
Optimal Control of Discrete Event Systems with Weakly

Hard Real-Time Constraints

Shixin Zhuang and Christos G. Cassandras 1 2

sxzhuang@bu.edu, cgc@bu.edu

September 23, 2008

Abstract

We consider Discrete Event Systems (DES) that can dynamically allocate resources

in order to process tasks with real-time constraints. In the case of “weakly hard”

constraints, a fraction of tasks is allowed to violate them, as long as m out of any k

consecutive tasks meet their respective constraints. This is a generalization of a system

with purely hard real-time constraints where m = k = 1. For non-preemptive and

aperiodic tasks, we formulate an optimization problem where task processing times are

controlled so as to minimize a cost function while guaranteeing that a “weakly hard”

criterion is satisfied. We establish a number of structural properties of the solution to this

problem which lead to an efficient algorithm that does not require any explicit nonlinear

programming problem solver. The low complexity of this algorithm makes it suitable

for on-line applications. Simulation examples illustrate the performance improvements

in such optimally controlled systems compared to ad hoc schemes.

1



Notes

1
Affiliation of Authors: Dept. of Manufacturing Engineering and Center for Information and Systems

Engineering, Boston University, Brookline, MA 02446

2The authors’ work is supported in part by the National Science Foundation under Grants DMI-033017

and EFRI-0735974, by AFOSR under grants FA9550-07-1-0213 and FA9550-07-1-0361, and by DOE under

Grant DE-FG52-06NA27490.

2



1 Introduction

A large class of Discrete Event Systems (DES) involves resources which must be dynamically

allocated to tasks according to certain operating specifications. The basic modeling block

for such DES is a single-server queueing system operating on a first-come-first-served basis,

whose dynamics are given by the well-known max-plus equation

xi = max(ai, xi−1) + ui (1)

where ai is the arrival time of task i = 1, 2, . . . , xi is the time when task i completes ser-

vice, and ui is a controllable service time. Examples arise in manufacturing systems, where

the operating speed of a machine can be controlled to trade off between energy costs and

requirements on timely job completion (Pepyne and Cassandras, 2000); in computer systems,

where the CPU speed can be controlled to ensure that certain tasks meet specified execu-

tion deadlines (Liu, 2000); and in wireless networks where severe battery limitations call for

new techniques aimed at maximizing the lifetime of such a network (Miao and Cassandras,

2006),(Gamal et al., 2002). A particularly interesting set of problems arises when such sys-

tems are subject to real-time constraints; specifically, the requirement xi ≤ di for a given

“deadline” di associated with task i. In order to meet such constraints, the processing rate

of tasks may have to be increased imposing in turn additional costs on the controls ui. This

gives rise to optimization problems of the form

min
u1,··· ,uK

K
∑

i=1

θi(ui) (2)

s.t. xi = max(ai, xi−1) + ui ≤ di, i = 1, ..., K

Here, θi(ui) is a given cost function, ui ≥ 0, and all ai and di are known over a total of

K tasks. In general, a control ui may be time-varying while task i is in process over the

3



interval [max(ai, xi−1), xi). However, as shown in (Miao and Cassandras, 2005), when θi(·) is

monotonically decreasing and convex, then the optimal control of each task is constant over

this interval. We will consider such cases with ui varying only over the task index i. Systems

which process tasks with real-time constraints have been extensively studied, mostly in the

computer science literature where interest is largely focused on periodic and preemptive tasks,

e.g., (Yao et al., 1995),(Aydin et al., 2004), although nonpreemptive tasks are also considered

(Jeffay et al., 1991),(Jonsson et al., 1999). Nonpreemptive aperiodic tasks are of particular

interest in wireless communications where nonpreemptive scheduling is necessary to execute

aperiodic packet transmission tasks which also happen to be highly energy-intensive (Gamal

et al., 2002),(Miao and Cassandras, 2006),(Mao et al., 2007).

In general, (2) is a hard nonlinear optimization problem, complicated by the inequality

constraints xi ≤ di and the nondifferentiable max operator involved. Nonetheless, it was

shown in (Mao et al., 2007) that when θi(ui) is convex and differentiable the solution to

such problems is characterized by attractive structural properties leading to a highly efficient

Critical Task Decomposition Algorithm (CTDA). The CTDA completely eliminates the need

for a numerical solver of (2) and reduces the solution to a simple scalable procedure for

identifying a set of “critical” tasks in {1, . . . , K}. The efficiency and scalability of the CTDA

are crucial for applications where small, inexpensive, often wireless devices are required to

perform on-line computations with minimal on-board resources. An extension to a two-stage

problem with hard real-time end-to-end constraints was presented in (Mao and Cassandras,

2007b) and, more recently, it was shown that it is also possible to derive an efficient algorithm

for solving similar M-stage (M ≥ 2) problems with hard end-to-end constraints (Mao and

Cassandras, 2006).

An alternative to the hard real-time constraints xi ≤ di for all i = 1, ..., K, in (2) is a DES

with soft constraints where these inequalities are removed and the cost function above consists

of two parts (Cassandras and Zhuang, 2005): a cost on the resource which is increasing in

4



the processing time, and a cost imposed on tasks that violate the constraint xi ≤ di. This is

appropriate for applications which can tolerate occasional deadline misses of real-time tasks.

However, this approach cannot rule out the possibility that a large number of deadline misses

occur in a short period of time; this may cause the loss of important information and possibly

render the system inoperable.

In this paper, we consider a third alternative referred to as a weakly hard real-time system

(Bernat et al., 2001), in which only a fraction of tasks is required to meet assigned deadlines.

In such systems, it is acceptable to occasionally miss some deadlines. However, the way in

which tasks missing deadlines is distributed over time is important: if tasks i and j miss their

deadlines while all k = i + 1, . . . , j − 1 meet theirs, then the effect of such misses may be

tolerated as long as (j − i) is sufficiently large. Thus, rather than specifying a “maximum

allowable loss fraction” (or “minimum completion ratio”), an alternative model (Ramanathan

and Hamdaoui, 1995) is known as the (m, k)-firm deadline scheme. In this scheme, the

requirement is that m out of any k consecutive tasks meet their respective deadlines, where

m and k are two positive integers with m ≤ k. The scheme encompasses a wide range of

tolerances to deadline misses by properly selecting the values of m and k. In particular, the

original hard deadline requirement corresponds to the (1, 1)-firm deadline scheme, while a soft

deadline requirement with a bound b on the fraction of deadline misses can be approximated

by picking a large value of k and choosing m such that (k − m)/k ≃ b. Clearly, the (m, k)-

firm deadline scheme is less stringent than the hard real-time case, but more restrictive than

imposing soft deadlines.

Most work considering such weakly hard real-time constraints focuses on periodic tasks

and constant speed processors, e.g., (Ramanathan, 1999),(Bernat and Burns, 1997),(Hua and

Qu, 2004),(Quan et al., 2004),(Bernat et al., 2001). Recent work in (Quan et al., 2004) pro-

posed a scheduler to reduce the energy cost of periodic tasks with weakly hard constraints

on a processor with variable speed. In our work, motivated by applications such as intru-

5



sion detection and data collected through sensor networks, we consider arbitrary aperiodic

tasks and seek controls that provably minimize energy costs. Our analysis incorporates the

case of periodic tasks as well. We assume that all task arrival and deadline information is

available and we represent the (m, k)-firm deadline scheme by partitioning the task set as in

(Ramanathan and Hamdaoui, 1995) into a mandatory subset, containing all tasks required

to be processed and meet their deadlines, and an optional subset containing the remaining

tasks that may be discarded (Ramanathan, 1997) and have no explicit timing requirements

when processed. In our model, tasks in the optional subset are allowed to be processed on a

best-effort basis (and are not discarded), but we retain the terminology used in (Ramanathan

and Hamdaoui, 1995) for convenience. We formulate an optimization problem by modifying

(2) appropriately and solve it through an efficient procedure that does not require an explicit

solution of the problem using nonlinear programming; instead, we identify and exploit several

decomposition properties of the optimal solution and we make use of the CTDA (Mao et al.,

2007) mentioned earlier. The CTDA is based on two decomposition properties of an optimal

state trajectory. Specifically, the state trajectory consists of a number of “busy periods” (for-

mally defined in Section 3) whose optimal controls are decoupled from each other. Further, it

can be shown that each busy priod consists of “blocks” whose start and end points are defined

by “critical tasks”. Within each block, it is optimal to use a fixed, easily computed, service

rate. Thus, the entire optimal solution is reduced to identifying these critical tasks and the

CTDA provides an explicit, computationally efficient algorithm to accomplish this without

invoking any nonlinear optimization problem solver. Along similar lines, for the problem in

this paper we show that an optimal state trajectory can be decomposed into segments whose

starting and ending points can be uniquely determined through the known arrival time and

deadline requirements of the mandatory set tasks. This decomposes the original problem into

a number of smaller and simpler problems, one for each such segment.

The paper is organized as follows. In Section 2, we formulate the optimization problem

6



with mandatory set constraints. Section 3 establishes the properties of an optimal solution,

leading to a number of smaller and simpler optimization problems whose explicit solution is

discussed in Section 4. In Section 5, we provide simulation examples illustrating the improve-

ments in performance obtained by our approach compared to other schemes in terms of both

cost saving and the Quality of Service (QoS) that can be achieved. We conclude with Section

6.

2 Problem Formulation

We consider a single-stage DES, where a sequence of K tasks is characterized by known arrival

times 0 ≤ a1 ≤ · · · ≤ aK and deadlines d1, · · · , dK . Moreover, tasks are differentiated by their

“size” which is modeled through the number of operations Ni associated with task i (e.g.,

the number of bits in a packet). Tasks are processed on a first-come-first-served basis by a

non-preemptive server (alternative orderings can be considered by simply re-indexing tasks).

We concentrate on controlling directly the service times of all i (equivalently, we may think

of controlling the service rates ρi = Ni/ui). Let xi be the service completion time of task i,

which satisfies the max-plus equation (1), where, by assumption, x0 = 0. The cost associated

with task i is θi(ui) = Niθ(ui/Ni) for i = 1, . . . , K, where θ(·) is a cost dependent only on

the characteristics of the server. Thus, θi captures the cost of completing all Ni operations of

task i, while θ represents the per-operation cost of the server when operating with rate Ni/ui.

We represent the (m, k)-firm deadline scheme described earlier by partitioning the task

set {1, . . . , K} into a mandatory subset, containing all tasks required to be processed and

meet their deadlines, and an optional subset containing the remaining tasks; the latter have

no explicit timing requirements when processed or they may be discarded; in our model we

require them to be processed while retaining the “optional” terminology. This partition is

specified and the deadlines of tasks tagged as optional are simply ignored and set to ∞ for

7



the purpose of our analysis. Specifically, we define a “mandatory task set”

M = {m : xm ≤ dm < ∞, m = 1, . . . , K}

and an “optional task set”, M̄, containing all remaining task indices.

We assume that the server has a processing rate with a lower bound 1/η > 0 and upper

bound 1/γ > 1/η. This implies that the controllable service time ui is constrained by γNi ≤

ui ≤ ηNi with Ni as defined above. We will also assume that for all m ∈ M the deadline

constraints are active in the sense that the “best case” completion time (i.e., when m ∈ M is

processed upon arrival with maximum (least costly) processing time am + ηNm) exceeds its

deadline dm. Thus, we have:

Assumption 1: For all m ∈ M,

dm ≤ am + ηNm, m ∈ M (3)

Note that if Assumption 1 were to be violated, given the objective of minimizing a cost

monotonically decreasing in ui, tasks m ∈ M would behave like those in the optional set

and be processed at the minimal rate available when there is no other mandatory task in the

system.

Finally, we make the following assumption regarding the cost functions θi(ui) = Niθ(ui/Ni):

Assumption 2: θ(u) is positive, continuously differentiable, strictly convex, and mono-

tonically decreasing in u.

This assumption is consistent with most applications of interest. For instance, in manufac-

turing systems the cost of operating a machine is monotonically decreasing and convex in the

processing time of a part (Pepyne and Cassandras, 2000); in embedded devices, the processing

time of a task is a convex monotonically decreasing function of the voltage applied to its CPU

and the energy expended is monotonically decreasing and convex in the processing time of a

8



task (Mao et al., 2007), (Cassandras and Zhuang, 2005). For a typical CMOS microprocessor,

an extensive discussion found in (Mao et al., 2007) points to the fact that the interval over

which the processor speed is controlled possesses these properties. The numerical example

we will discuss in Section 5 is precisely motivated by such microprocessors. Finally, note

that differentiability of θ(·) is not required; it was included in (Mao et al., 2007) in order to

simplify some of the technical proofs and we shall include it as well since some of our results

depend on these proofs.

We can now formulate the following problem (denoted by P ), with controls {u1, · · · , uK}

and departure times (state variables) {x1, · · · , xK}:

P : min
u1,··· ,uK

K
∑

i=1

θi(ui) (4a)

s.t. xi = max{ai, xi−1} + ui (4b)

γNi ≤ ui ≤ ηNi, i = 1, · · · , K (4c)

xm ≤ dm, m ∈ M (4d)

The optimal controls will be denoted by {u∗

1, · · · , u∗

K} and the corresponding service com-

pletion times (defining the optimal state trajectory) by {x∗

1, · · · , x∗

K}. Note that this problem

is an extension of (2) where all tasks have real-time constraints and thus inherits its difficulties,

such as the high dimensionality of the control vector when K is large and the nondifferen-

tiability of the constraints caused by the max operator. In the next section, we identify

decomposition properties in the same spirit as those obtained for (2) in (Mao et al., 2007),

which will lead to an efficient solution approach that overcomes these two difficulties.

We should also point out that problem P may not have a feasible solution. In this paper,

we assume that at least one feasible solution exists. If that is not the case, then a separate

admission control problem has to precede our analysis so as to eliminate certain tasks whose

deadlines cannot be met and lead to a feasible problem as illustrated in Figure 1; some recent

9



results on this associated problem are presented in (Mao and Cassandras, 2007a).

Assign mandatory/optional set

Task information: arrival time, 

deadline and number of operations

Figure 1: Optimal control procedure for weakly hard real-time problems

3 Optimal State Trajectory Properties

As in earlier work (Mao et al., 2007) dealing with problem (2), we begin with the observa-

tion that any state trajectory of the DES under study can be decomposed into busy periods

separated by idle periods. In particular:

Definition: A Busy Period (BP) is an interval [ak, xn] defined by a sequence of tasks

{k, · · · , n}, 1 ≤ k ≤ n ≤ K, such that the following three conditions are satisfied: (i)

xk−1 < ak, (ii) xn < an+1, and (iii) xi ≥ ai+1, for all i = k, · · · , n − 1.

Decomposing a state trajectory into BPs allows us to decouple the optimal controls of

tasks in one BP from those in any other BP. This will reduce the solution of problem P to the

solution of a set of simpler problems of lower dimension, provided that we can identify each

BP in terms of a beginning task k and ending task n, respectively. Before identifying the BP

structure in an optimal state trajectory of problem P , we first focus on the decoupling property

10



mentioned above. Let us consider the optimization problem P (k, n) defined as follows:

P (k, n) : min
uk,··· ,un

n
∑

i=k

θi(ui)

s.t. xi = ak +

i
∑

j=k

uj ≥ ai+1, i = k, · · · , n − 1 (5a)

γNi ≤ ui ≤ ηNi, i = k, · · · , n (5b)

xm ≤ dm, m ∈ M∩ {k, · · · , n} (5c)

Let the solution of this problem be denoted by u∗

i (k, n), i = k, · · · , n. We can then show that

the solution of problem P is identical to the collection of solutions of problems P (k, n), one

for each BP on the optimal state trajectory.

Theorem 1 If tasks {k, · · · , n} constitute a single BP in the optimal sample path, then u∗

i =

u∗

i (k, n), i = k, · · · , n.

Proof. Proceeding by contradiction, assume that {u∗

i (k, n)}, i = k, · · · , n, is the solution of

problem P (k, n) but u∗

i 6= u∗

i (k, n) for at least some i ∈ {k, · · · , n}. We can define a vector

û ∈ RK such that û = {u∗

1, · · · , u∗

k−1, u
∗

k(k, n), · · · , u∗

n(k, n), u∗

n+1, · · · , u∗

K} with corresponding

service completion times {x̂1, · · · , x̂K}. We first show û is a feasible solution for P . Since u∗

i ,

i = 1, · · · , K is a solution of problem P and tasks {k, · · · , n} constitute a single BP in the

optimal state trajectory, we have x∗

k−1 < ak and x∗

n < an+1 and using (4b):

x̂i = x∗

i , i ∈ {1, · · · , k − 1} ∪ {n + 1, · · · , K} (6)

x̂i = ak +

i
∑

j=k

u∗

j(k, n), i ∈ {k, · · · , n} (7)

We can see that all i ∈ {1, · · · , k−1}∪{n+1, · · · , K} satisfy the constraints (4a)-(4d), while

the constraint (5a) of problem P (k, n) guarantees that (7) holds. In addition, the constraints

(5b)-(5c) of P (k, n) and (4c)-(4d) of P are identical.

11



Since the cost function is differentiable and strictly convex, we know that {u∗

1, · · · , u∗

K} is

a unique solution of problem P . Hence, we have J(û) > J(u∗), that is

J(û) − J(u∗) =

(

k−1
∑

i=1

θi(u
∗

i ) +
n
∑

i=k

θi(u
∗

i (k, n)) +
K
∑

i=k+1

θi(u
∗

i )

)

−

(

K
∑

i=1

θi(u
∗

i )

)

=
n
∑

i=k

θi(u
∗

i (k, n)) −
n
∑

i=k

θi(u
∗

i )

> 0

which implies that
n
∑

i=k

θi(u
∗

i (k, n)) >

n
∑

i=k

θi(u
∗

i ) (8)

It is obvious that all {u∗

i }, i = k, · · · , n, are feasible for problem P (k, n). Since the inequality

(8) contradicts the assumption that {u∗

i (k, n)}, i = k, · · · , n is the optimal solution of problem

P (k, n), it follows that u∗

i = u∗

i (k, n) for all i = k, · · · , n.

The implication of Theorem 1 is the following: if we can identify the BP structure, then the

optimal solution can be obtained by solving a set of simpler (no max operation involved) lower-

dimensional problems, one for each BP, as defined through P (k, n). Thus, we concentrate next

on this objective.

In the DES operating under (m, k)-firm deadline constraints, there are four types of BPs:

(i) A BP {k, · · · , n} such that i ∈ M for all i ∈ {k, · · · , n},

(ii) A BP {k, · · · , n} such that i ∈ M̄ for all i ∈ {k, · · · , n},

(iii) A BP {k, · · · , n} ending with n ∈ M, but i ∈ M̄ for at least some i ∈ {k, · · · , n − 1},

and

(iv) A BP {k, · · · , n} ending with n ∈ M̄, but i ∈ M for at least some i ∈ {k, · · · , n − 1}.

In what follows, we derive a number of properties associated with these different types of

12



BPs, based on which we will be able to determine the BP structure without explicitly solving

the problem P .

The first lemma below asserts that a task i ∈ M is the last task of a BP if its deadline

occurs before the next task arrival time, regardless of the existence of optional set tasks in

this BP. Otherwise, it does not end a BP.

Lemma 1 Let i ∈ M.

1. Task i ends a BP and x∗

i = di, if and only if di < ai+1.

2. Task i does not end a BP, i.e., x∗

i ≥ ai+1, if and only if ai+1 ≤ di.

Proof.

1. Since task i ∈ M, it satisfies x∗

i ≤ di. If di < ai+1, then x∗

i < ai+1. Thus, task i ends

a BP by definition. Therefore, there is no arrival during the processing of i. Moreover,

since by Assumption 2 the cost function θi(ui) is strictly decreasing in ui, it follows that

u∗

i is limited only by the constraints (4c) and (4d). If (4c) is active, then u∗

i = ηNi and

x∗

i = max{ai, xi−1} + ηNi ≥ ai + ηNi

By Assumption 1, this implies that x∗

i ≥ di and since (4d) must hold, we conclude that

x∗

i = di. On the other hand, if (4d) is active instead, then we immediately get x∗

i = di.

Conversely, if i ends a BP, then, by the BP definition, we have x∗

i < ai+1. Since, in

addition, x∗

i = di, we get di < ai+1.

2. Suppose ai+1 ≤ di. We proceed by contradiction and assume that x∗

i < ai+1. Then, by

definition, task i ends a BP in the optimal state trajectory and x∗

i = di by the same

argument as in part 1. It follows that ai+1 > di, which contradicts ai+1 ≤ di. Thus, i

cannot end a BP. Conversely, if ai+1 ≤ x∗

i note that x∗

i ≤ di since i ∈ M, implying that

ai+1 ≤ x∗

i ≤ di.

13



Using this lemma directly leads to the proof of Theorem 2 allowing us to identify a BP of

type (i), i.e., one that contains only mandatory set tasks.

Theorem 2 Let {k, · · · , n} ⊆ M. Tasks {k, · · · , n} constitute a BP in the optimal sample

path if and only if x∗

k−1 < ak, ai+1 ≤ di, for i = k, · · · , n − 1, and dn < an+1.

Proof. If, for {k, · · · , n} ⊆ M, ai+1 ≤ di holds for i = k, · · · , n−1, we know that {k, · · · , n}

belong to one BP from part 2 of Lemma 1. Since dn < an+1, by part 1 of Lemma 1 the BP

ends with n and x∗

n = dn. Moreover, task k begins this BP by definition since x∗

k−1 < ak. The

converse follows from Lemma 1 and the definition of a BP.

Note that applying this theorem to identify a BP with {k, · · · , n} ⊆ M requires knowledge

of the optimal service completion time x∗

k−1 of task k − 1, which, except for x∗

0 = 0, is

obviously not known in advance. However, we can always check the condition x∗

k−1 < ak

without requiring the solution of P . In the case where (k − 1) ∈ M, it follows from Lemma

1 that x∗

k−1 = dk−1 < ak. The case where (k − 1) ∈ M̄ will be discussed later in this section.

Let us now consider a BP formed by tasks {k, · · · , n} containing at least some i ∈ M̄,

k ≤ i ≤ n. Let k ≤ p ≤ q ≤ n such that {p, · · · , q} ⊆ M̄, (p − 1) ∈ M and (q + 1) ∈ M.

When k = p and q = n, then {k, · · · , n} defines a type (ii) BP with all optional set tasks.

When k < p ≤ q = n, an optional set task ends this BP and (p − 1) ∈ M, which implies the

BP is of type (iv). If k < p ≤ q < n, we have {p− 1, q + 1} ⊆ M. Looking at the last case in

which a sequence of optional set tasks is preceded and followed by mandatory set tasks, the

following lemmas present some properties of the optimal controls in such BPs.

Lemma 2 Let tasks {k, · · · , n} constitute a single BP in the optimal state trajectory of prob-

lem P and let contiguous tasks {p, · · · , q} be such that {p, · · · , q} ⊆ M̄∩{k, · · · , n}. Then,

Ni/u
∗

i ≤ Ni+1/u
∗

i+1, i = p, · · · , q − 1.

14



Proof. Proceeding by contradiction, assume that

Ni/u
∗

i > Ni+1/u
∗

i+1

for some i, p ≤ i < q. A feasible solution of problem P, {u∗

1, · · · , u′

i, u
′

i+1, · · · , u∗

K}, can be

found such that all other values remain the same but u∗

i and u∗

i+1 are replaced by u′

i and u′

i+1

with

u∗

i + u∗

i+1 = u′

i + u′

i+1

and

Ni/u
∗

i > Ni/u
′

i = Ni+1/u
′

i+1 > Ni+1/u
∗

i+1 (9)

First, let us show that {u∗

1, · · · , u′

i, u
′

i+1, · · · , u∗

K} is indeed feasible for problem P . Since

1/γ ≥ Ni/u
∗

i > Ni+1/u
∗

i+1 ≥ 1/η holds, it follows that 1/γ ≥ Ni/u
′

i = Ni+1/u
′

i+1 ≥ 1/η. Since

u∗

i + u∗

i+1 = u′

i + u′

i+1 and all other u∗

j , j 6= i, i + 1, remain the same, we have x′

m = x∗

m ≤ dm,

for all m ∈ M.

Next, we show that

θi(u
′

i) + θi+1(u
′

i+1) < θi(u
∗

i ) + θi+1(u
∗

i+1) (10)

To establish this inequality, recall that θi(ui) = Niθ(ui/Ni) and consider the optimization

problem

min
vi,vi+1

Niθ(vi) + Ni+1θ(vi+1)

s.t. Nivi + Ni+1vi+1 = C

where vi = ui/Ni. Adjoining the constraint to the cost function using a Lagrange multiplier

15



λ leads to the necessary condition for optimality

Njθ
′(vj) + Njλ = 0, j = i, i + 1

where θ′(·) is the derivative of θ(·) with respect to its argument. Therefore, θ′(vi) = θ′(vi+1) =

−λ. Moreover, by Assumption 2, θ(·) is convex and differentiable, so that the solution to this

problem satisfies vi = vi+1 = C
Ni+Ni+1

, i.e., ui = CNi

Ni+Ni+1
and ui+1 = CNi+1

Ni+Ni+1
. In other words,

θi(ui) + θi+1(ui+1) with ui + ui+1 = C is minimized by ui, ui+1 such that

Ni/ui = Ni+1/ui+1 = (Ni + Ni+1)/C

which is satisfied by u′

i, u
′

i+1 in (9), hence establishing (10).

Since all other u∗

i , i = 1, · · · , i − 1, i + 2, · · · , K, remain unchanged, we obtain

i−1
∑

j=1

θj(u
∗

j) +

K
∑

j=i+2

θj(u
∗

j) + θi(u
′

i) + θi+1(u
′

i+1)

<

i−1
∑

j=1

θj(u
∗

j) +

K
∑

j=i+2

θj(u
∗

j) + θi(u
∗

i ) + θi+1(u
∗

i+1)

which contradicts the assumption that {u∗

1, · · · , u∗

K} is the optimal solution. Hence, we prove

that Ni/u
∗

i ≤ Ni+1/u
∗

i+1 must hold for all i = p, · · · , q − 1.

This result characterizes the processing rate relationship between adjacent optional set

tasks and it helps us establish the next result pertaining to BPs on the optimal state trajectory

that end with a sequence of optional set tasks.

Lemma 3 Let tasks {k, · · · , n} constitute a single BP in the optimal sample path and con-

tiguous tasks {p, · · · , n} be such that {p, · · · , n}⊆ M̄∩{k, · · · , n}. Then,

u∗

i = ηNi, i = p, · · · , n.

16



Proof. Since n ∈ M̄ and, by Assumption 2, θn(un) is strictly decreasing, it follows that u∗

n

is limited only by the constraint (4c). Since there is no task arriving during the processing of

task n (because n ends a BP), the constraint is active for task n, i.e., u∗

n = ηNn.

Since tasks n−1 and n satisfy {n−1, n} ⊆ M̄ ∩ {k, · · · , n}, we have Nn−1/u
∗

n−1 ≤ Nn/u
∗

n =

1/η from Lemma 2, hence u∗

n−1 ≥ ηNn−1. The constraints in (4c) require that u∗

n−1 ≤ ηNn−1,

therefore the last two inequalities imply u∗

n−1 = ηNn−1. Applying this procedure recursively

backward over tasks n− 2, · · · , p, we obtain u∗

i = ηNi for all i = p, · · · , n, when {p, · · · , n} ⊆

M̄ ∩ {k, · · · , n}.

This result asserts that when a BP ends with a sequence of optional set tasks, then it is

optimal to process them all using the minimum feasible processing rate. Using Lemmas 2

and 3 we can now derive the condition for identifying a BP on the optimal state trajectory

containing only optional set tasks.

Theorem 3 Let {k, · · · , n} ⊆ M̄. Tasks {k, · · · , n} constitute a BP in the optimal state

trajectory if and only if

x∗

k−1 < ak (11)

ak +

i
∑

j=k

ηNi ≥ ai+1, i = k + 1, · · · , n − 1 (12)

ak +

n
∑

j=k

ηNi < an+1 (13)

Proof. (If part) Task k starts a BP by definition based on (11). Next, we show that there

is no idle period within tasks {k, · · · , n}. Recall that, from (4c), the optimal solution must

satisfy u∗

i ≤ ηNi for i = k, · · · , n. First, suppose u∗

i = ηNi for i = k, · · · , n. If an idle period

first occurs after the service completion of task s, k ≤ s < n, then ak +
∑s

j=k ηNj < as+1,

which contradicts (12). On the other hand, suppose u∗

i < ηNi for some i, k ≤ i < n and an

idle period occurs after the service completion of task s, i ≤ s < n, Since i ⊆ M̄ and the

17



cost function θi(ui) is strictly decreasing in ui, we can increase u∗

i and decrease θi(ui), which

contradicts the optimality of u∗

i . Therefore, u∗

i is large enough to either eliminate the idle

period and still satisfy u∗

i < ηNi or its value is u∗

i = ηNi. In the latter case, we have already

seen that the presence of an idle period contradicts (12). Therefore, no idle period is possible

if (12) holds.

Finally, we show that task n ends a BP. Since we have argued that no idle period occurs

prior to task n, we have x∗

n = ak +
∑n

j=k u∗

j . In addition, the optimal solution must satisfy

u∗

i ≤ ηNi for i = k, · · · , n and (13) implies that

x∗

n = ak +
n
∑

j=k

u∗

j ≤ ak +
n
∑

j=k

ηNj < an+1

that is, task n ends a BP.

(Only if part) Since tasks {k, · · · , n} constitute a single BP in the optimal state trajectory,

by Lemma 3 we have u∗

i = ηNi for i = k, · · · , n, that is,

x∗

i = ak +

i
∑

j=k

ηNj for i = k, · · · , n

Then, (11), (12) and (13) follow from the BP definition.

As in Theorem 2, note that condition (11) depends on x∗

k−1, but, as we will see, the validity

of x∗

k−1 < ak can be determined without requiring the explicit solution of P .

The next lemma identifies a condition under which the optimal departure time of a manda-

tory set task contained within a BP can be easily determined.

Lemma 4 Let tasks m and m+1 belong to a BP in the optimal state trajectory and m ∈ M.

If Nm/u∗

m > Nm+1/u
∗

m+1, then x∗

m = dm.

Proof. Proceeding by contradiction, assume that x∗

m < dm since x∗

m > dm is not feasible for

m ∈ M. Since it is assumed that Nm/u∗

m > Nm+1/u
∗

m+1, there exists some δ > 0 such that

18



Nm/(u∗

m + δ) ≥ Nm+1/(u∗

m+1 − δ) and x∗

m + δ ≤ dm. Observing that

(u∗

m + δ) + (u∗

m+1 − δ) = u∗

m + u∗

m+1

and that

Nm/u∗

m > Nm/(u∗

m + δ) ≥ Nm+1/(u∗

m+1 − δ) > Nm+1/u
∗

m+1

we argue exactly as in the proof of Lemma 2 to get:

θm(u∗

m + δ) + θm+1(u
∗

m+1 − δ) < θm(u∗

m) + θm+1(u
∗

m+1)

Note that, with all other constraints remaining the same, {u∗

1, · · · , u∗

m + δ, u∗

m+1 − δ · · · , u∗

K}

is a feasible solution of problem P . Therefore,

m−1
∑

i=1

θi(u
∗

i ) +
K
∑

i=m+2

θi(u
∗

i ) + θm(u∗

m + δ) + θm+1(u
∗

m+1 − δ)

<

m−1
∑

i=1

θi(u
∗

i ) +

K
∑

i=m+2

θi(u
∗

i ) + θm(u∗

m) + θm+1(u
∗

m+1)

which contradicts the assumption that {u∗

1, · · · , u∗

K} is the optimal solution and the proof is

complete.

This result helps us establish Lemma 5 which applies to a sequence of tasks in a BP that

starts with a mandatory set task followed by one or more optional set tasks which end this

BP. In this case, it becomes easy to determine the optimal controls of these tasks.

Lemma 5 Let tasks {k, · · · , n} constitute a BP in the optimal state trajectory. If m ∈

M∩ {k, · · · , n} and {m + 1, · · · , n} ⊆ M̄ ∩ {k, · · · , n}, then, x∗

m = dm and u∗

i = ηNi,

i = m + 1, · · · , n.

Proof. We have shown in Lemma 3 that u∗

i = ηNi for i = m + 1, · · · , n when {m +

1, · · · , n}⊆ M̄∩{k, · · · , n} holds. Since u∗

m must satisfy constraint (4c), we have u∗

m ≤ ηNm.

19



It is then obvious that adjacent tasks m and m + 1 satisfy

Nm/u∗

m ≥ Nm+1/u
∗

m+1 = 1/η

If Nm/u∗

m > Nm+1/u
∗

m+1 holds, then it follows from Lemma 4 that x∗

m = dm. If, on the other

hand, Nm/u∗

m = Nm+1/u
∗

m+1, we have u∗

m = ηNm. Since, x∗

m = max{am, x∗

m−1} + u∗

m, we get

x∗

m = max{am, x∗

m−1} + u∗

m ≥ am + ηNm ≥ dm

where the last inequality is due to Assumption 1. At the same time, constraint (4d) requires

that x∗

m ≤ dm, which, combined with the previous inequality, implies x∗

m = dm.

We can now show how to determine if an optional set task ends a BP of type (iv) without

explicitly solving problem P .

Theorem 4 Let contiguous tasks {p, · · · , q} satisfy p ∈ M, dp ≥ ap+1, and {p + 1, · · · , q − 1} ⊆

M̄. If there exists some q ∈ M̄ such that

dp +
i
∑

j=p+1

ηNj ≥ ai+1, i = p + 1, · · · , q − 1 (14)

dp +

q
∑

j=p+1

ηNj < aq+1 (15)

then tasks {p, · · · , q} belong to the same BP and task q ends this BP in the optimal state

trajectory. If such q does not exist, then, tasks {p, · · · , q} still belong to the same BP in the

optimal state trajectory.

Proof. Since dp ≥ ap+1, based on part 2 of Lemma 1 we have ap+1 ≤ x∗

p, i.e., task p cannot

end a BP in the optimal state trajectory. Next, we use a contradiction argument and assume

that there exists an idle period after task s such that p + 1 ≤ s ≤ q − 1. From Lemma 5, the

optimal solution satisfies x∗

p = dp and u∗

i = ηNi, i = p+1, · · · , s. Then, x∗

s = dp+
∑s

j=p+1 ηNj.

20



Since task s ends a BP, by definition x∗

s < as+1, which contradicts (14). Thus, we conclude

that there is no idle period in between processing tasks p, · · · , q and they all belong to the

same BP in the optimal state trajectory.

Note that we established the fact that {p, · · · , q} belong to the same BP when (14) holds

regardless of whether q ∈ M or q ∈ M̄. Now we proceed by contradiction to show that if a

task q ∈ M̄ exists satisfying (15) it must end this BP. Assume task q + 1 also belongs to this

BP. Then, by definition, we have aq+1 ≤ x∗

q . Together with x∗

p ≤ dp for p ∈ M and u∗

j ≤ ηNj,

j = p + 1, · · · , q, the optimal service completion time of task q satisfies

x∗

q = x∗

p +

q
∑

j=p+1

u∗

i ≤ dp +

q
∑

j=p+1

ηNj

Therefore,

aq+1 ≤ dp +

q
∑

j=p+1

ηNj

which contradicts (15). It follows that tasks {p, · · · , q} must belong to the same BP and this

BP indeed ends with q ∈ M̄.

On the other hand, if such q ∈ M̄ does not exist, we must conclude that either q = K or

q ∈ M is true. In either case, since tasks {p, · · · , q} satisfy (14), they belong to the same BP.

It follows from Theorem 4 that if q ∈ M̄ satisfying (15) can be found, this identifies the

end of a type (iv) BP. If such q does not exist, the next mandatory set task, q ∈ M, belongs

to the same BP as {p, · · · , q − 1}. To ascertain if such a task q also ends the BP or not,

we can invoke Lemma 1. In short, Theorem 4 provides an iterative way to determine if a

sequence of optional set tasks belongs to the same BP as mandatory set tasks arriving before

and after them.

We may now uniquely identify the start and end of a BP through the following conditions

C1-C3:

21



C1 (Lemma 1 and Theorem 2) If task n ∈ M satisfies dn < an+1, then n ends a BP of type

(i) or (iii) in the optimal state trajectory.

C2 (Theorem 3) If contiguous tasks {k, · · · , n} ⊆ M̄ satisfy (11), (12) and (13), then task

n ends a type (ii) BP in the optimal sample path.

C3 (Theorem 4) If task n ∈ M̄ satisfies (14) and (15), and dm ≥ am+1 where m =

arg max{i : i < n, i ∈ M}, then task n ends a BP of type (iv) in the optimal sam-

ple path.

In order to make use of Theorems 2 and 3, we also need to resolve the question that was

raised earlier, i.e., checking if the inequality x∗

k−1 < ak holds (which appears as a condition in

both theorems) without knowing x∗

k−1. This is accomplished by proceeding forward in time,

starting with the initial condition x∗

0 = 0. If task k initiates a BP and we have determined

that {k, · · · , n}, n ≥ k, belong to the same BP, then there are four cases to consider:

Case 1: If {k, · · · , n} ⊆ M, we know from Lemma 1 that n ends a type (i) BP if

dn < an+1, in which case x∗

n = dn. Thus, checking if x∗

n < an+1 is equivalent to checking if

dn < an+1.

Case 2: If {k, · · · , n} ⊆ M̄, then, from Lemma 3, if n ends this type (ii) BP we have

x∗

n = ak +
∑n

j=k ηNn. Thus, checking if x∗

n < an+1 is equivalent to checking if ak +
∑n

j=k ηNn <

an+1.

Case 3: If some tasks in {k, · · · , n − 1} belong to the optional and some to the mandatory

set and n ∈ M, then, again using Lemma 1 n ends a type (iii) BP if dn < an+1. As in Case

1, checking if x∗

n < an+1 is equivalent to checking if dn < an+1.

Case 4: If some tasks in {k, · · · , n − 1} belong to the optional and some to the mandatory

set and n ∈ M̄, then we can determine m = arg max{i : i < n, i ∈ M}. By Theorem 4, if

n ends this type (iv) BP we have x∗

n = dm +
∑n

j=m+1 ηNj. Thus, checking if x∗

n < an+1 is

equivalent to checking if dm +
∑n

j=m+1 ηNj < an+1.

22



Table 1 summarizes the observations above in the form of a detailed procedure for identi-

fying how the optimal state trajectory is partitioned into BPs.

Table 1: Busy Period Decomposition Algorithm
Step 1: Initialization

k = 1, n = 1
Step 2: Loop while n ≤ K.
Step 3.1 If n ∈ M, then
Step 4.1.1 If C1 holds,

tasks {k, · · · , n} constitute a BP. Go to Step 6
Step 4.1.2 Else, n = n + 1. Go to Step 2
Step 3.2 Else, n ∈ M̄,
Step 4.2.1 If there exist task m = arg max{i : k ≤ i ≤ n, i ∈ M}
Step 5.1.1 If C3 holds for task n ∈ M̄,

Tasks {k, · · · , n} constitute a BP. Go to Step 6
Step 5.1.2 Else, n = n + 1. Go to Step 2
Step 4.2.2 Else, no such m
Step 5.2.1 If C2 holds for task n ∈ M̄

Tasks {k, · · · , n} constitute a BP. Go to Step 6
Step 5.2.2 Else, n = n + 1. Go to Step 2
Step 6 k = n + 1, n = n + 1. Go to Step 2.

To illustrate the optimal BP structure identification process, let us consider an example of

10 tasks, {1, · · · , 10}. Let {1, 2, 4, 8, 10} = M and {3, 5, 6, 7, 9} = M̄. Assume the following

conditions hold:

(a) d1 > a2; (b) d2 < a3;

(c) a3 + ηN3 > a4; (d) d4 < a5;

(e) a5 + ηN5 > a6; (f) a5 + ηN5 + ηN6 < a7;

(g) a7 + ηN7 > a8; (h) d8 > a9; (i) d8 + ηN9 < a10

In this case, we can identify the following optimal BP structure. First, {1, 2} ⊆ M is a BP of

type (i) since (a) and (b) satisfy C1. Next, {3, 4} is a BP of type (iii) since (c) and (d) satisfy

C1, while {5, 6} ⊆ M̄ is a BP of type (ii) since (e) and (f) satisfy C2. Finally, {7, 8, 9} is a

BP of type (iv) since (g) (h) and (i) satisfy C3, and {10} is trivially a BP of type (i).

23



In the next section we discuss how to obtain the complete solution of problem P without

invoking any nonlinear programming solver.

4 Complete Solution of Problem P

Our starting point is the optimal BP structure as derived in the previous section. Thus,

we can partition the set {1, · · · , K} into subsets each corresponding to a specific BP. Let

{k, · · · , n} define some such BP which belongs to one of the four types we have defined. From

Theorem 1, the solution of P is obtained by solving each problem P (k, n) corresponding to a

BP {k, · · · , n}.

First, suppose {k, · · · , n} is a BP of type (i), i.e., it contains only mandatory set tasks.

In this case, constraints (5c) in problem P (k, n) reduce to xi ≤ di for all i = k, · · · , n and the

problem becomes

min
uk,··· ,un

n
∑

i=k

θi(ui) (16)

s.t. xi = ak +

i
∑

j=k

uj ≥ ai+1, i = k, · · · , n − 1

γNi ≤ ui ≤ ηNi, i = k, · · · , n

xi ≤ di, i = k, · · · , n (17)

This is now identical to the problem extensively studied in (Mao et al., 2007) and explicitly

solved through the scalable, computationally efficient Critical Task Decomposition Algorithm

(CTDA) that requires no nonlinear programming solver. In fact, P (k, n) can also be solved

as a constrained convex programming problem through efficient software such as CVX (Grant

et al., 2008) as well. It can also be cast as a Dynamic Programming (DP) problem. However,

neither of these approaches takes advantage of the specific decomposition properties estab-

lished in the CTDA (briefly discussed in Section 1) which make it scalable in the number of

24



tasks; extensive numerical results on the computational complexity of the CTDA relative to

alternative methods are provided in (Mao and Cassandras, 2007b) and (Mao and Cassandras,

2006).

Second, suppose {k, · · · , n} is a BP of type (ii), i.e., containing only optional set tasks.

Since M ∩ {k, · · · , n} = ∅, the constraints (5c) of problem P (k, n) can be removed. From

Lemma 3, we know the solution to this specific problem is simply

u∗

i (k, n) = ηNi, i = k, · · · , n

Next, let {k, · · · , n} be a BP with both mandatory and optional set tasks. Note that the

duration of the BP is defined by ak and x∗

n. If n ∈ M, i.e, a mandatory set task ends this

BP, we have x∗

n = dn based on Lemma 1; otherwise, n ∈ M̄ and x∗

n = x∗

n−1 + ηNn based on

Lemma 3. Denote the index of the last mandatory set task in this BP by

L(k, n) = arg max{i : k ≤ i ≤ n, i ∈ M}

We then have x∗

n = dL(k,n) +
∑n

j=L(k,n)+1 ηNn from Lemma 3. This BP thus ends at time Dn

such that

Dn =











dn if L(k, n) = n ∈ M

dL(k,n) +
∑n

j=L(k,n)+1 ηNj if L(k, n) < n ∈ M̄

Observe that all optional set tasks in this BP must complete service by time Dn. Therefore,

Dn can be treated as the “deadline” assigned to these tasks. That is, we set dj = Dn for

k ≤ j ≤ n and j ∈ M̄. The resulting optimization problem is of the same form as P (k, n) in

(16) with the constraints (17) replaced by xi ≤ di, for i ∈ M ∩ {k, · · · , n} and di ≤ Dn for

25



i ∈ M̄ ∩ {k, · · · , n}:

min
uk,··· ,un

n
∑

i=k

θi(ui)

s.t. xi = ak +

i
∑

j=k

uj ≥ ai+1, i = k, · · · , n − 1

γNi ≤ ui ≤ ηNi, i = k, · · · , n

xi ≤ di, i ∈ M∩ {k, · · · , n}

xi ≤ Dm, i ∈ M̄ ∩ {k, · · · , n}

Thus, this optimization problem can again be efficiently solved by the aforementioned CTDA.

In summary, by first determining the optimal BP structure and then appropriately using the

CTDA (to explicitly determine the optimal controls) provides a complete solution of problem

P without solving any nonlinear programming problem.

5 Numerical Examples

In order to illustrate our solution approach, we consider its application to a problem arising

in Dynamic Voltage Scaling (DVS) (Mao et al., 2007) where the cost function represents the

energy consumption of a CMOS microprocessor:

min
u1,··· ,uK

K
∑

i=1

C1Ni

(

Vtui

ui − NiC2

)2

s.t. xi = max{ai, xi−1} + ui, i = 1, · · · , K

VmaxC2

Vmax − Vt

Ni ≤ ui ≤
VntC2

Vnt − Vt

Ni, i = 1, · · · , K

xm ≤ dm, m ∈ M

26



Here Vmax and Vt are the maximum voltage and threshold (minimum possible) voltage of

the microprocessor, respectively. In addition, Vnt is the cut-off threshold voltage when the

processor is operating: When the operating voltage level is below this value, the processor

is considered sleeping or in stand-by mode and cannot process any tasks. C1, C2 are device

parameters, and Ni is the number of operations for task i. It is easy to verify that the cost

function above satisfies Assumption 2. In what follows, we set Vmax = 5, Vt = 1, C1 = 1,

C2 = 0.1,and Ni = 10 for all i.

For the purpose of simulation, all task arrival times and deadlines are generated according

to given distributions. In order to specify the mandatory task set M, we consider four different

tagging policies:

• Policy 1 : For every k consecutive tasks, there are m mandatory set tasks. The assign-

ment follows the algorithm in (Ramanathan, 1999), i.e., task i belongs to M when it

satisfies

i =

⌊⌈

i × m

k

⌉

×
k

m

⌋

• Policy 2 : The first m out of k tasks are assigned to M. The remaining k−m tasks are

placed in the optional task set. For the next k tasks, the same procedure repeats.

• Policy 3 : The first k−m out of k tasks are assigned to M̄. The remaining m tasks are

placed in M. For the next k tasks, the same procedure repeats.

• Policy 4 : With probability m/k ∈ [0, 1], a task is placed in M. Otherwise, it is placed

in M̄.

It is obvious that when m = k, all tasks belong to the mandatory task set M and the

problem is the same as the one with hard deadline requirements studied in (Mao et al., 2007).

On the other hand, when m = 0, all tasks are optional and all policies result in identical M̄.

In order to compare the performance of the system under the optimal control proposed in

this paper to other common controllers, we also study the following two common policies for

27



allocating processing times to tasks:

• Minimum processing time (uncontrolled system): For all tasks, whether in M or M̄,

the processing rate is set to the maximum value and is, therefore, independent of the

task arrival and deadline structures. The cost value only varies with the total number

of tasks in the system.

• Best effort control : The maximum feasible processing rate is applied to the mandatory

set tasks. For the optional set tasks, the controller maintains a lower processing rate

such that a task departs at the arrival time of the next incoming task. This controller

uses the structural information of tasks in the system; however, there is no optimization

effort made to improve performance. One can expect an improvement over the previ-

ous (uncontrolled) case, but less than the optimal performance obtained through the

approach described in this paper.

The cost value obtained under the minimum processing time policy is always 250, 000 since

it is independent of the task set configuration and all task arrival times and deadlines. Thus,

we omit the corresponding column in the tables. We first consider four different (m, k) pair:

(1, 4), (1, 10), (2, 7), and (3, 4). The cost comparison results are shown in Table 2 and indicate

an order of magnitude in cost improvement. This is significant as it may translate into an

order of magnitude increase in the lifetime of a wireless device which “dies” when its energy

supply is exhausted. Table 3 shows one particularly interesting case when (m, k) = (1, 2) and

approximately half of the incoming tasks are classified as mandatory. In this case, tagging

policies 1 and 2 result in identical mandatory and optional sets, thus, giving the same cost.

When m = 0, the set M is empty and all tasks are optional. We know from Lemma 2

that it is optimal to process all tasks using the minimum rate. The improvement over the

Best Effort policy is significant as illustrated in Table 4.

Recall that the (1, 1)-firm requirement is equivalent to a purely hard real-time system.

That is, all policies give the same mandatory task set M and contain all K tasks. It is

28



Table 2: Cost comparison with K = 1000 for different (m, k) constraints
Cost Value

(m, k) Tagging Policy Best Effort Optimal Control

m = 1 1 71,376.1 5,003.8
2 71,376.1 5,003.8

k = 4 3 71,135.2 4,999.2
4 72,097.3 4,393.0

m = 1 1 35,607.7 2,034.5
2 35,607.7 2,034.5

k = 10 3 35,364.6 1,968.7
4 37,280.1 2,061.4

m = 2 1 79,962.8 5,593.6
2 79,953.2 4,567.7

k = 7 3 79,492.7 4,527.2
4 79,966.7 4,871.5

m = 3 1 190,376.8 10,221.2
2 190,619.9 10,213.7

k = 4 3 190,379.1 10,260.1
4 191,814.3 9,810.9

Table 3: Cost comparison of different control with K = 1000, (1, 2)-firm constraint
Cost Value

(m, k) Tagging Policy Best Effort Optimal Control

m = 1 1 130,996.8 8,742.7
2 130,996.8 8,742.7

k = 2 3 130,758.4 8,682.5
4 133,861.1 7,530.9

Table 4: Cost comparison with K = 1000, soft real-time requirement
Cost Value

(m, k) Tagging Policy Best Effort Optimal Control

m = 0 1 11,755.2 11.1
2 11,755.2 11.1

k = 1 3 11,755.2 11.1
4 11,755.2 11.1

29



noteworthy that the performance improvement under the optimal controller in all such cases

is again significant, i.e., an order of magnitude, as depicted in Table 5.

Table 5: Cost comparison of different control with K = 1000, (1, 1)-firm constraint
Cost Value

(m, k) Tagging Policy Best Effort Optimal Control

m = 1 1 250,000 11,692.1
2 250,000 11,692.1

k = 1 3 250,000 11,692.1
4 250,000 11,692.1

The performance of weakly hard real-time systems is often also measured through the

miss ratio metric, defined as the fraction of tasks that miss their deadline. Recall that in

our system all tasks are processed under a first-come-first-served discipline and the deadlines

of optional set tasks are simply ignored. Nonetheless, optional set tasks may still meet their

original deadlines due to the presence of mandatory set tasks whose deadlines affect the

processing time of optional set tasks arriving before them. The (m, k)-firm constraints in

our optimization problem guarantee that the deadline requirements of mandatory set tasks

cannot be violated. In our simulation, we take into consideration the original deadlines of

the optional set tasks and Table 6 provides miss ratio data for optional set tasks when the

system operates under optimal control. Note that we omit the columns of data for (0, 1) and

(1, 1). In the former case, the set M is empty and the deadline miss ratio is 1 since there is

no mandatory set task in the system. In the latter case, all tasks meet their deadlines and

the miss ratio is 0.

6 Conclusion and Future Work

DES with weakly hard real-time constraints provide a natural extension to previous work done

for hard real-time and soft real-time constraints. As in the case of hard real-time constraints,

we show that the optimization problem we formulate can be decomposed into a set of simpler

30



Table 6: Miss Ratio of Optional Set Tasks, K = 1000
Tagging Policy

(m, k) Number of Tasks 1 2 3 4

(1, 2) optional set 499 499 500 487
misses 55 55 47 78

(1, 10) optional set 899 899 900 892
misses 40 40 60 75

(2, 7) optional set 713 713 713 713
misses 92 100 120 108

(3, 4) optional set 250 249 250 244
misses 21 26 17 33

ones and we identify a number of structural properties of its solution. This leads to a low

complexity scalable algorithm for obtaining the explicit values of all optimal task processing

times which capitalizes on the Critical Task Decomposition Algorithm (CTDA) of (Mao et al.,

2007) derived when all hard real-time constraints must be guaranteed. Our ongoing work

aims at extending the analysis to a multi-stage DES, where the bottleneck server can better

manage the resources by scheduling tasks efficiently and, at the same time, meet end-to-end

real-time constraints. An additional challenge is the on-line control of systems where no a

priori information on task arrivals or deadlines is available. Although the low complexity of

our solution makes it realistic to re-solve problem P at every task completion event using

the available task information at that time, it is also desirable to make use of statistical

information regarding the task arrival process, as well as the deadline and size characteristics

of tasks.

Finally, as mentioned in Section 2, the optimization problem P may not have a feasible

solution, in which case an auxiliary problem arises: Minimizing the number of tasks that need

to be eliminated in order to obtain a feasible problem. Solving this problem efficiently is the

subject of ongoing research with some results applicable to the hard real-time constraint case

provided in (Mao and Cassandras, 2007a).

31



References

Aydin, H., Melhem, R., Mossé, D., and Mejia-Alvarez, P. (May 2004). Power-aware scheduling

for periodic real-time tasks. IEEE Trans. on Computers, 53(5):584 – 600.

Bernat, G. and Burns, A. (1997). Combining (m, n)-hard deadlines and dual priority schedul-

ing. In RTSS ’97: Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS

’97), page 46. IEEE Computer Society.

Bernat, G., Burns, A., and Llamosi, A. (2001). Weakly hard real-time systems. IEEE Trans-

actions on Computers, 50(4):308–321.

Cassandras, C. G. and Zhuang, S. (2005). Optimal dynamic voltage scaling for wireless sensor

nodes with real-time constraints. In Proceedings of SPIE – Intelligent Systems in Design

and Manufacturing VI.

Gamal, A. E., Nair, C., Prabhakar, B., Uysal-Biyikoglu, E., and Zahedi, S. (2002). Energy-

efficient scheduling of packet transmissions over wireless networks. In Proceedings of

IEEE INFOCOM, volume 3, 23-27, pages 1773–1782, New York City, USA.

Grant, M., Boyd, S., and Ye, Y. (2008). Cvx: Matlab software for disciplined convex pro-

gramming (web page and software). Technical report, Stanford University.

Hua, S. and Qu, G. (2004). Energy-efficient dual-voltage soft real-time system with (m,k)-firm

deadline guarantee. In CASES ’04: Proceedings of the 2004 international conference on

Compilers, architecture, and synthesis for embedded systems, pages 116–123. ACM Press.

Jeffay, K., Stanat, D. F., and Martel, C. U. (1991). On non-preemptive scheduling of periodic

and sporadic tasks. In Proc. of the IEEE Real-Time Systems Symposium, pages 129–139.

Jonsson, J., Lonn, H., and Shin, K. G. (1999). Non-preemptive scheduling of real-time threads

32



on multi-level-context architectures. In Proceedings of the IEEE Workshop on Parallel

and Distributed Real-Time Systems, volume 1586, pages 363–374. Springer Verlag.

Liu, J. (2000). Real - Time System. Prentice Hall Inc.

Mao, J. and Cassandras, C. G. (2007b). Optimal control of two-stage discrete event systems

with real-time constraints. Journal of Discrete Event Dynamic Systems. To Appear.

Mao, J. and Cassandras, C. G. (Dec. 2006). Optimal control of multi-stage discrete event

systems with real-time constraints. In Proc. of 45rd IEEE Conf. Decision and Control,

pages 1057–1062.

Mao, J. and Cassandras, C. G. (Dec. 2007a). Optimal admission control of discrete event

systems with real-time constraints. In Proc. of 46rd IEEE Conf. Decision and Control.

To appear.

Mao, J., Cassandras, C. G., and Zhao, Q. C. (June 2007). Optimal dynamic voltage scaling

in power-limited systems with real-time constraints. IEEE Trans. on Mobile Computing,

6(6):678–688.

Miao, L. and Cassandras, C. G. (2006). Optimal transmission scheduling for energy-efficient

wireless networks. In Proceedings of INFOCOM.

Miao, L. and Cassandras, C. G. (Sep. 2005). Optimality of static control policies in some

discrete event systems. IEEE Transactions on Automatic Control, 50(9):1427 – 1431.

Pepyne, D. and Cassandras, C. (2000). Optimal control of hybrid systems in manufacturing.

In Proceedings of the IEEE, volume 88, pages 1108–1123.

Quan, G., Niu, L., and Davis, J. P. (January 10-12, 2004). Power aware scheduling for

real-time systems with (m,k)-guarantee. In Proceedings CNDS-04: Communication Net-

33



works and Distributed Systems Modeling and Simulation, San Diego, CA. The Society

for Modeling and Simulation International.

Ramanathan, P. (1997). Graceful degradation in real-time control applications using (m, k)-

firm guarantee. In Proceedings of the 27th International Symposium on Fault-Tolerant

Computing (FTCS ’97), page 132, Washington, DC, USA. IEEE Computer Society.

Ramanathan, P. (1999). Overload management in real-time control applications using (m, k)-

firm guarantee. IEEE Trans. Parallel Distrib. Syst., 10(6):549–559.

Ramanathan, P. and Hamdaoui, M. (1995). A dynamic priority assignment technique for

streams with (m, k)-firm deadlines. IEEE Trans. on Computers, 44(12):1443–1451.

Yao, F., Demers, A., and Shenker, S. (1995). A scheduling model for reduced CPU en-

ergy. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science

(FOCS’95), pages 374–382. IEEE Computer Society.

34


