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Abstract Stochastic Flow Models (SFMs) form a class of hybrid systems used as
abstractions of complex Discrete Event Systems (DES) for the purpose of deriving
performance sensitivity estimates through Infinitesimal Perturbation Analysis (IPA)
techniques when these cannot be applied to the original DES. In this paper, we
establish explicit connections between gradient estimators obtained through a SFM
and those obtained in the underlying DES, thus providing analytical evidence for
the effectiveness of these estimators which has so far been limited to empirical
observations. We consider DES for which analytical expressions of IPA (or finite
difference) estimators are available, specifically G/G/1 and G/G/1/K queueing
systems. In the case of the G/G/1 system, we show that, when evaluated on the same
sample path of the underlying DES, the IPA gradient estimators of states, event
times, and various performance metrics derived through SFMs are, under certain
conditions, the same as those of the associated DES or their expected values are
asymptotically the same under large traffic rates. For G/G/1/K systems without and
with feedback, we show that SFM-based derivative estimates capture basic properties
of finite difference estimates evaluated on a sample path of the underlying DES.
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1 Introduction

The study of Discrete Event Systems (DES) is based on well-developed modeling
frameworks in which the system dynamics are driven by the occurrence of different
events defined over some given event set (Cassandras and Lafortune 2008). When
event occurrence rates get extremely high, however, analysis becomes prohibitively
complex; even well-designed discrete event simulations have impractically slow exe-
cution times. In this case, one seeks alternative models through which the system dy-
namics are abstracted to an appropriate level that retains essential features enabling
effective and accurate control and optimization. This is often the case in systems
where random phenomena play different roles at different time scales and typically
gives rise to stochastic hybrid system models (Cassandras and Lygeros 2006); in
such systems some event-driven dynamics are retained to capture switches between
different “modes” while the remaining dynamics are abstracted into differential
equations describing the system state evolution within each such mode.

Fluid models are an example of this abstraction process applied to a large class of
DES. Fluid models have been shown to be very useful in studying communication
networks (Anick et al. 1982; Liu et al. 1999), manufacturing systems (Connor et al.
1994) and, more generally, settings where users compete over different sharable
resources. While in most traditional fluid models the flow rates involved are treated
as fixed parameters, a Stochastic Flow Model (SFM), as introduced in Cassandras
et al. (2002), has the extra feature of treating the flow rates themselves as stochastic
processes. With virtually no limitations imposed on the properties of such processes, a
new approach for sensitivity analysis and optimization was recently proposed, based
on Infinitesimal Perturbation Analysis (IPA). The essence of this approach is the
on-line estimation of gradients (sensitivities) of certain performance measures with
respect to various controllable parameters. These estimates may be incorporated in
standard gradient-based algorithms to optimize parameter settings of the underlying
DES. IPA was originally developed as a technique for evaluating gradients of
sample performance functions in queueing systems and using them as unbiased
gradient estimates of performance metrics expressed as expectations of these sample
functions (Cassandras and Lafortune 2008). However, IPA estimates become biased
(hence unreliable for control purposes) when dealing with aspects of queueing
systems such as multiple user classes, blocking due to limited resource capacities,
and various forms of feedback control. The emergence of SFMs has rekindled the
interest in IPA because SFMs allow us to circumvent these limitations, yielding
simple unbiased gradient estimates of useful metrics even in the presence of blocking
and a variety of feedback control mechanisms, as in Cassandras (2006) and Wardi
et al. (2009). In addition, recent work has also extended this approach to multiclass
SFMs and to the study of non-cooperative stochastic resource contention games (Yao
and Cassandras 2009a, b). It should be stressed that, although the IPA gradient
estimators are derived on the SFM abstraction, they are evaluated using the data
observed from the underlying DES sample path, and are ultimately used to drive the
online optimization of the original DES.

The effectiveness of this approach that combines IPA and SFMs has been sup-
ported by successful implementation in various problems (Cassandras et al. 2002;
Yao and Cassandras 2009a; Wardi et al. 2009; Yu and Cassandras 2004). However,
there still lacks an explicit connection between the gradient estimators obtained
through a SFM and those obtained in the underlying DES; this is because the
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overall approach is designed to target complex systems, which is precisely where it is
impossible to obtain gradient information directly. Thus, there has been no analytical
evidence verifying the effectiveness thus far empirically observed.

In this paper, we aim to make such explicit connections between performance gra-
dient estimates of SFMs and their underlying DES for some systems where analytical
expressions are available. We specifically consider G/G/1 and G/G/1/K queueing
systems, where performance gradient estimates are available through either IPA
or through Finite Perturbation Analysis (FPA) when IPA is not applicable. In the
case of the G/G/1 system, we show that, when evaluated on the same sample path
of the underlying DES, the IPA gradient estimators of states, event times, and
various performance metrics derived through SFMs are, for at least certain classes
of distributions that are analytically tractable, the same as those of the associated
DES or their expected values are asymptotically the same under large traffic rates.
Thus, the results in this paper complement previous research by demonstrating that
a SFM not only provides a model abstraction for obtaining gradient estimates of
systems where this cannot be accomplished directly, but it also recovers the same or
approximate gradient estimates for systems where such information can be obtained
directly.

The paper is organized as follows. In Section 2, IPA is applied to both a G/G/1
queueing system and its SFM counterpart, and relationships between the two are
derived. We show that for certain classes of service time distributions the two IPA
estimators are asymptotically identical or their expected values are asymptotically
identical. In Section 3, we consider a G/G/1/K system where IPA cannot be applied
but finite difference estimates can be derived. We show that these finite differences
are under certain conditions the same as IPA estimates derived for the SFM of such
a system. Section 4 analyzes a G/G/1/K system with feedback, and it is shown
that state perturbations derived on the SFM recover properties of sample path state
perturbations in the original DES.

2 IPA for a G/G/1 queueing system and its SFM

In this section, we study the SFM associated with a G/G/1 queueing system (Cassan-
dras et al. 2002; Cassandras 2006). This SFM is shown in Fig. 1 and has state dynamics
given by:

dx(t)
dt+

=
{

0 x(t) = 0 and α(t) ≤ β(t)
α(t) − β(t) otherwise

(1)

where α(t), β(t) represent the input and output rate respectively, both stochastic
processes, and x (t) is the queue content of the system. The random processes
{α(t)}, {β(t)} are arbitrary (except for mild technical conditions, see Cassandras et al.
2010) typically taken to be piecewise continuous w.p. 1. We will compare the IPA
derivative estimator derived through the SFM with the estimator obtained when IPA
is applied directly on the original G/G/1 system for a common performance metric
and establish relationships between the two, including some cases where they are
shown to be asymptotically the same as traffic intensity increases. In addition, we
show that the event time perturbations of the “common events” shared by the SFM
and its DES counterpart have the same expected values under certain conditions.
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Fig. 1 SFM for G/G/1
queueing system

It is well known that IPA can be applied directly on the G/G/1 system to derive
gradient estimates of performance metrics J(θ) as a function of some parameter θ .
A widely-used performance metric is the mean system time over the first N cus-
tomers viewed as a function of some parameter θ of the service time distribution. It
has been shown (see Section 11.4 in Cassandras and Lafortune 2008) that the IPA
estimator of the derivative of J(θ) with respect to θ is given by

[
dJ
dθ

]
I PA

=
B∑

b=1

nb∑
i=1

i∑
j=1

dZ j (θ)

dθ
+

N−∑B
b=1 nb∑

i=1

i∑
j=1

dZ j (θ)

dθ
(2)

where
{

Z j
}

are service times, assumed to be i.i.d random variables. nb is the number
of customers served in the b th busy period, where busy periods are defined as
time intervals during which the server of the queue remains busy. B is the number
of busy periods for the first N customers, the last double sum accounting for a
generally partial final busy period. The derivatives dZ j(θ)

dθ
can be evaluated based on

the observed value of Z j and knowledge of the distribution of
{

Z j
}

(see Cassandras
and Lafortune 2008); for certain classes of distributions, these derivatives take special
forms independent of the specific distribution. It has also been shown that

[ dJ
dθ

]
I PA

above is an unbiased estimator of dJ
dθ

. Since expressions for all busy periods are
the same, in the following we focus on an individual busy period in which the IPA
gradient estimator is given by

[
dJ (θ)

dθ

]DES

=
nb∑
i=1

i∑
j=1

dZ j (θ)

dθ
(3)

In the SFM of the G/G/1 system, discrete customers are replaced by continuous
flows, hence there is no notion of “system time”. Instead, in the SFM we use the total
workload as a performance metric, which can be shown to be the same as the overall
system time in the long run (Wardi and Melamed 2001). Briefly, if Jw(T) is the total
workload and NT is the number of customers over [0, T], then, by Little’s Law, the
average workload Jw(T)

T and the average system time J(T)

NT
satisfy Jw

T = λ · J
NT

, where
λ is the arrival rate. When T is large, the conservation law λ · T = NT is satisfied
and the previous equation reduces to Jw = J, which implies that the total workload
can be used to capture the overall system time. Thus, we will use J to denote the
workload function in what follows.

Consider a busy period in the G/G/1 system which starts at time τb and ends at
time τe. In the corresponding SFM, we fix a busy period with the same starting and
ending times so that the workload function is

J (θ) =
∫ τe

τb

x(t)dt
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The sample path derivative with respect to θ is

[
dJ (θ)

dθ

]SF M

= dτe

dθ
x (τe) − dτb

dθ
x (τb ) +

∫ τe

τb

x′(t)dt (4)

where x′(t) ≡ dx(t)
dθ

. Since x (τe) = x (τb ) = 0, the above equation reduces to

[
dJ (θ)

dθ

]SF M

=
∫ τe

τb

x′(t)dt (5)

Before proceeding, we provide a brief review of the IPA framework for general
stochastic hybrid systems presented in Cassandras et al. (2010) based on which we
can evaluate x′(t) above. Let θ ∈ � for a given compact, convex set � ⊂ R

l be a
controllable parameter vector and consider a sample path of such a system. Let
{τk(θ)}, k = 1, 2, . . ., denote the occurrence times of all events in the sample path.
Over an interval [τk(θ), τk+1(θ)), the system is at some mode during which the time-
driven state satisfies ẋ = fk(x, θ, t). An event at τk is classified as (i) Exogenous
if it causes a discrete state transition independent of θ and satisfies dτk

dθ
= 0; (ii)

Endogenous, if there exists a continuously differentiable function gk : R
n × � → R

such that τk = min{t > τk−1 : gk (x (θ, t) , θ) = 0}; and (iii) Induced if it is triggered
by the occurrence of another event at time τm ≤ τk. Since the systems considered
in this paper do not include induced events, we will limit ourselves to the first two
event types. We will use the notation x′(t) ≡ ∂x(θ,t)

∂θ
, τ ′

k ≡ ∂τk
∂θ

, k = 0, . . . , N, for all
state and event time sample derivatives. Then, as shown in Cassandras et al. (2010),
x′(t) satisfies:

x′ (τ+
k

) = x′ (τ−
k

)+ [
fk−1

(
τ−

k

)− fk
(
τ+

k

)]
τ ′

k (6)

x′(t) = e
∫ t
τk

∂ fk(u)

∂x du
[∫ t

τk

∂ fk(v)

∂θ
e− ∫ t

τk

∂ fk(u)

∂x dudv + ξk

]
(7)

where t ∈ [τk(θ), τk+1(θ)) and ξk = x′(τ+
k ) obtained from Eq. 6 unless x(t) experiences

a discontinuity and ξk must be specified by an explicit state reset condition. In
addition, τ ′

k in Eq. 6 is either τ ′
k = 0 for exogenous events or

τ ′
k = −

[
∂gk

∂x
fk
(
τ−

k

)]−1 (
∂gk

∂θ
+ ∂gk

∂x
x′ (τ−

k

))
(8)

for endogenous events occurring when gk (x (θ, τk) , θ) = 0 (with ∂gk

∂x fk(τ
−
k ) �= 0).

To apply the three fundamental IPA Eqs. 6–8 to our SFM, first note that the end
of a busy period is an endogenous event satisfying x (τe) = 0. In addition, over [τb , τe)

we have

f = dx(t)
dt

= α(t) − β(t, θ), t ∈ [τb , τe) (9)
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where Eq. 1 is used with an explicit dependence of the service rate on θ ; otherwise,
f = dx(t)

dt = 0. Then, with gk (x (θ, τe) , θ) = x, Eq. 8 implies that

τ ′
e = − x′(τ−

e )

α(τe) − β(τe, θ)

and using Eq. 6 we get

x′(τ+
e ) = x′(τ−

e ) + [α(τe) − β(τe, θ) − 0] τ ′
e (10)

Combining these two equations results in x′(τ+
e ) = 0. Moreover, applying Eq. 7 over

any idle period ending at τb we get x′ (τ−
b

) = x′(τ+
e ) = 0. At τb , there are two cases to

consider, depending on whether α(t) − β(t, θ) is continuous at this event time. First,
if α(t) − β(t, θ) is continuous at τb , in view of Eq. 1 we have 0 ≥ α(τ−

b ) − β(τ−
b , θ) =

α(τ+
b ) − β(τ+

b , θ) ≥ 0, hence α(τ−
b ) − β(τ−

b , θ) = α(τ+
b ) − β(τ+

b , θ) = 0. On the other
hand, if α(t) − β(t, θ) is not continuous at τb , then in order to start the busy period
there must exist a jump in α(t) at τb such that α(τ−

b ) − β(τ−
b , θ) ≤ 0 and α(τ+

b ) −
β(τ+

b , θ) > 0; this is obviously an exogenous event with τ ′
b = 0. Thus, using Eq. 6,

we get

x′ (τ+
b

) = x′ (τ−
b

)+ [
α
(
τ−

b

)− β
(
τ−

b , θ
)− (

α
(
τ+

b

)− β
(
τ+

b , θ
))]

τ ′
b

= 0 (11)

in either case.
It now remains to apply Eq. 7 over a busy period so as to evaluate x′(t) in Eq. 5 for

all t ∈ [τb , τe). To do so, consider a busy period of the DES and let nt be the index of
the customer in this busy period that is served at time t, i.e.,

nt = max

⎧⎨
⎩n : n ∈ N,

n−1∑
j=1

Z j ≤ t − τb

⎫⎬
⎭ (12)

where Z j is the service time of the jth customer, and the server has obviously
already processed nt − 1 customers by time t since the start of this busy period.

We can now apply Eq. 5 for all t ∈
[
τb +∑nt−1

j=1 Z j, τb +∑nt
j=1 Z j

)
observing that

in this interval (Eq. 9) holds, therefore ∂ fk(u)

∂x = 0 in Eq. 7. For ease of notation, let
Z (i) ≡ τb +∑i

j=1 Z j and we get

x′(t) = x′ (τ+
b

)+
nt−1∑
i=1

∫ Z (i)

Z (i−1)

∂ f
∂θ

(s) ds +
∫ t

Z (nt)

∂ f
∂θ

(s) ds (13)

where x′(τ+
b ) = 0 from Eq. 11, and ∂ f

∂θ
(s) = − ∂β(s)

∂θ
from Eq. 9. In the SFM, the

instantaneous service rate β(s) is defined as

β(s) = 1

Zns

(14)
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so that ∂ f
∂θ

(s) = 1
Z 2

ns
· dZns

dθ
and Eq. 13 becomes

x′(t) =
nt−1∑
i=1

∫ Z (i)

Z (i−1)

1

Z 2
i

· dZi

dθ
ds +

∫ t

Z (nt)

1

Z 2
nt

· dZnt

dθ
ds (15)

=
nt−1∑
i=1

1

Z 2
i

· dZi

dθ
· Zi +

∫ t

Z (nt)

1

Z 2
nt

· dZnt

dθ
ds

=
nt−1∑
i=1

1

Zi
· dZi

dθ
+ 1

Z 2
nt

· dZnt

dθ
· (t − Z (nt − 1))

and Eq. 5 yields

[
dJ (θ)

dθ

]SF M

=
nb∑
i=1

∫ Z (i)

Z (i−1)

x′(t)dt

=
nb∑
i=1

∫ Z (i)

Z (i−1)

i−1∑
k=1

1

Zk
· dZk

dθ
dt

+
nb∑
i=1

∫ Z (i)

Z (i−1)

1

Z 2
i

· dZi

dθ
· (t − Z (nt − 1)) dt

=
nb∑
i=1

{
i−1∑
k=1

Zi

Zk
· dZk

dθ
+ 1

2
· Z 2

i · 1

Z 2
i

· dZi

dθ

}

= 1

2

nb∑
i=1

dZi

dθ
+

nb∑
i=1

i−1∑
k=1

Zi

Zk
· dZk

dθ
(16)

which is the IPA gradient estimator of dJ(θ)

dθ
obtained through the SFM of the G/G/1

queue with output rate β(t, θ) defined as in Eq. 14, and evaluated on the same busy
period as the underlying G/G/1 queue used to derive Eq. 3.

In what follows, we compare the IPA derivative estimators in Eqs. 16 and 3 for
two classes of service time distributions.

Case 1 The system is a G/D/1 queue. In this case, Z j = Z = θ for all j, so that
dZ j(θ)

dθ
= 1 and Eq. 3 reduces to

[
dJ (θ)

dθ

]DES

= nb · (nb + 1)

2
(17)

On the other hand, Eq. 16 becomes

[
dJ (θ)

dθ

]SF M

= nb

2
+ nb (nb − 1)

2
= n2

b

2
(18)
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Comparing Eq. 18 with Eq. 17 we have the following asymptotic property:

lim
nb →∞

[
dJ(θ)

dθ

]SF M

[
dJ(θ)

dθ

]DES
= lim

nb →∞

n2
b

2
nb ·(nb +1)

2

= 1 (19)

Thus, in high-traffic settings (implying long busy periods, hence nb is large),
the IPA gradient estimators obtained from the SFM provide highly accurate
approximations of the estimators derived when IPA is applied directly to
G/D/1 systems.

Case 2 The parameter θ is a scale parameter of the service time distribution, i.e.,

dZk

dθ
= Zk

θ
(20)

This applies to a large class of service time distributions, including the entire
Erlang family and the uniform distribution. In this case, Eq. 3 reduces to

[
dJ (θ)

dθ

]DES

=
nb∑
i=1

i∑
j=1

Z j (θ)

θ

Recalling the fact that {Z j} are i.i.d, we have E
[
Z j (θ)

] = m (constant).
Taking expectations (conditioned on the value of nb ) we get

E
[

dJ (θ)

dθ

]DES

= 1

θ

nb∑
i=nb−1+1

i∑
j=nb−1+1

E
[
Z j (θ)

]

= nb (nb + 1)

2θ
m (21)

Similarly, taking expectations (conditioned on the value of nb ) on both sides
of Eq. 16 we get

[
dJ (θ)

dθ

]SF M

= E

[
1

2

nb∑
i=1

Zi

θ
+

nb∑
i=1

i−1∑
k=1

Zi

Zk
· Zk

θ

]

= nb

2θ
m + 1

θ

nb∑
i=1

i−1∑
k=1

E [Zi]

= nb

2θ
m + m

θ

nb (nb + 1)

2
− m

θ
nb

= n2
b

2θ
m (22)

Comparing Eq. 22 with Eq. 21, we have

lim
nb →∞

E
[

dJ(θ)

dθ

]SF M

E
[

dJ(θ)

dθ

]DES
= lim

nb →∞

n2
b

2θ
m

nb (nb +1)

2θ
m

= 1 (23)
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Thus, in high-traffic settings where nb is large, the expected value of the
IPA gradient estimator obtained from the SFM provides a highly accurate
approximation of the expected value of the estimator derived when IPA is
applied directly to the actual G/G/1 system.

In fact, the result in this case can be extended to a more general class of systems,
where the parameter θ satisfies the following condition for service times (denoted
by Z ):

E
[

dZ
dθ

]
= E [Z ] · E

[
1

Z
· dZ

dθ

]
(24)

with θ being a scale parameter as a special case. If Eq. 24 holds, we have

E
[

dJ (θ)

dθ

]SF M

= E

[
1

2

nb∑
i=1

dZi

dθ
+

nb∑
i=1

i−1∑
k=1

Zi

Zk
· dZk

dθ

]

= nb

2
E
[

dZi

dθ

]
+

nb∑
i=1

i−1∑
k=1

E [Zi] · E
[

1

Zk
· dZk

dθ

]

= nb

2
E
[

dZ
dθ

]
+

nb∑
i=1

i−1∑
k=1

E
[

dZ
dθ

]

= n2
b

2
E
[

dZ
dθ

]
(25)

and Eq. 23 can also be similarly established.

2.1 Event time derivatives

Another interesting feature of the SFM in Fig. 1 is that, under certain conditions, it
gives the same event time derivatives as the actual G/G/1 system for the events it
shares with it, i.e., starts and ends of busy periods. For a busy period of the G/G/1
system, let τb and τe denote the occurrence times of these two events. As shown
in Cassandras and Lafortune (2008), the corresponding event time derivatives are
given by

[
dτb

dθ

]DES

= 0 ,

[
dτe

dθ

]DES

=
nb∑
i=1

dZi

dθ
(26)

In the associated SFM, the event at τb is not necessarily exogenous, as already
discussed in the previous section. However, our analysis here is based on the sample
path of the actual DES where the start of a busy period is independent of the
parameter θ which influences only service times. Therefore, the event at τb is
exogenous in the context of this discussion and we have

[
dτb

dθ

]SF M

= 0 (27)
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which is the same as
[

dτb
dθ

]DES
in Eq. 26. As for the end of the busy period at τe, it

is an endogenous event with a switching function x (τe) = 0. Taking derivatives with
respect to θ gives

dx
dt

(τe)

[
dτe

dθ

]SF M

+ dx
dθ

(τe) = 0

Using Eqs. 9, 14, and 15, the above equation becomes

(
α(τe) − 1

Znτe

)
·
[

dτe

dθ

]SF M

+
nτe −1∑

i=1

1

Zi
· dZi

dθ

+ 1

Z 2
nτe

· dZnτe

dθ
· (τe − Z (nτe − 1)

) = 0

and since τe − Z (nτe − 1) = Znτe
this reduces to

(
α(τe) − 1

Znτe

)
·
[

dτe

dθ

]SF M

+
nτe −1∑

i=1

1

Zi
· dZi

dθ
+ 1

Znτe

· dZnτe

dθ
= 0

from which we obtain
[

dτe

dθ

]SF M

=
∑nτe −1

i=1
Znτe
Zi

· dZi
dθ

+ dZnτe
dθ

1 − α(τe) · Znτe

(28)

We now make the following assumption regarding the arrival rate process {α(t)} in
the SFM:

Assumption 1 At the end of busy periods the arrival rate is zero, i.e., α(τe) = 0.
This assumption is motivated by the fact that in the DES there is always a finite

time interval between the last arrival event in a busy period and the end of the
busy period itself, since there is at least a full service time interval between these
two events. Therefore, the instantaneous arrival rate in the SFM must mirror this
fact, hence α(τe) = 0. Alternatively, we may simply view this assumption as limiting
the class of arrival rate processes used in the SFM. Under Assumption 1, Eq. 28
reduces to

[
dτe

dθ

]SF M

=
nτe −1∑

i=1

Znτe

Zi
· dZi

dθ
+ dZnτe

dθ
(29)

Considering once again the same two cases as in the last section, we have the
following.

Case 1 The system is a G/D/1 queue. Then, Z j = Z = θ for all j, so that dZ j(θ)

dθ
= 1

and Eqs. 26 and 29 further reduce to
[

dτe

dθ

]SF M

= nb =
[

dτe

dθ

]DES

(30)
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i.e., event time derivatives obtained through the DES and SFM are
the same.

Case 2 The parameter θ is a scale parameter of the service time distribution. In this
case, taking expectations (conditioned on the value of nb ) in Eqs. 26 and 29
gives

E
[

dτe

dθ

]DES

= E

[
nb∑
i=1

dZi

dθ

]
= nb · E

[
dZ
dθ

]

[
dτe

dθ

]SF M

= E

⎡
⎣

nτe −1∑
i=1

Znτe

Zi
· dZi

dθ
+ dZnτe

dθ

⎤
⎦ (31)

= E

[
nt−1∑
i=1

Znτe
· 1

θ
+ Znτe

θ

]

= nb · E
[

Z
θ

]
= nb · E

[
dZ
dθ

]

which demonstrates that event time perturbations obtained through the
SFM and DES have the same expected values in this case. The significance
of these properties lies in the fact that it allows us to use performance
sensitivities estimated through SFMs (rather than DES) for metrics that
depend entirely on event times, such as throughput and resource utilization.

3 SFM for G/G/1/K queueing system

In this section, we study the SFM associated with the G/G/1/K queueing system and
compare IPA derivative estimators obtained through this SFM (Sun et al. 2004a, b;
Yao and Cassandras 2009a) to the finite difference estimators derived from the actual
G/G/1/K system. In particular, we treat the queue capacity K as the parameter
of interest. In the underlying DES, K is integer-valued; however, we could easily
replace it by a real-valued parameter θ and set K = �θ�, the closest integer less than
θ . Obviously, derivatives of performance metrics J(K) with respect to K do not exist,
but we can evaluate finite differences of the form 
J(K) = J(K) − J(K − 1). In the
associated SFM, however, we can obtain derivative estimates with respect to the real-
valued parameter θ .

A typical busy period in a sample path of the G/G/1/K system is shown in Fig. 2.
If this is the jth busy period, the first time an arrival event occurs while the queue
is at capacity is denoted by τ j,1 and the time when the busy period ends is denoted
by at τ j,e. One can observe in the figure that, when the buffer capacity K increases
from 2 to 3, there is a workload increase represented by the shaded area, which
indicates a discontinuity in the workload function with respect to the parameter K.
Such discontinuities arise even if the parameter of interest is a real-valued one such
as a parameter of the service time distribution and, as mentioned in the introduction,
they result in biased IPA gradient estimators. However, these discontinuities are
eliminated in the SFM abstraction, which enables the use of IPA (Fig. 3).
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Fig. 2 Sample path of a busy
period of G/G/1/K system

The dynamics of the SFM for the G/G/1/K system are

dx(t)
dt+

=
⎧⎨
⎩

0 if x = 0 and α(t) ≤ β(t)
0 if x = θ and α(t) ≥ β(t)

α(t) − β(t) otherwise
(32)

where θ is the buffer capacity that corresponds to K in the G/G/1/K counterpart.
The loss rate resulting from buffer overflows is given by

l(t) =
{

α(t) − β(t) if x = θ and α(t) ≥ β(t)
0 otherwise

(33)

Similar to prior work on SFMs (e.g., Cassandras 2006; Wardi et al. 2009), the
queue content can be either empty, full, or neither. Accordingly, the sample path
can be decomposed into three types of intervals: an interval over which x(t) = 0
corresponds to an empty period (EP); an interval over which x(t) = θ corresponds
to a full period (FP); a nonboundary period (NBP) is a supremal interval during
which 0 < x(t) < θ . A boundary period (BP) is either an empty or a full period. The
performance metrics we consider for this SFM are the average workload:

QT(x, θ) = 1

T

∫ T

0
x (t) dt (34)

and the average loss rate:

LT(x, θ) = 1

T

∫ T

0
l (t) dt (35)

Fig. 3 SFM for G/G/1/K
systems
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The IPA derivative estimators of these performance metrics have been derived in
Cassandras and Lafortune (2008), Sun et al. (2004a) and are given by

dQT(x, θ)

dθ
=

j=NB∑
j=1

(
v j,e − v j,1

)
,

dLT(x, θ)

dθ
= NB (36)

where NB is the number of “qualifying” busy periods, defined as busy periods that
include at least one FP; v j,e is the time of the event that ends the jth qualifying busy
period, and v j,1 is the time of the event when the queue content first reaches θ in that
busy period. A typical qualifying busy period is shown in Fig. 4. As in the previous
section, we evaluate Eq. 36 using the values of NB, v j,1, and v j,e directly observed
on the sample path of the underlying G/G/1/K system with busy periods shown in
Fig. 2. Observe that, comparing Figs. 2 and 4, v j,1 and v j,e in Eq. 36 are given by

v j,1 = τ j,1, v j,e = τ j,e (37)

It was also shown in Sun et al. (2004a) that the state derivatives dx
dθ

(t) in a busy period
of the SFM shown in Fig. 4 are given by

dx
dθ

(t) =
{

0 t ∈ [v j,0, v j,1)

1 t ∈ [v j,1, v j,e)
(38)

dx
dθ

(v+
j,e) = 0

In view of Eq. 37, when these expressions are evaluated on the busy period of Fig. 2,
Eq. 38 becomes

dx
dθ

(t) =
{

0 t ∈ [τb , τ j,1)

1 t ∈ [τ j,1, τ j,e)
(39)

dx
dθ

(τ+
j,e) = 0

In what follows, we will show that the derivative estimators in Eq. 36 indeed reflect
the sensitivities of the original DES to changes in K, when evaluated based on the
sample path of the underlying G/G/1/K system under certain conditions such that
the change in K does not cause busy periods to coalesce. Thus, although in general
(36) cannot recover these sensitivities, we are able to show that there is a connection
between them. Let xK−1 (t) and xK (t) denote the state of this system under queue

Fig. 4 Sample path of a typical
qualifying busy period of the
SFM of a G/G/1/K system
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capacities K − 1 and K respectively, which we shall refer to as the nominal and
and the perturbed system respectively. Set 
x (t) ≡ xK (t) − xK−1 (t) and observe that

x (t) = 0 from the start of a busy period until the time when an arrival blocked in
the nominal sample path is accepted in the perturbed sample path, i.e.,


x
(
τ−

j,1

)
= 0, 
x

(
τ+

j,1

)
= 1 (40)

In the next lemma, we show that 
x(t) = 1 over the time interval [τ j,1, τ j,e).

Lemma 1 In the jth busy period of the G/G/1/K system viewed in isolation from all
other busy periods:


x (t) =
{

0 t ∈ [τb , j, τ j,1)

1 t ∈ [τ j,1, τ j,e)
(41)


x
(
τ+

j,e

)
= 0

where τb , j is the start of the busy period. In addition, all arrivals that are blocked in the
nominal system are also blocked in the perturbed system except the f irst one at τ j,1.

Proof Clearly, 
x (t) = 0 for t ∈ [τb , j, τ j,1). Next, let {τ1, τ2, ..., τm} be all event times
during

(
τ j,1, τ j,e

)
in increasing order, and τ0 = τ j,1. For the interval [τ0, τ1), it is

obvious that 
x (t) = 1, t ∈ [τ0, τ1). Assume that for some integer k > 0, 
x (t) = 1
for all t ∈ [τ0, τk); we will show that 
x (t) = 1 for all t ∈ [τ0, τk+1). In the interval
(τk, τk+1) there is no event occurring, therefore, 
x (t) = 1 based on the induction
hypothesis. At t = τk+1, there are two cases depending on whether the event at this
time also occurs in the nominal sample path.

Case 1 If the event also occurs in the nominal system, then x(t) changes by the same
amount at this event for both nominal and perturbed systems, hence 
x (t)
remains unchanged, i.e., 
x (τk+1) = 
x(τ−

k+1).
Case 2 If the event is an arrival that has been blocked in the nominal system, i.e.,

x(τ−
k+1) = K − 1 in the nominal sample path, then by the induction hypothe-

sis, 
x(τ−
k+1) = 1, hence x(τ−

k+1) = K, which implies that the arrival will also
get blocked in the perturbed system. Therefore, 
x (τk+1) = 
x(τ−

k+1) = 1.
This also establishes the sample path property stated in the lemma, i.e.,
that all arrivals blocked in the nominal system will also get blocked in the
perturbed system except the first one at τ j,1.

By the induction argument above, we have


x (t) = 1 for all t ∈ [τ0, τk) (42)

At τ j,e the queue becomes empty in both nominal and perturbed system, hence 
x
resets to 0, i.e.,


x
(
τ+

j,e

)
= 0 (43)

and the results of the lemma are established. �

In view of Lemma 1, we also have the following lemma, whose proof follows
immediately by comparing Eq. 41 with the state derivatives (Eq. 39) for the SFM.
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Lemma 2 Suppose that for G/G/1/K sample paths under queue capacities K − 1
and K respectively, 
x(t) ≡ xK(t) − xK−1(t) = 0 for some t ∈ (τ j,e, τb , j+1) for all j.
Then, state derivatives dx

dθ
(t) obtained through the SFM have the same values as the

perturbations 
x (t) obtained from the underlying G/G/1/K system when evaluated
on a given G/G/1/K sample path:

dx
dθ

(t) = 
x (t) , t ∈ [0, T] (44)

Based on the above lemmas, we now show that dQT (x,θ)

dθ
and dLT (x,θ)

dθ
given in

Eq. 36 are the same as the finite differences 
Q (K) ≡ Q (K) − Q (K − 1) and

L (K) ≡ L (K) − L (K − 1) with K = �θ�. For the original G/G/1/K systems,
when evaluated on the same G/G/1/K sample path, provided the condition in
Lemma 2 holds.

Theorem 1 Suppose that for G/G/1/K sample paths under queue capacities K − 1
and K respectively, 
x(t) ≡ xK(t) − xK−1(t) = 0 for some t ∈ (τ j,e, τb , j+1) for all j.
Then, the SFM-based IPA derivative estimators dQT (x,θ)

dθ
and dLT (x,θ)

dθ
given in Eq. 36

and the finite differences 
Q(K),
L(K) with K = �θ� obtained for a G/G/1/K
sample path satisfy:

dQT

dθ
= 
Q (K) ≡ Q (K) − Q (K − 1)

dLT

dθ
= 
L (K) ≡ L (K) − L (K − 1) (45)

Proof In any qualifying busy period of the G/G/1/K system, let Q j (K) and L j (K)

denote the workload and loss respectively over the jth busy period. Using Lemma 1,
we have


Q j (K) = 
x · (τ j,e − τ j,1
) = (

τ j,e − τ j,1
)

Moreover, by Lemma 2, there is only one arrival that was previously blocked and
will get accepted, therefore


L j (K) = 1

Summing over all qualifying busy periods in [0, T], we get


Q (K) =
∑

j


Q j (K) =
∑

j

(
τ j,e − τ j,1

)
(46)


L (K) =
∑

j


L j (K) = NB

Recalling Eqs. 37 and 36, we have

dQT

dθ
(K) =

j=NB∑
j=1

(
v j,e − v j,1

) = 
Q (K)

dLT

dθ
(K) = NB = 
L (K)

which completes the proof. �



212 Discrete Event Dyn Syst (2012) 22:197–219

We emphasize again that this property of the SFM estimators provides a connec-
tion with a set of sample paths of the G/G/1/K system where the change in K does
not cause busy periods to coalesce. In addition, the following lemma shows that the
SFM also provides event time derivatives that are the same as the associated event
time perturbations in the underlying G/G/1/K system.

Lemma 3 Consider the jth busy period of the G/G/1/K system starting at τb , j and
ending at τ j,e viewed in isolation from all other busy periods and the associated SFM
over the same busy period. Then, under Assumption 1,

dx
dt

(
τb , j

) = 
τb , j = 0

dx
dt

(
τ j,e
) = 
τ j,e

Proof First, based on the event classification reviewed in Section 2, events that start
busy periods are exogenous, and independent of the perturbed parameter θ in the
SFM or K in the DES, therefore dx

dt

(
τb , j

) = 
τb , j = 0.
As for the event that ends the busy period, i.e., the event at τ j,e in Fig. 2, in the

G/G/1/K system:


τ j,e = Z

where Z is the service time of an additional customer admitted in the perturbed but
not the nominal systems. In the associated SFM, the event ending the busy period is
endogenous and its occurrence time satisfies the switching function

x
(
τ j,e
) = 0

Taking derivatives on both sides with respect to θ , we get

dx
dt

(
τ j,e
) · dτ j,e

dθ
+ dx

dθ

(
τ j,e
) = 0

Recall that dx
dt

(
τ j,e
)= α

(
τ j,e
)−β

(
τ j,e
)
. Then, using Eq. 39 and Assumption 1, we have

−β
(
τ j,e
) · dτ j,e

dθ
+ 1 = 0

and we get
dτ j,e

dθ
= 1

β
(
τ j,e
) = Z = 
τ j,e

and the results of the lemma are established. �

4 SFM for G/G/1/K system with feedback

SFMs have been extended to study queueing systems with feedback mechanisms that
typically arise in many applications which involve admission or flow control (Yu and
Cassandras 2002, 2006, 2004). In this section, we focus on a G/G/1/K system with
negative state feedback and its associated SFM studied in Yu and Cassandras (2004)
and show that the IPA state derivative estimates derived through the SFM recover
some basic properties of sample path finite differences of the original queueing
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system. The SFM for a G/G/1/K system with feedback is shown in Fig. 5, where
p(x) is a non-decreasing feedback function and the system dynamics are given by

dx(t)
dt+

=
⎧⎨
⎩

0 if x = 0 and α(t) − β(t) ≤ p (0)

0 if x = θ and α(t) − β(t) ≥ p (θ)

α(t) − β(t) − p (x (t)) otherwise
(47)

The feedback mechanism is implemented by controlling θ and the function p (x (t)),
selected to be monotonically nondecreasing in x(t). The net effect is to suppress the in-
coming flow through rejection of arriving customers (see Yu and Cassandras 2004 for
details.) IPA is applied on the SFM of Fig. 5 and derivative estimators are derived for va-
rious performance metrics, such as the average workload QT (x, θ) in Eq. 34, as follows:

dQT

dθ
=
∫ T

0

dx
dθ

(t) dt (48)

For the special case of linear feedback, i.e. p(x) = cx, the state perturbations dx
dθ

(t) in
Eq. 48 were shown in Yu and Cassandras (2004) to be

dx
dθ

(t) =
{

1 [x (ηn) = θ ] · e−c(t−ηn) t ∈ [ηn, ξn)

1 [x (t) = θ ] t ∈ [ξn, ηn+1)
(49)

where [ηn, ξn) is the nth nonboundary period in a sample path of the SFM, i.e., an
interval when the queue is neither empty nor full. As in all previous sections, the IPA
estimator in Eq. 48 is evaluated on the sample path of the original queueing system,
hence ηn, ξn are all identified in the underlying DES sample path. In particular, ηn

starts an interval which is either (i) the start of a busy period, in which case it ends
at some ξn with x (ξn) reaching the queue capacity or x (ξn) = 0 ending a busy period
without ever reaching the queue capacity, or (ii) the start of an interval with x (ηn) at
queue capacity followed by the end of a busy period or x reaching the queue capacity
again at ξn. Thus, dx

dθ
(t) = e−c(t−ηn) in Eq. 49 if ηn starts an interval where the queue is

at capacity and is otherwise zero.
Considering the underlying G/G/1/K system with negative feedback, the con-

troller operates so that the value of p (xK (t)) determines a fraction of arriving
customers that are deliberately rejected even if xK (t) < K. Figure 6 shows examples
of the busy period of two such systems with different feedback functions, and in both
examples, both nominal and perturbed sample paths are illustrated where the buffer
capacity K is increased by 1. The difference between the two examples lies in the
“intensities” of the feedback functions selected so that, for all x, we have

p1 (x) < p2 (x) (50)

Fig. 5 SFM for G/G/1/K
system with feedback
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Fig. 6 Examples of a busy period of the G/G/1/K system with feedback function: a p1 (x)

b p2 (x) > p1(x)

In particular, if both systems use linear feedback, i.e., p1 (x) = c1x, p2 (x) = c2x,
where c1, c2 ∈ (0, 1

K

)
, so that cix ∈ (0, 1), i = 1, 2, and the feedback in the ith system

is manifested by rejecting cix fraction of arrivals through a simple randomization
admission control scheme. Moreover, Eq. 50 is equivalent to

c1 < c2 (51)

First, we compare Fig. 6 with Fig. 2 where there is no feedback. Observe that,
in the perturbed sample paths of these systems, some arrivals that are accepted in
the G/G/1/K system of Fig. 2 are rejected in both systems of Fig. 6. For instance,
the arrival at τa1 is rejected in the perturbed (K = 3) sample path of Fig. 6, while it
gets accepted in the perturbed sample path of Fig. 2. This additional rejection is the
effect of feedback control, because as the capacity K increases, xK (t) also increases,
which leads to larger p (xK (t)), hence more arrivals are deliberately rejected. This
observation implies that the queue in a sample path of the perturbed system with
feedback, i.e., xK (t), is smaller than that of the system without feedback, hence

x (t) ≡ xK (t) − xK−1 (t) is also smaller. Then, together with Lemma 1, we conclude
that 
x (t) ≤ 1, for all t, in the systems of Fig. 5.

In addition, by comparing Fig. 6b with Fig. 6a we observe that there are arrivals
that are accepted in the perturbed sample path of Fig. 6a but are rejected in the
perturbed sample path of Fig. 6b, e.g., the arrival at τa2 in Fig. 6a, b. This is due
to the difference in the feedback “intensities” c1, c2 , since p1 (xK (t)) < p2 (xK (t)) in
Eq. 50, hence, more arrivals are rejected in the system of Fig. 6b, which further results
in smaller 
x (t) ≡ xK (t) − xK−1 (t). In the case of linear feedback, this implies that

x (t) is a decreasing function of the feedback intensity parameter c.
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Finally, another simple observation is that, the longer the system is in a non-
full period, the smaller the perturbation 
x (t) is. The simple intuitive reasoning is
that, the effect caused by the rejections in the previous full period decays as that full
period ends.

These observations lead to the following proposition, which describes three prop-
erties of the state perturbations 
x (t) in a G/G/1/K system with linear feedback,
under the same condition as in Theorem 1.

Proposition 1 In the G/G/1/K queue with negative feedback, suppose that for sample
paths under queue capacities K − 1 and K respectively, the state perturbation is such
that 
x(t) = xK(t) − xK−1(t) = 0 for some t ∈ (τ j,e, τb , j+1) for all j. Then, 
x(t) in the
busy period has the following properties:

Property 1 
x (t) ∈ {0, 1}.
Property 2 In the case of linear feedback, 
x (t) is a non-increasing function of the

feedback gain parameter c.
Property 3 
x (t) is a non-increasing function of (t − ηn), where ηn is the time when

the previous full period ends.

Proof First, we adopt similar notation as in the proof of Lemma 1, so that
τ j,1 denotes the first time an arrival event occurs in the jth busy period while
the queue is at capacity and τ j,e is the time when the busy period ends; in
addition, {τ1, τ2, ..., τm} are all event times during

(
τ j,1, τ j,e

)
in increasing or-

der, and τ0 = τ j,1. Under the condition in the Proposition, clearly, 
x (t) =
0 for t ∈ [τb , j, τ j,1), and 
x (t) = 1, t ∈ [τ0, τ1). Assume that for some integer
k > 0, 
x (t) ∈ {0, 1} for all t ∈ [τ0, τk); we will show that 
x (t) ∈ {0, 1} for all
t ∈ [τ0, τk+1). In the interval (τk, τk+1) there is no event occurring, therefore, 
x (t)=1
based on the induction hypothesis. At t = τk+1, there are 4 cases depending on the
type of event occurring at this time, whether it also occurs in the nominal sample
path, and the value of 
x(τ−

k ).

Case 1 If the event also occurs in the nominal sample path, then x(t) changes by the
same amount at this event for both nominal and perturbed systems, hence

x (t) remains unchanged, i.e., 
x (τk) = 
x(τ−

k ).
Case 2 If the event is an arrival that has been blocked in the nominal sample

path, i.e., x(τ−
k ) = K − 1 in the nominal sample path, and 
x(τ−

k ) = 1,
then x(τ−

k ) = K − 1 + 1 = K in the perturbed sample path, which implies
that the arrival will also get blocked in the perturbed system. Therefore,

x

(
τ+

k

) = 
x(τ−
k ) = 1.

Case 3 If the event is an arrival that has been blocked in the nominal sample
path, i.e., x(τ−

k ) = K − 1 in the nominal sample path, and 
x(τ−
k ) = 0, then

x(τ−
k ) = K − 1 + 0 = K − 1 in the perturbed sample path, which implies

that the arrival will get accepted in the perturbed system. Therefore,

x

(
τ+

k

) = 
x(τ−
k ) + 1 = 1.

Case 4 If 
x(τ−
k ) = 1, and the event is an arrival that is rejected in the perturbed

sample path due to the feedback control applied, but it has been accepted
in the nominal system, then 
x

(
τ+

k

) = 
x(τ−
k ) − 1 = 0. This case arises

because of the increase in the feedback intensity, i.e., c
x(τ−
k ) = c, using

the fact that 
x(τ−
k ) is 1 in this case.
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By the induction argument above, we have


x (t) ∈ {0, 1} for all t ∈ [τ0, τk) (52)

At τ j,e the queue becomes empty in both nominal and perturbed system, hence 
x
resets to 0, i.e.,


x(τ+
j,e) = 0 (53)

and Property 1 follows.
To prove Property 2, we note that in all 4 cases discussed above where 
x (t)

changes, only Case 4 depends on the feedback parameter c. In addition, it follows
from the analysis therein that, the larger the value of c is, the larger the value of
c
x(τ−

k ) is, which implies a more frequent occurrence of Case 4, resulting in the
decrease of 
x (t). Therefore, 
x (t) is a non-increasing function of the feedback
gain parameter c, and Property 2 is established.

Property 3 follows from the fact that, after the full period ends, i.e., x (t) < K − 1,
then only Case 1 and Case 4 can occur, where 
x (t) either remains the same or
decreases. �

Looking at the state derivative dx
dθ

(t) derived through the SFM as given in Eq. 49, it
is easy to verify that it satisfies Property 2 and Property 3 above, i.e., dx

dθ
(t) decreases

as (t − ηn) increases, or as c increases. In addition, note that Property 1 implies that
0 ≤ 
x (t) ≤ 1, which is also true for dx

dθ
(t) in Eq. 49.

Finally, following an analysis similar to that of Theorem 1, we can show that the
sample path finite difference in the workload is


Q (K) = Q (K) − Q (K − 1) =
∫ T

0

x (t) dt

Although we can no longer establish the equality of 
Q (K) with dQT
dθ

obtained
through Eqs. 48–49, as we did in Theorem 1 for the G/G/1/K system, the fact
that dx

dθ
(t) shares the properties of 
x (t) under the same condition suggests that

the SFM-based performance sensitivity estimate provides good approximations of
the sensitivity estimate 
Q (K); this is consistent with the simulation-based results
presented in Yu and Cassandras (2004).

5 Conclusions

Motivated by ample empirical evidence to date that performance sensitivity esti-
mates obtained by IPA for SFMs used as abstractions of underlying DES provide
accurate approximations of the performance sensitivity estimates of the actual
DES, we have established in this paper explicit connections between such estimates
for cases where analytical expressions for IPA (or finite difference) estimates are
available. In particular, we have considered G/G/1 queueing systems, where we
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have shown exact and asymptotic results for the equivalence of SFM and DES-
based estimates. For G/G/1/K systems without and with feedback, our results are
much weaker, showing only that SFM-based derivative estimates capture some basic
properties of finite difference estimates evaluated on a sample path of the underlying
DES. Whereas in the study of DES IPA applies to a limited system class, in SFMs
IPA has been shown in the authors’ prior work to boil down to three fundamental
equations of virtually arbitrary applicability. These provide the cornerstones for
a very general unbiased estimation theory, playing a role similar to the general-
purpose equations one uses, for example, in optimal control (state equations, costate
equations, optimality conditions, etc). Although the expressions required to describe
the performance sensitivity estimators generated by these fundamental equations
often appear complicated, their actual implementation is in fact very simple.
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