��
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Proof of Lemma 6 By Lemma 3 for n < i we get
∂xn(η

−
1,m)

∂θi,m
= 0. (49)

Invoking Eq. 14 with tk = η1,m immediately proves Eq. 25 for n = 1, i.e. ∂η1,m

∂θi,m
= 0..

Considering n ≥ 2, using Lemma 4 for interval [ηn−1,m, ηn,m) and t = η−
n,m we get

∂xn(η
−
n,m)

∂θi,m
= ∂xn(η

−
1,m)

∂θi,m
+

n−1∑

k=1

∂ηk,m

∂θi,m
μn�θn(ηk,m). (50)

By Eq. 49 the first term in the above equation is zero. Assuming i > 2, evaluating
Eq. 50 for n = 2 gives

∂x2(η
−
2,m)

∂θi,m
= ∂η1,m

∂θi,m
μ2�θ2(η1,m) = 0.

Inserting this result in Eq. 14 for tk = η2,m implies that ∂η2,m

∂θi,m
= 0. Repeating the same

process for n = 3, . . . , i − 1 completes the proof of the lemma. ��

Proof of Lemma 7 We proceed by considering the cases i = n and i < n separately.

• i = n: When n = 1, it is easy to verify the Lemma’s claim since, according to
Eq. 14, we have

∂η1,m

∂θ1,m
=

− ∂x1(η
−
1,m)

∂θ1,m

f1(η
−
1,m)

Multiplying both numerator and denominator by μ1 and using Eq. 26 gives

∂η1,m

∂θ1,m
= r1,m

μ1

∂x1(η
−
1,m)

∂θ1,m
.

When n > 1 we use Lemma 4 with j = n − 1 to get, for any t ∈ [ηn−1,m, ηn,m),

∂xn(t)
∂θi,m

= ∂xn(η
−
1,m)

∂θi,m
+

n−1∑

k=1

∂ηk,m

∂θi,m
μn�θn(ηk,m).

Because i = n in each term of the sum above, we have k < i, hence, by Lemma
6, ∂ηk,m

∂θi,m
= 0 for k = 1, . . . , i − 1 and we conclude that

∂xn(t)
∂θi,m

= ∂xn(η
−
1,m)

∂θi,m
= ∂xn(η

−
1,m)

∂θn,m
.

By Eq. 22 we have

∂xn(η
−
1,m)

∂θn,m
= μn

μ1

∂x1(η
−
1,m)

∂θ1,m
. (51)

Using this expression in Eq. 14 yields

∂ηn,m

∂θn,m
= −μn

fn(η
−
n,m)

1
μ1

∂x1(η
−
1,m)

∂θ1,m
= rn,m

μ1

∂x1(η
−
1,m)

∂θ1,m
(52)

which completes the proof of the lemma for n = i.
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• i < n: By Lemma 3, because n = i we have
∂xn(η−

1,m)

∂θi,m
= 0. Therefore, invoking

Lemma 4, for any t ∈ [ηn−1,m, ηn,m) we have:

∂xn(t)
∂θi,m

=
n−1∑

k=1

∂ηk,m

∂θi,m
μn�θn(ηk,m).

However, by Lemma 6, ∂ηk,m

∂θi,m
= 0 when k < i. Therefore, the above equation

reduces to

∂xn(t)
∂θi,m

=
n−1∑

k=i

∂ηk,m

∂θi,m
μn�θn(ηk,m). (53)

Using this expression in Eq. 14 yields the event time derivative

∂ηn,m

∂θi,m
= rn,m

n−1∑

k=i

∂ηk,m

∂θi,m
�θn(ηk,m). (54)

According to part (b) of Lemma 2, �θn(ηk,m) can only be nonzero when k =
n − 1. Thus, the above expression reduces to

∂ηn,m

∂θi,m
= rn,m

∂ηn−1,m

∂θi,m
�θn(ηk,m). (55)

This is clearly a recursive equation in n. Starting with n = i + 1 and proceeding
forward in time we find that

∂ηn,m

∂θi,m
= ∂ηi,m

∂θi,m

n∏

k=i+1

rk,m�θk(ηk−1,m).

Now using Eq. 52 with n replaced by i to find ∂ηi,m

∂θi,m
and inserting the result in the

above equation gives the final result as

∂ηn,m

∂θi,m
= ri,m

μ1

∂x1(η
−
1,m)

∂θ1,m

n∏

k=i+1

rk,m�θk(ηk−1,m) (56)

which completes the proof. ��
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