
Discrete Event Dyn Syst (2010) 20:409–439
DOI 10.1007/s10626-009-0080-9

Message Batching in Wireless Sensor
Networks—A Perturbation Analysis Approach

Xu Ning · Christos G. Cassandras

Received: 16 May 2008 / Accepted: 29 July 2009 / Published online: 11 August 2009
© Springer Science + Business Media, LLC 2009

Abstract We address the problem of batching messages generated at nodes of a
sensor network for the purpose of reducing communication energy at the expense
of added latency. We consider a time-based batching approach. We first develop
baseline analytical models based on Markovian assumptions, derive conditions under
which batching is profitable, and explicitly determine a batching time that optimizes
a performance metric capturing the trade-off between communication energy and
message latency. We then provide an on-line performance optimization method
based on Smoothed Perturbation Analysis (SPA) for estimating the performance
sensitivity with respect to the controllable batching time. We prove that the SPA
gradient estimator is unbiased and combine it with a Stochastic Approximation (SA)
algorithm for on-line optimization. Numerical results are provided for Poisson and
Markov modulated Poisson message arrival processes and illustrate the effectiveness
of the message batching scheme.

Keywords Wireless sensor network · Perturbation analysis · Batching ·
Queueing systems

The authors’ work is supported in part by the National Science Foundation under grants
DMI-0330171 and EFRI-0735974, by AFOSR under grants FA9550-07-1-0213 and
FA9550-07-1-0361, and by DOE under grant DE-FG52-06NA27490. The research
in this paper was conducted while Xu Ning was a student at Boston University.

X. Ning (B)
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA
e-mail: xuning@microsoft.com

C. G. Cassandras
Division of Systems Engineering, Boston University, 15 Saint Mary’s St., Brookline,
MA 02446, USA
e-mail: cgc@bu.edu

410 Discrete Event Dyn Syst (2010) 20:409–439

1 Introduction

A Wireless Sensor Network (WSN) consists of low-cost nodes which are mainly bat-
tery powered and have sensing and wireless communication capabilities (Megerian
and Potkonjak 2003). Usually, the nodes in such a network share a common objec-
tive, such as environmental monitoring or event detection. Due to limited on-board
power, nodes rely on short-range communication and form a multi-hop network to
deliver information to a base station. Power consumption is a key issue in WSNs,
since it directly impacts their lifespan in the likely absence of human intervention for
most applications of interest.

Energy in WSN nodes is consumed by the CPU, by sensors, and by radio, with
the latter consuming the most (Shnayder et al. 2004). In Ye et al. (2004), four
major sources of energy waste in communication are identified: (1) a collision
occurs when a packet is corrupted by other simultaneous transmissions and requires
a retransmission; (2) overhearing arises when a node receives a packet which is
not destined to it; (3) control packet overhead is the energy cost incurred during
sending and receiving control packets instead of actual data payload; (4) idle listening
occurs when the receiver staying awake during network idle time anticipating an
incoming transmission. Among these four sources, idle listening accounts for the
most significant waste of energy.

Energy waste due to idle listening can be reduced by adopting a Medium Access
Control (MAC) scheme. MAC can be categorized into scheduled and unscheduled
schemes. Scheduled schemes, such as TDMA (Sohrabi et al. 2000) and S-MAC (Ye
et al. 2004), maintain a schedule among a small cluster of nodes such that nodes
have coordinated transmission. Therefore, nodes can turn off their radio according
to the schedule. Unscheduled schemes, on the other hand, try to emulate an “always-
on” receiver by introducing additional ad-hoc synchronization. One way to achieve
this is to use Low-Power Listening (LPL), which has been adopted previously, for
instance, in radio paging systems (Mangione-Smith 1995). LPL uses a preamble-
channel polling scheme to synchronize sender and receiver; detail will be given in
Section 2. Unscheduled MACs using LPL include B-MAC (Polastre et al. 2004),
WiseMAC (El-Hoiydi and Decotignie 2004) and X-MAC (Buettner et al. 2006), etc.
One obvious advantage of unscheduled MAC is its universality, since all transmission
controls are transparent to the applications to which it just appears to be an always-
on radio. Another advantage is that it does not need in advance synchronization (it
can, though, benefit from it since a preamble can be shortened when the transmission
pair is roughly synchronized).

While LPL greatly reduces idle listening, large control packet overhead is incurred
in the form of the preamble. To reduce control packet overhead, we consider the
usage of batching. Batching approaches are widely used in all kinds of systems in
order to reduce overhead or setup cost (Deb and Serfozo 1973; Deb 1984; Cassandras
and Yu 2000). To the best of our knowledge, applying batching approaches in WSN
communication has not been investigated. Moreover, among existing approaches
few consider exploiting network traffic statistics for further savings, even though a
large class of applications involves irregular, random, event-driven traffic. Since an
important characteristic of WSNs is the sporadic and bursty nature of traffic, a natural
question we explore in this paper is: Upon detecting an event, should the sender
transmit the message immediately, or is it profitable to intentionally delay it for some

Discrete Event Dyn Syst (2010) 20:409–439 411

time period knowing that more events might occur within a short interval? If so, how
long should the sender wait and what is the trade-off between energy savings and
performance, e.g., average delay?

In this paper, we study a time-based message batching approach in a discrete
event system framework with the objective of reducing communication energy
cost. Our contributions are twofold. First, we provide analytical stochastic models
for time-based message batching, and solve it under Poisson process assumptions.
This Markovian analysis gives us a baseline theoretical results. Second, we present
an on-line control method to determine the optimal time for time-based message
batching, in which no a priori statistical arrival information is needed. This involves
performance sensitivity estimation based on sample path analysis using Perturbation
Analysis (PA) techniques (Cassandras and Lafortune 1999) and a Stochastic Ap-
proximation algorithm (Kushner and George Yin 2003) to find the optimal batching
time. We prove that the gradient estimators are unbiased and that this algorithm
converges to the optimum.

This paper is organized as follows. The message batching problem and the discrete
event model are introduced in Section 2. In Section 3, with exponential assumptions,
the batching problem is solved analytically. In Section 4, we turn our focus to on-
line control by using Smoothed Perturbation Analysis (SPA) to derive gradient
estimators (Cassandras and Lafortune 1999; Fu and Hu 1997). Using these estima-
tors, in Section 5 we provide simulation results of on-line control using a Stochastic
Approximation (SA) algorithm. Finally, conclusions are given in Section 6.

2 Problem description and discrete event model

2.1 LPL and message batching problem

A sender node in a WSN detects a random event or receives a message from
upstream (i.e., a node closer to a data source), and sends a message to a receiver,
which either relays it to the next hop or processes it. Random events are modeled
through a point process. We adopt one form of LPL–Variable Preamble LPL at
the link level. Some implementation details can be found in Joe and Ryu (2007),
Mahlknecht and Bock (2004) and Buettner et al. (2006). Illustrated in Fig. 1, Variable
Preamble LPL has the following main steps:

1. The receiver remains at a sleep state most of the time, and occasionally wakes up
to sample the channel in order to determine whether it is busy or idle.

2. When the sender wants to send a message, it begins with an attached signal called
the “preamble” to the receiver. The preamble can be viewed as a “wake up
signal”. After the preamble signal, the sender sends the message.

3. When the receiver wakes up and samples the channel, either of two cases may
occur: (i) If the channel is idle, the receiver sets the next wake-up time and sleeps
again, (ii) If the channel is busy (preamble detected), the receiver stays on until
the message is received. After transmission, the receiver also sets its next wake-
up time and sleeps again.

In this type of LPL, the preamble (or “wake up signal”) is initiated when the
sender is ready to transmit and it allows a variable sleep time on the receiver side. In

412 Discrete Event Dyn Syst (2010) 20:409–439

DATA

Rx

Sender

Receiver

!

OFF

P P P P !

R

OFF ON OFF OFF

t

Fig. 1 Illustration of the Variable Preamble LPL (Ning and Cassandras 2006). The preamble is in the
form of a sequence of packets interlaced with short listening periods. After each preamble packet (P)
sent, the sender listens for possible receiver reply (R) which is sent upon the receiver detecting P at
polling events. When sender receives R, a synchronization packet (SYN) is sent, followed by the data
payload (DATA). Thus the data are received

other words, unlike many other approaches, the preamble need not be longer than
the sleep time to ensure proper reception. Although (as shown in Fig. 1) the preamble
consists of discrete packets, we assume a continuous preamble in order to simplify the
analysis. From the sender’s perspective, receiver channel polling events take place
randomly and are modeled through a point process as well. This captures the fact
that (a) there may be multiple receivers for redundancy purposes, (b) random clock
drift and time offset behaviors are possible, and (c) different sampling schedules may
be adopted by different receivers.

Generally, upon detecting an event, the sender starts sending the preamble at
once. Message batching is a mechanism to intentionally delay sending this preamble
in anticipation of more events/messages to come, such that when the preamble meets
with a polling event, as illustrated in Fig. 1, the entire batch of messages is transmitted.
There are multiple ways to determine when to send the preamble, with the two
most fundamental ways being (i) time-based message batching and (ii) queue-length-
based batching. In time-based message batching, the sender postpones sending the
preamble for W units of time, where W is a preset parameter independent of
the buffer content. This is in contrast to queue-length-based batching where the
preamble is sent immediately after the queue length reaches a threshold. Note that
the transmission of the message (DATA) and control packets (SYN) also consumes
energy. However, we do not consider this cost since it is fixed, while in our analysis we
aim to determine a suitable batching time or threshold so as to reduce the preamble
cost.

In this paper we only consider time-based message batching because it is more
suitable in the WSN environment. The implementation of time-based batching is
a very simple time-out mechanism. It does not force the controller to wait, say K
messages before sending out the preamble. When the traffic is bursty, e.g., an on-off
type of traffic, if the queue length has not reached K before the exogenous arrival
process “switches off”, the sender has to wait for the whole “off” duration, incurring
a large delay.

The fundamental trade-off in this problem is the following: If the waiting time
W increases, the sender’s energy consumption is reduced as more messages share a
single preamble; on the other hand, all messages are further delayed by the increase

Discrete Event Dyn Syst (2010) 20:409–439 413

in W. A special case arises when the polling process is deterministic without any
clock drift or offset or other randomness. However, the analysis is trivial because the
sender can perfectly coordinate with receiver polling periods by varying W for each
polling event. Therefore, in the following we focus on the more general stochastic
case.

2.2 Discrete event model

To simplify the analysis, we make the following assumptions: (1) Generally, the
interarrival time of the events is much larger than preamble durations, the time to
transmit a message and the duration of a channel sampling activity. Therefore, we
model channel samplings as points in time. (2) Although in the variable preamble
LPL a sequence of discrete preamble packets is sent, we model the preamble as a
continuous signal whose duration is a real positive number. In addition, we focus on
the preamble and the channel sampling activities and ignore the energy cost incurred
during the handshaking and the transmission of the data payload part of the message,
since it is not controllable in the scope of our problem. A typical sample path of time-
based message batching is shown in Fig. 2a. The upper timeline is for the sender side
and the lower one is for the receiver. The jth event or upstream message arrival is
denoted by A j. The jth channel sampling event is denoted by S j.

After an arrival finds the sender’s buffer empty, e.g., A1 in Fig. 2a, the sender
waits for W units of time before sending a preamble which is indicated by a thicker
line segment. As a sampling event S2 sees the preamble, messages A1, A2, A3

are transmitted. Since the only randomness in the system lies in the arrival and
sampling time epochs, the sample path is uniquely determined by two exogenous
point processes: (i) The message arrival process

{
A j : j ≥ 1

}
, and (ii) The sampling

process
{

S j : j ≥ 1
}
.

Certain arrival/sampling events are critical events. An arrival that finds an empty
buffer is critical because it initiates a Batching Period (BP) at the sender node, i.e., a
time interval where the sender’s buffer is not empty, and also determines the starting
time of a preamble. In addition, a particular sampling event that “downloads” the
messages is critical as it ends a BP. Clearly, the sample path consists of a sequence
of BPs {BPi, i ≥ 1}. A batching period BPi starts with an arrival AIi which finds an
empty buffer, and ends with a sampling event SRi which triggers the transmission
of all the accumulated messages. These are critical events, as shown in Fig. 2b.
Once

{
A j : j ≥ 1

}
and

{
S j : j ≥ 1

}
are given, the index sets CI = {Ii, i ≥ 1} and

CR = {Ri, i ≥ 1} can be recursively determined as follows:

I1 = 1 (1)

Ri = min
j=1,2,...

{
j : S j > AIi + W

}
, i ≥ 1 (2)

Ii+1 = min
j=1,2,...

{
j : A j > SRi

}
, i > 1 (3)

The system performance depends on the message delays and the preamble
lengths. For a message arriving at A j, its delay is given by:

Dj = min
i=1,2,...

{
SRi : SRi > A j

}− A j (4)

414 Discrete Event Dyn Syst (2010) 20:409–439

1S

1BP 2BP 3BP

1I
A

2IA
3IA

1RS
2RS

3RS

2S 3S 4S 5S 6S 7S

1A 2A 3A 4A 5A 6A 7A 8A

W W W

Sender

Receiver(s)

(a)

(b)

Sender

Receiver(s)

Fig. 2 a Typical sample path in time-based message batching. b Critical events divide the sample
path into batching periods, i.e. time intervals where messages exist in the sender’s queue

In each BPi there is only one preamble, beginning after a delay W initiated by AIi

and ending with the critical sampling event SRi . The length of this preamble is:

Pi = SRi − AIi − W (5)

Denote by N the number of arrivals in a sample path and by B the number of BPs
(depending on N, obviously) and define:

D̄ = lim
N→∞

1
N

N∑

j=1

Dj, Q̄ = lim
N→∞

1
N

B∑

i=1

Pi (6)

which are the long term average delay and preamble length per message, respectively.
Assuming ergodicity, D̄ and Q̄ are deterministic quantities dependent on W and on
the statistics of

{
A j : j ≥ 1

}
and

{
S j : j ≥ 1

}
. D̄ and Q̄ reflect the key trade-off, since

the goal of the batching mechanism is to delay sending a preamble so that a single
preamble is shared by a batch of messages and energy consumption is reduced at the
expense of message delay.

3 Analytical solution with Poisson processes

To find the analytical expression of mean delay and preamble, in this section we
assume that the arrival and sampling processes are Poisson with rate λ and μ,
respectively. Due to the Markovian structure of the system, the analysis can be
performed in terms of a single batching period BP, which begins when an arrival
finds the system empty, and ends when a sampling event takes away the stored

Discrete Event Dyn Syst (2010) 20:409–439 415

messages, as illustrated in Fig. 3. As a first step, we obtain expressions for Q̄ and
D̄ in terms of W, λ and μ:

Lemma 1 In time-based message batching, the long-run average delay and long-run
average preamble per message are given by:

Q̄ = 1/μ

1 + λW + λ

μ

D̄ =
W + 1

μ
+ λW

(
W
2

+ 1
μ

)
+ λ

μ2

1 + λW + λ

μ

Proof A BP consists of two phases. Phase 1 lasts for W time units, when the source
is waiting with its radio off. Phase 2 occurs when the source continuously sends the
preamble. Let P denote the length of the preamble time. Note that it is the time until
the next sampling event, therefore, it is also exponentially distributed with rate μ,
and E [P] = 1/μ. Thus, the expected total number of arrivals during a BP, including
the first arrival, is

E [NBP] = 1 + λW + λ

μ

Because of the regenerative structure of the system, the average preamble time per
message is Q̄ = E [P] /E [NBP]. To see this, consider a sample path with B batching
periods. We have:

Q̄(B) =
∑B

i=1 Pi
∑B

i=1 NBP,i

=
1
B

∑B
i=1 Pi

1
B

∑B
i=1 NBP,i

where NBP,i is the number of messages in BPi. Hence, because for i �= j, Pi and Pj

are independent, and NBP,i and NBP, j are independent because of the regenerative
structure, by the law of large numbers (Gaivoronski and Messina 2006),

Q̄ = lim
B→∞

Q̄ (B) = lim
B→∞

1
B

∑B
i=1 Pi

1
B

∑B
i=1 NBP,i

= E [P]
E [NBP]

Fig. 3 A single batching
period in time-based message
batching

Sender

Receiver

PW

BP

416 Discrete Event Dyn Syst (2010) 20:409–439

Therefore, we have

Q̄ = E [P]
E [NBP]

= 1/μ

1 + λW + λ

μ

(7)

Next, to obtain D̄, there are three cases depending on when an arrival occurs within
a BP:

Case 1 First arrival. This arrival initiates the BP and waits for D11 = W + P.
Therefore,

E [D11] = W + 1
μ

(8)

Case 2 Arrivals during the waiting period. By the Poisson assumption, if the
number of arrivals is N2, E [N2] = λW. Moreover, denoting by D2 j the
delay experienced by the jth arrival in this period, the accumulated delay is∑N2

j=1 D2 j. By the property of the Poisson process that the unordered event
times are uniformly distributed in the waiting period conditioned on the
number of events in the waiting period (c. f. Chapter 2 in Ross 1995), the
accumulated delay given N2 is

E

⎡

⎣
N2∑

j=1

D2 j | N2

⎤

⎦ = N2

(
W
2

+ 1
μ

)

It follows that

E

⎡

⎣
N2∑

j=1

D2 j

⎤

⎦ = E

⎡

⎣E

⎡

⎣
N2∑

j=1

D2 j | N2

⎤

⎦

⎤

⎦ = E
[

N2

(
W
2

+ 1
μ

)]

= λW
(

W
2

+ 1
μ

)
(9)

Case 3 Arrivals during the preamble period. First, if the number of arrivals during
this period is N3, then

E [N3] = E [E [N3|P]] = E [λP] = λ

μ

The accumulated delay is
∑N3

j=1 D3 j. To calculate the expected value, we
condition on TP and N3 and use a similar argument as in Case 2:

E

⎡

⎣
N3∑

j=1

D3 j

⎤

⎦ = E

⎡

⎣E

⎡

⎣E

⎛

⎝
N3∑

j=1

D3 j|N3, P

⎞

⎠ |P
⎤

⎦

⎤

⎦

= E
[

E
(

N3 P
2

|P
)]

= E
[

λP2

2

]

= λ

2

∫ ∞

0
x2μe−μxdx = λ

μ2 (10)

Discrete Event Dyn Syst (2010) 20:409–439 417

Again, due to the regenerative structure and using Eqs. 8, 9, and 10, the
long-run average delay is given by

D̄ =
E
[

D11 +∑N2
j=1 D2 j +∑N3

j=1 D3 j

]

E [1 + N2 + N3]
=

W + 1
μ

+ λW
(

W
2

+ 1
μ

)
+ λ

μ2

1 + λW + λ

μ
(11)

��

Suppose our performance objective is chosen as a linear combination of the two
metrics parametrized by W, D̄ (W) and Q̄ (W):

J (W) = D̄ (W) + αQ̄ (W) (12)

where α > 0. Then, using Lemma 1, we can find the optimal parameter W∗, which is
given in the following theorem:

Theorem 1 In time-based message batching, let the performance be a linear combina-
tion of D̄ (W) and Q̄ (W):

J (W) = D̄ (W) + αQ̄ (W)

Then, it is only profitable to perform batching when

1 + (1 − α)
λ

μ
≤ 0

and the optimal W is given by

W∗ =
−
(

1 + λ

μ

)
+
√(

1 + λ

μ

)2

− 2
[

1 + (1 − α)
λ

μ

]

λ

Proof Taking derivatives with respect to W in Eqs. 11 and 7 we get:

dJ
dW

=
λ2W2

2
+ λ

(
1 + λ

μ

)
W +

[
1 + (1 − α)

λ

μ

]

(
1 + λW + λ

μ

)2 (13)

The optimal waiting time W∗ is obtained by solving dJ/dW = 0. This is equivalent to
solving the quadratic equation in the numerator, which yields two roots:

−
(

1 + λ

μ

)
±
√(

1 + λ

μ

)2

− 2
[

1 + (1 − α)
λ

μ

]

λ
(14)

The root we are interested in should be non-negative. Hence, J has a stationary point
for W ≥ 0 if and only if:

1 + (1 − α)
λ

μ
≤ 0 (15)

418 Discrete Event Dyn Syst (2010) 20:409–439

which implies that batching is profitable. This root corresponds to a local minimum
of J since d2 J/dW2 is positive. In fact, this local minimum is also global for W > 0
because the other root in Eq. 14 must be negative. So,

W∗ =
−
(

1 + λ

μ

)
+
√(

1 + λ

μ

)2

− 2
[

1 + (1 − α)
λ

μ

]

λ
(16)

J∗ =
W∗ + 1

μ
+ λW∗

(
W∗

2
+ 1

μ

)
+ λ

μ2 + α
1
μ

1 + λW∗ + λ

μ

(17)

��

In the case where W = 0, i.e., no batching is carried out, the performance is simply:

J0 = 1
μ

+ α/μ

1 + λ/μ
(18)

which is a useful basis for performance comparison. To further explore the benefit of
batching when Eq. 15 holds, let � = J0 − J∗. We normalize the parameters by setting
1/μ = 1, 1/λ = k and let

�̃(k, α) = J0 − J∗

J0
(19)

so that �̃(k, α) is a function of k and α which characterizes the relative optimal
batching benefits.

Figure 4 shows the relative benefit under different k and α settings. The curves are
obtained by choosing different k and α, then calculating J0, W∗, J∗ through Eqs. 16–
18, and finally �̃ in Eq. 19. An interesting observation is that all curves attain their
maximum at around k = 1, which implies that under the setting μ/λ = 1 the batching
scheme performs the best. This observation can be used as a guideline for tuning
the receivers, although the problem itself focuses on the sender. Meanwhile, as α

increases, the benefit is obviously larger since more emphasis is put on the power
side of the objective.

Fig. 4 Relative optimal
message batching benefits
under different k and α

settings

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

k=μ/λ

α=20

α=1

~
Δ

Discrete Event Dyn Syst (2010) 20:409–439 419

Remark 1 For queue-length-based batching, we can use a similar analysis to derive
the optimal batching size under Poisson process assumptions. Interested readers are
referred to Ning and Cassandras (2008).

4 On-line gradient estimation and optimization

The analytical model breaks down when the Markovian assumptions of the previous
section are relaxed. Moreover, in practice network statistics are not known in
advance, which calls for a method designed to determine the optimal batching time
parameter W without explicit knowledge of statistical information on the network
traffic. Therefore, we propose an on-line gradient estimation method for time-based
message batching based on Perturbation Analysis (PA) (Cassandras and Lafortune
1999; Fu and Hu 1997). In particular, we attempt to extract from an observed sample
path not only performance data, but also sensitivity information with respect to
the controllable parameter W. This gradient information will be used to obtain the
optimal value W∗ using a Stochastic Approximation algorithm (Kushner and George
Yin 2003).

Consider the performance objective J (W) in Eq. 12 and, for an appropriately
defined probability space, let LD (W, ω), LQ (W, ω) be sample functions over an
observed sample path denoted by ω and consisting of a fixed number of arrivals,
N, and B batching periods (where B depends on N):

LD (W, ω) = 1
N

N∑

j=1

Dj (W, ω) (20)

LQ (W, ω) = 1
N

B∑

i=1

Pi (W, ω) (21)

In addition, let

L (W, ω) = LD (W, ω) + αLQ (W, ω) (22)

By the ergodicity assumption, J (W) = E [L (W, ω)], hence

dJ (W)

dW
= dE [L (W, ω)]

dW
= lim

�W→0

E [�L (W, ω)]
�W

(23)

4.1 Smoothed perturbation analysis

In the most basic form of PA, known as Infinitesimal Perturbation Analysis (IPA), an
unbiased estimator of dJ/dW is obtained through the sample derivative of L (W, ω)

provided it exists and we are able to change the order of expectation and limit above.
Thus, the IPA estimator is

[
dJ (W)

dW

]

I PA
= dL (W, ω)

dW

However, in our problem, IPA fails to produce an unbiased estimator since the
sample function L (W, ω) is not continuous with respect to W for every possible ω

(a detailed analysis of this can be found in Ning and Cassandras 2008.) Therefore,

420 Discrete Event Dyn Syst (2010) 20:409–439

one cannot exchange the limit and expectation in Eq. 23. This motivates the use of
Smoothed Perturbation Analysis (SPA) (Gong and Ho 1987).

The main idea in SPA is to replace the original sample function L (W, ω) by a
conditional expectation E [L (W, ω) |Z], i.e., set

J (W) = E [L (W, ω)] = E [E [L (W, ω) |Z]]

where Z is called a characterization of a sample path (Gong and Ho 1987) of the
process based on which J (W) is evaluated. Z is defined as a set of random variables
whose value is observed in a sample path, and it must be appropriately selected.
Since, generally, E [L (W, ω) |Z] is “smoother” than L (W, ω), we expect to be able
to interchange the expectation and the limit in Eq. 23, obtaining an SPA estimator:

[
dJ (W)

dW

]

SPA
= lim

�W→0

E [�L (W,�W, ω) |Z]
�W

(24)

where �L (W,�W, ω) is defined as the difference between the sample function
values on the nominal and perturbed sample paths. In the following analysis, we only
consider

�L (W,�W, ω) = L (W, ω) − L (W − �W, ω)

where �W > 0, so we are interested in estimating the left derivative dJ (W) /dW−.
Looking at Eq. 24, we see that the selection of Z is crucial, as a different Z

results in a different form of the SPA estimator. In our case, we take advantage
of the sample path structure described in previous sections. Specifically, a sample
path is decomposed into batching periods based on which all subsequent analysis is
performed. We define Z to include BP information as follows:

Z = {
B, Ii, Ri, AIi , SRi , ni, i = 1, . . . , B

}
(25)

In words, Z contains the information identifying when each BP starts and ends, as
well as the total number of BPs, i.e., B, and the number of sampling events within
each BPi, i.e., ni (but not their occurrence times).

Because in the perturbed sample path, the batching time W is reduced by �W, two
cases can occur. If there does not exist a sampling event during the �W interval, all
the message delivery time and the batching period structure remain intact. However,
if there is a sampling event during the �W interval, the resulting perturbed sample
path will have a different batching period structure, as shown in Fig. 5. Therefore, it is
important to evaluate the probability of such event happening. The following lemma
describes how this probability is computed. Before we proceed with the lemma, we
introduce the following definitions. Define g (·) as the p.d.f. of the random inter-
sampling time X, and gn (·) is the n-fold convolution of g (·):

g1 (x) = g (x)

gn (x) = (g ∗ gn−1) (x) , n ≥ 2

where the convolution operation ∗ is defined as:

(f ∗ g) (x) =
∫ ∞

−∞
f (u) g (x − u) du

Discrete Event Dyn Syst (2010) 20:409–439 421

1PB ′
2PB ′

1A

2S

ξ

1A

ΔW

3S

1BP

2S

Fig. 5 If there exists a sampling event during the �W interval (a), one batching period is split into
two (b)

Also define

Hn (U, P) = g (P) gn−1 (U − P)
∫ U

P g (s) gn−1 (U − s) ds
, n = 2, 3, . . . (26)

H1 (U, P) = 0

We can now proceed with the following lemma:

Lemma 2 Assume that the sampling process is a general renewal process and let X be
an inter-sampling time with c.d.f. G (·) and p.d.f. g (·). Assume that g (x) < ∞ for all
x, and E [X] < ∞. Let ei denote the event that for an arbitrary batching period BPi,
there exists a sampling event in the interval [W − �W, W]. Then, Pr (ei) is of order
O (�W) and is given by

Pr (ei) = E
[
Hni (Ui, Pi)

]
�W + o (�W) (27)

where Ui, Pi are defined as (see Fig. 6):

Pi = SRi − (
AIi + W

)

Ui = SRi − SRi−1

Fig. 6 Computing the
probability that a sampling
event occurs within the �W
interval

Sender

Receiver

iBP

ΔW

iRS

iIA

W iP

iRS

1−iBP

1X2X3X

1−iRS

iU

−1

422 Discrete Event Dyn Syst (2010) 20:409–439

Proof Figure 6 illustrates an occurrence of event ei. Note that the evaluation of Pr (ei)

can be facilitated by conditioning on some random quantities in the sample path. In
particular, for a BP [AIi , SRi], we can condition on SRi−1 , SRi , AIi , as well as ni defined
to be the number of sampling events in the interval (SRi−1 , SRi]; for example, in Fig. 6
we can see that ni = 3. Then, Pr (ei) can be expressed as

Pr (ei) = E
[
Pr
(
ei|SRi−1 , SRi , AIi , ni

)]
(28)

In simple terms, we fix two sampling events SRi−1 and SRi which delimits the half-
open interval (SRi−1 , SRi]. Due to the renewal property of the sampling process,
sampling events outside this interval are independent. In addition to SRi−1 and SRi ,
there are ni − 1 additional sampling events, whose occurrence time is random within
this interval. We first notice that if ni = 1, i.e., there is no such “movable” sampling
event, so that

Pr
(
ei|SRi−1 , SRi , AIi , ni = 1

) = 0

If ni > 1, given �W, there is a non-zero probability that one such event will be
within the �W interval. To compute this conditional probability, we notice that no
additional sampling event can occur during Pi, otherwise the batching period would
have ended earlier than SRi . Let X1 = SRi − SRi−1 and let X j, j = 2, . . . , ni, be the
remaining inter-sampling intervals. Therefore, when ni > 1,

Pr
(
ei|SRi−1 ,SRi ,AIi , ni

)= Pr

⎛

⎝X1 ≤ Pi + �W|X1 > Pi,

ni∑

j=1

X j = Ui

⎞

⎠

= lim
�U↓0

Pr

⎛

⎝X1 ≤ Pi+�W|X1 > Pi, Ui <

ni∑

j=1

X j ≤Ui+�U

⎞

⎠

= lim
�U↓0

Pr
(
Pi <X1 ≤ Pi+�W,Ui−X1<

∑ni
j=2 Xj ≤Ui−X1+�U

)

Pr
(

X1 > Pi, Ui−X1 <
∑ni

j=2 X j ≤Ui − X1+�U
)

Because X1 and X j, j = 2, . . . , ni, are all mutually independent, using the total
probability theorem on both denominator and numerator,

Pr
(
ei|SRi−1 , SRi , AIi , ni

) = lim
�U↓0

∫ Pi+�W
Pi

g (s)
∫ Ui−s+�U

Ui−s gni−1 (t) dtds
∫ Ui

Pi
g (s)

∫ Ui−s+�U
Ui−s gni−1 (t) dtds

When �U ↓ 0, the mean-value theorem yields

Pr
(
ei|SRi−1 , SRi , AIi , ni

)

= lim
�U↓0

g (Pi) gni−1 (Ui − Pi) �W�U + o (�W)�U + o (�U) �W
∫ Ui

Pi
g (s) gni−1 (Ui − s)�Uds

= g (Pi) gni−1 (Ui − Pi)�W
∫ Ui

Pi
g (s) gni−1 (Ui − s) ds

+ o (�W)

Discrete Event Dyn Syst (2010) 20:409–439 423

Since Ui, Pi, ni do not depend on �W and recalling Eq. 28, we get

Pr (ei) = E
[
Hni (Ui, Pi)

]
�W + o (�W) ∼ O (�W)

��

In Lemma 2 we found that Pr (ei) ∼ O (�W). Let ēi be ei’s complement. Since
we have assumed that the inter-sampling times are mutually independent, ei and e j,

j �= i, are independent, hence the probability that two or more such events occurring
is of higher order than O (�W), so we set Pr

(
eie j · · ·

) = o (�W). By conditioning on
all possible combinations of ei and ēi, i = 1, . . . , B, and using the total probability
theorem, we obtain:

E [�L (W,�W, ω) |Z]

= E [�L (W, �W, ω) |ēi, i = 1, . . . , B, Z] Pr (ēi, i = 1, . . . , B|Z)

+
B∑

i=1

E
[
�L (W, �W, ω) |ei, ē j, j �= i, Z

]
Pr
(
ei, ē j, j �= i|Z)

+
B∑

i=1

B∑

j=1, j�=i

E
[
�L (W, �W, ω)|eie j, ēk, k �= i, k �= j, Z

]
Pr
(
eie j, ēk, k �= i, k �= j|Z)

+
B∑

i=1

B∑

j=1, j�=i

B∑

k=1,k �=i,k �= j

. . . + E [�L (W, �W, ω) |ei, i=1...B, Z] Pr (e1e2...eB|Z)

= E [�L (W, �W, ω) |ēi, i = 1, . . . , B, Z] Pr (ēi, i = 1, . . . , B|Z)

+
B∑

i=1

E
[
�L (W,�W, ω) |ei, ē j, j=1, . . . , B, j �= i, Z

]

× Pr
(
ei, ē j, j=1, . . . , B, j �= i|Z)+ o (�W) (29)

This long equation simply states that, conditioned on Z, �L (W,�W, ω) can be
decomposed by BPs and events ei for all i. In the first term

E [�L (W,�W, ω) |ēi, i = 1...B, Z]

is the contribution to �L when no ei event occurs. The second term is a sum over all
BPs, where

E
[
�L (W,�W, ω) |ei, ē j, j = 1, . . . , B, j �= i, Z

]

is the contribution when only ei occurs in the ith BP but no other e j, j �= i occurs.
The third term is a double sum of the contributions when only two events, ei and e j,
occur, and so on. By the mutual independence of the ei events, terms other than the
first two are of o (�W), which results in Eq. 29. Now, since we are only interested
in B + 1 conditions, i.e., no ei ever occurs and exactly one ei occurs over B BPs, we
define for notational simplicity:

ē � {ēi, i = 1...B} No ei occurs in any BPi

êi �
{
ei, ē j, j = 1, . . . , B, j �= i

}
Only ei occurs in some BPi

424 Discrete Event Dyn Syst (2010) 20:409–439

Then, to determine the SPA estimator, we need to evaluate the following
four quantities: (i) Pr

(
êi|Z

)
, (ii) Pr (ē|Z), (iii) E

[
�L (W,�W, ω) |êi, Z

]
, and (iv)

E [�L (W, �W, ω) |ē, Z]. To compute Pr
(
êi|Z

)
we can directly use the result ob-

tained in Lemma 2:

Pr
(
êi|Z

) = Hni (Ui, Pi) �W + o (�W) (30)

where Ui, Pi and ni are all known given Z. Since the probability of two or more ei

events occurring is of o (�W), we conclude that

Pr (ē|Z) = 1 −
B∑

i=1

Pr
(
êi|Z

)+ o (�W)

= 1 −
B∑

i=1

Hni (Ui, Pi) �W + o (�W)

The following two sections will derive E
[
�L (W, �W, ω) |êi, Z

]
and

E [�L (W, �W, ω) |ē, Z] for both average delay and average preamble metrics.

4.1.1 SPA for the average delay metric

Define �LD (W, �W, ω) as the difference in the delay metric defined in Eq. 20:

�LD (W,�W, ω) = LD (W, ω) − LD (W − �W, ω)

We first focus on evaluating E [�LD (W,�W, ω) |ē, Z]. First, we know that if event
ei does not occur in BPi, there can be no change in the delay of any message in BPi.
Therefore,

E [�LD (W,�W, ω) |ē, Z] = 0 (31)

The more interesting case lies in the evaluation of E
[
�LD (W, �W, ω) |êi, Z

]
. We

illustrate this case through an example as shown in Fig. 7. Clearly, batching periods
prior to BPi are not affected by event ei. However, because sampling event SRi−1 (not
measurable w.r.t. Z) occurs in the interval [W − �W, W], BPi ends prematurely at
SRi−1 resulting in a shortened BP′

i,1 (see Fig. 7b). Then, a new batching period BP′
i,2

is initiated by a message AI′
i,2

which originally lies within BPi in the nominal sample
path. We can see that a new batching period structure evolves in the perturbed
sample path with arrival and sampling events that are not necessarily the critical
events of the nominal sample path. Finally, notice that in the perturbed sample path,
at BP′

i,4, the initializing event AI′
i,4

coincides with AIi+2 , which is a critical arrival
event in the nominal sample path. This concludes the effect of the perturbation due
to ei because from BP′

i,4 (BPi+2) onward the perturbed sample path is identical to
the nominal sample path; therefore, the delays of all messages for BPi+2 onward are
unaffected. To summarize:

1. Event êi has no effect on the BP structure of the sample path prior to BPi.
2. Event êi results in a different BP structure from BPi onward.
3. When in the perturbed sample path, an arrival event initializing some BP is also

a critical arrival in the nominal sample path, the perturbed and nominal sample
path BPs are synchronized and no further difference exists.

Discrete Event Dyn Syst (2010) 20:409–439 425

iBP 1+iBP 2+iBP

iIA

ΔW ΔW

1,iPB ′ 2,iPB ′ 4,iPB ′
1,iIA ′ 2,iIA ′ 4,iIA ′

1,iRS ′ 2,iRS ′

ξ ΔW

3,iPB ′
3,iIA ′

3,iRS ′

ΔW

1+iIA
2+iIA

iRS
1+iRS

1−iRS

ΔW

1−iRS

1−iBP

1−iIA

ΔW

1−iRS

1−iBP

1−iIA

Fig. 7 a An example of a sample path with �W perturbation intervals overlaid. Event ei occurs in
BPi. b The perturbed sample path of a. Notice the change in busy period structure

Therefore, the key to evaluating �LD (W,�W, ω) given êi is to identify the new
BP structure until synchronization. We can see that this evaluation will require the
following quantities: {A j, j ≥ Ii} and {S j, j ≥ Ri}. Note that we may not need all
these quantities, depending on whether synchronization takes place or not before
the end of the observed sample path. Now define a set Zi as follows:

Zi = {
A j, j ≥ Ii

} ∪ {
S j, j ≥ Ri

}
(32)

which is called a sub-characterization. Therefore, by conditioning on Zi, we have:

E
[
�LD (W,�W, ω) |êi, Z

] = E
[
E [�LD (W,�W, ω) |Zi] |êi, Z

]
(33)

With Zi given, we can now reconstruct the BP structure resulting from event ei and
hence evaluate �LD (W, �W, ω) above. Let {I′

i,k, k ≥ 1} and {R′
i,k, k ≥ 1} be the

index sets of critical events in the new batching periods on the perturbed path. Their
values can be obtained in a recursive fashion similar to Eqs. 1–3. To initialize we
have:

I′
i,1 = Ii (34)

SR′
i,1

= AIi + (W − �W) + ξ (35)

426 Discrete Event Dyn Syst (2010) 20:409–439

for some ξ ∈ [0,�W]. Moreover, the indices of the sampling event ending the kth BP
and of the arrival event starting the (k + 1)th BP in the perturbed path are given by

R′
i,k = min

j

{
j : S j > AI′

k
+ W

}
, k ≥ 2 (36)

I′
i,k+1 = min

j

{
A j : A j > SR′

i,k

}
, k ≥ 1 (37)

This procedure is carried out through the
[
l(i) − 1

]
th batching period, where BP′

i,l(i)
is the BP synchronized to the nominal sample path (if one exists). Therefore, AI′

i,l(i)

coincides with some AI j in the nominal sample path, i.e.,

I′
i,l(i) ∈ {

I j : j > i
}

(38)

as illustrated in Fig. 7 with Ii+2 = I′
i,4. The affected messages are thus {A j : Ii ≤ j <

I′
i,l(i)}. Denote by D′

j (W, �W, ω) the new delay of the jth message. Similar to Eq. 4,
it is easy to see that

D′
j (W,�W, ω) = min

k

{
SR′

i,k
: SR′

i,k
> A j

}
− A j, Ii ≤ j < I′

i,l(i) (39)

Note that, D′
j (W, �W, ω) depends on �W. However, it is easy to see that only

messages in BP′
i,1 are affected because SR′

i,1
contains the effect of �W and ξ . Since

we are interested in the limiting behavior as �W → 0 in Eq. 24, hence ξ → 0, in the
limit we have

SR′
i,1

= AIi + W (40)

Therefore, we define

D′
j (W, ω) = lim

�W↓0
D′

j (W, �W, ω) , Ii ≤ j < I′
l(i) (41)

whose value in the estimator is actually exactly the same as D′
j (W,�W, ω) but using

Eq. 40 for SR′
i,1

instead. Therefore, given ei, ē j, j = 1, . . . , B, j �= i, Zi, the difference
in the delay metric is

E
[
�LD (W,�W, ω) | êi, Zi, Z

] = 1
N

N∑

j=1

[
Dj (W, ω) − D′

j (W,�W, ω)
]

= 1
N

∑

Ii≤ j<I′
i,l(i)

[
Dj (W, ω) − D′

j (W,�W, ω)
]

(42)

where D′
j (W,�W, ω) is computable from the observed sample path data through

Eqs. 39 and 34–38.
We are now in a position to prove the following theorem:

Theorem 2 Let JD (W) = E [LD (W, ω)] and assume that (i) E [X] < ∞ where X is
the inter-sampling time, and (ii) g (·) < ∞ within its whole support region. An unbiased
SPA estimator of the left derivative dJD (W) /dW− is given by:

[
dJD (W)

dW−

]

SPA
= 1

N

B∑

i=1

∑

Ii≤ j<I′
l(i)

[
Dj (W, ω) − D′

j (W, ω)
]

Hni (Ui, Pi) (43)

Discrete Event Dyn Syst (2010) 20:409–439 427

Proof By definition and from Eq. 29,

dJD (W)

dW− = lim
�W↓0

E [�LD (W, �W, ω)]
�W

= lim
�W↓0

E [E [�LD (W,�W, ω) |Z]]
�W

where Z is the characterization defined in Eq. 25: Z = {
B, Ii, Ri, AIi , SRi , ni, i =

1, . . . , B}. Given Z, the BP structure is known. Recalling Eq. 29, we have:

E [�LD (W, �W, ω) |Z] = E [�LD (W,�W, ω) |ē, Z] Pr (ē|Z)

+
B∑

i=1

E
[
�LD (W,�W, ω) |êi, Z

]
Pr
(
êi, Z

)+ o (�W)

Since the first term is zero due to Eq. 31,

E [�LD (W,�W, ω) |Z] =
B∑

i=1

E
[
�LD (W, �W, ω) |êi, Z

]
Pr
(
êi|Z

)+ o (�W)

and we have

dJD (W)

dW− = lim
�W↓0

1
�W

E

[
B∑

i=1

E
[
�LD (W,�W, ω) |êi, Z

]
Pr
(
êi|Z

)+ o (�W)

]

(44)

To derive the SPA estimator, we need to exchange the order of limit and expecta-
tion. Since expectation is an integral, Lebesgue’s dominated convergence theorem
provides a sufficient condition that allows the two limit processes to commute.
Therefore, we need to show that there exists ε > 0 such that

E

{

sup
0≤�W≤ε

∣∣∣∣∣
1

�W

B∑

i=1

E
[
�LD (W, �W, ω) |êi, Z

]
Pr
(
êi|Z

)+ o (�W)

∣∣∣∣∣

}

< ∞ (45)

In Lemma 2 we have shown that Pr
(
êi|Z

) ∼ O (�W) , that is, there exists K1 > 0
and ε0 > 0 such that when �W < ε0, Pr

(
êi|Z

) ≤ K1�W. From Eq. 33 we know that
a sufficient condition for

∣∣E
[
�LD (W, �W, ω) |êi, Z

]∣∣ < ∞
is that, for all possible Zi,

∣∣E
[
�LD (W, �W, ω) |êi, Zi, Z

]∣∣ < ∞
where, recalling Eq. 42,

E
[
�LD (W, �W, ω) |êi, Zi, Z

] = 1
N

∑

Ii≤ j<I′
i,l(i)

[
Dj (W, ω) − D′

j (W, �W, ω)
]

Since a sample path contains a finite number N of messages and B batching periods,
we have

∣∣∣Dj (W, ω) − D′
j (W, �W, ω)

∣∣∣ < SRB

where E
[
SRB

] = BE [X] < ∞ and does not depend on �W. Let E
[
SRB

] =
K2 (N) < ∞. In addition,

I′
i,l(i) − Ii ≤ N

428 Discrete Event Dyn Syst (2010) 20:409–439

Therefore,
∣∣E

[
�LD (W,�W, ω) |êi, Z

]∣∣ ≤ K2 (N) < ∞
and it follows that

1
�W

∣∣E
[
�LD (W, �W, ω) |êi, Z

]
Pr
(
êi|Z

)∣∣ ≤ K1 K2 (N)

Let R (�W) be a �W-dependent term of order o (�W). There exists some εi and
constant C < ∞ such that for all �W < εi, |R (�W)| ≤ C�W. Let ε = mini εi, and
since B ≤ N, we obtain,

E

{

sup
0≤�W≤ε

∣∣∣∣∣

B∑

i=1

E
[
�LD (W,�W, ω) |êi, Z

]
H (Ui, Pi) + o (�W)

�W

∣∣∣∣∣

}

≤ NK1 K2 (N) + C < ∞
Using the dominated convergence theorem, we have from Eqs. 44 and 42:

dJD (W)

dW− = E

[
B∑

i=1

lim
�W↓0

E
[
�LD (W,�W, ω) |êi, Z

]
Pr
(
êi|Z

)
]

= E

⎡

⎣
B∑

i=1

lim
�W↓0

EZi

⎡

⎣ 1
N

∑

Ii≤ j<I′
i,l(i)

[
Dj (W, ω) − D′

j (W, �W, ω)
]
⎤

⎦Hni (Ui, Pi)

⎤

⎦

where we use the notation EZi to remind ourselves that each expectation within
the outer sum is over the sub-characterization Zi. Using the dominated convergence
theorem once again, we can move the limit inside this expectation and make use of
Eq. 41 to get

dJD (W)

dW− = E

⎧
⎨

⎩

B∑

i=1

EZi

⎡

⎣ 1
N

∑

Ii≤ j<I′
i,l(i)

[
Dj (W, ω) − D′

j (W, ω)
]
⎤

⎦ Hni (Ui, Pi)

⎫
⎬

⎭
(46)

Note that Hni (Ui, Pi) does not depend on Zi (which includes arrival and sampling
events after BPi). Moreover, E [�LD (W,�W, ω) |ei, Zi, Z] does not depend on
events in Zi\Z (i.e., the arrival and sampling events before BPi). Therefore, we can
rewrite the expectation in Eq. 46 as

dJD (W)

dW− = E

⎧
⎨

⎩
1
N

B∑

i=1

∑

Ii≤ j<I′
i,l(i)

[
Dj (W, ω) − D′

j (W, ω)
]

Hni (Ui, Pi)

⎫
⎬

⎭

where the expectation is over all random variables in Z and Z1, . . . , ZB. The quantity
inside the expectation is the SPA estimator defined in Eq. 43, which is, therefore,
unbiased. ��

4.1.2 SPA for the average preamble metric

Define �LQ (W,�W, ω) as the difference in the preamble metric defined in Eq. 21:

�LQ (W, �W, ω) = LQ (W, ω) − LQ (W − �W, ω)

Discrete Event Dyn Syst (2010) 20:409–439 429

Recall from Eq. 29 that:

E
[
�LQ (W,�W, ω) |Z] = E

[
�LQ (W,�W, ω) |ē, Z

]
Pr (ē|Z)

+
B∑

i=1

E
[
�LQ (W, �W, ω) |êi, Z

]
Pr
(
êi|Z

)+ o (�W)

(47)

Again, we first focus on evaluating E
[
�LQ (W,�W, ω) |ē, Z

]
. First, we know that

if event ei does not occur in BPi, there will be no change in the BP structure.
Therefore, the only difference is that in each of the B batching periods, the preamble
time is extended by �W, i.e.,

E
[
�LQ (W,�W, ω) |ē, Z

] = − B�W
N

(48)

Next, we evaluate E
[
�LQ (W,�W, ω) |êi, Z

]
for each BPi. We illustrate this case

through the example shown in Fig. 7. When ei occurs, we need to reconstruct a
segment of new BPs until synchronization, and then calculate the difference. This
reconstruction is the same as in the previous subsection. Therefore, we choose the
same sub-characterization Zi:

Zi = {
A j, j ≥ Ii

} ∪ {
S j, j ≥ Ri

}

and by conditioning on Zi we get:

E
[
�LQ (W, �W, ω) |êi, Z

] = E
{

E
[
�LQ (W, �W, ω) | êi, Zi

] | Z
}

(49)

With Zi given, the reconstruction is done using Eqs. 34–38. Next, we evaluate
�LQ (W,�W, ω) in Eq. 49. First, notice that ei only affects BPs beginning with
BPi and until synchronization takes place at BP′

i,l(i) in the perturbed sample path
when it coincides with BPm(i) in the nominal sample path. From BPi to BPm(i)

(corresponding to from BP′
i,1 to BP′

i,l(i) in the perturbed sample path), due to the
reconstruction, we need to evaluate the new preamble time as follows:

P′
i, j (W,�W, ω) = SR′

i, j
− AI′

i, j
+ W − �W, 1 ≤ j < l (i)

In the limit when �W → 0, we have

P′
i, j (W, ω) = SR′

i, j
− AI′

i, j
+ W, 1 ≤ j < l (i) (50)

Therefore, from BPi to BPm(i) the difference in preamble time is:

m−1∑

k=i

Pi −
l(i)−1∑

k=1

P′
i,k (W,�W, ω)

while from BP1 to BPi−1 and from BPm(i) to BPB, the difference in the preamble
time is �W for each BP, totaling:

− (i + B − m (i))�W

430 Discrete Event Dyn Syst (2010) 20:409–439

so that

E
[
�LQ (W,�W, ω) | êi, Zi, Z

]

= 1
N

[

− (i + B − m (i))�W +
m(i)−1∑

k=i

Pi (W, ω) −
l(i)−1∑

k=1

P′
i,k (W, �W, ω)

]

(51)

Theorem 3 Let JQ (W) = E
[
LQ (W, ω)

]
and assume that (i) E [X] < ∞ where X is

the inter-sampling time, and (ii) g (·) < ∞ within its whole support region. An unbiased
SPA estimator of the left derivative dJQ (W) /dW− is given by:

[
dJQ (W)

dW−

]

SPA
= 1

N

B∑

i=1

{[
m(i)−1∑

k=i

Pi (W, ω) −
l(i)−1∑

k=1

P′
i,k (W, ω)

]

Hni (Ui, Pi) − 1

}

(52)

Proof By definition and from Eq. 29,

dJQ (W)

dW− = lim
�W↓0

E
[
�LQ (W, �W, ω)

]

�W
= lim

�W↓0

E
[
E
[
�LQ (W, �W, ω) |Z]]

�W

where Z is the characterization defined in Eq. 25 Z = {
B, Ii, Ri, AIi , SRi , ni, i =

1, . . . , B}. Similar to Theorem 2, we have to show that

E

{

sup
0≤�W≤ε

∣∣∣∣∣
E
[
E
[
�LQ (W,�W, ω) |Z]]

�W

∣∣∣∣∣

}

< ∞

in order to switch the order of limit and expectation. Since given Z, the BP structure
is known, we have:

E
[
�LQ (W,�W, ω) |Z] = E

[
�LQ (W, �W, ω) |ē, Z

]
Pr (ē|Z)

+
B∑

i=1

E
[
�LQ (W, �W, ω) |êi, Z

]
Pr
(
êi|Z

)+ o (�W)

In Lemma 2 we have shown that Pr
(
êi|Z

) ∼ O (�W) , that is, there exists K0 > 0
and ε0 > 0, such that when �W < ε0, Pr

(
êi|Z

) ≤ K0�W. The first term inside the
supremum is:

E
[
�LQ (W, �W, ω) |ē, Z

]
Pr (ē|Z) = − B�W

N

[

1 −
B∑

i=1

Pr
(
êi|Z

)
]

= − B�W
N

+ o (�W)

Clearly,

1
�W

E
[
�LQ (W, �W, ω) |ē, Z

]
Pr (ē|Z) = − B

N
+ o (�W)

�W

Discrete Event Dyn Syst (2010) 20:409–439 431

is bounded as �W → 0 since B ≤ N. Utilizing the sub-characterization Zi, the
second term becomes

B∑

i=1

E
[
�LQ (W, �W, ω) |êi, Z

]
Pr
(
êi|Z

)

=
B∑

i=1

E
[
E
[
�LQ (W,�W, ω) |êi, Z

] |Zi
]

Pr
(
êi|Z

)

where, from Eq. 51,

E
[
�LQ (W,�W, ω) | êi, Zi, Z

]

= 1
N

[

− (i + B − m (i))�W +
m(i)−1∑

k=i

Pi (W, ω) −
l(i)−1∑

k=1

P′
i,k (W, �W, ω)

]

For any Zi, this is bounded in a sample path defined by a finite number N of
messages. To see this, consider an arbitrary Pi (W, ω) which cannot exceed SRB where
E
[
SRB

] = BE [X] < ∞ and does not depend on �W. Let E
[
SRB

] = K2 (N) < ∞,
so that

1
N

∣∣∣∣∣

m(i)−1∑

k=i

Pi (W, ω) −
l(i)−1∑

k=1

P′
i,k (W,�W, ω)

∣∣∣∣∣
≤ 1

N
NK2 (N) = K2 (N)

Also, since 1 < i < m (i) ≤ B ≤ N, we have B − (m (i) − i) < B ≤ N. Therefore,

1
N

|(i + B − m (i)) �W| ≤ 1
N

(N�W) = �W

for all possible Zi, hence,

E
[
�LQ (W,�W, ω) | êi, Z

] ≤ −�W + K2 (N)

Let R (�W) be a �W-dependent term of order o (�W). There exists some εi and a
constant C < ∞ such that for all �W < εi, R (�W) ≤ C�W. Let ε = mini εi, hence,

E

{

sup
0≤�W≤ε

1
�W

∣∣∣∣∣
E
[
�LQ (W,�W, ω) |ē, Z

]
Pr (ē|Z)

+
B∑

i=1

E
[
�LQ (W, �W, ω) |êi, Z

]
Pr
(
êi|Z

)+ o (�W)

∣∣∣∣∣

}

≤ E
{

sup
0≤�W≤ε

∣∣∣∣−
B
N

+ NK1 [K2 (N) − �W] + o (�W)

�W

∣∣∣∣

}

≤ −1 + NK1 [K2 (N) + ε] + C < ∞
Invoking the dominated convergence theorem twice similar to Theorem 2, we have

dJQ (W)

dW− = E

{

− B
N

+ 1
N

B∑

i=1

EZi

[
m(i)−1∑

k=i

Pi (W, ω)−
l(i)−1∑

k=1

P′
i,k (W, �W, ω)

]

Hni (Ui, Pi)

}

432 Discrete Event Dyn Syst (2010) 20:409–439

As in Theorem 2, note that Hni (Ui, Pi) does not depend on Zi (i.e., the arrival and
sampling events after BPi), and E

[
�LQ (W,�W, ω) |ei, Zi, Z

]
does not depend on

events in Zi\Z (i.e., the arrival and sampling events before BPi). Thus, we can rewrite
the expectation in Eq. 46 as:

dJQ (W)

dW− = E

{
1
N

B∑

i=1

[(
m(i)−1∑

k=i

Pi (W, ω) −
l(i)−1∑

k=1

P′
i,k (W, �W, ω)

)

Hni (Ui, Pi) − 1

]}

where the quantity inside the expectation is the SPA estimator (52) which is,
therefore, unbiased. ��

4.2 Implementation of SPA

The SPA gradient estimator algorithm is described as follows:

1. Observe a sample path containing a fixed number N of arrivals and B batching
periods (B depends on N).

2. For each BPi, initialize I′
i,1 with Eq. 34 and S′

Ri,1
with Eq. 40, and record ni.

(a) Compute Hni (Ui, Pi) using Eq. 26, where Ui = SRi − SRi−1 (except for U1 =
SR1) and Pi = SRi − AIi + W.

(b) Use Eqs. 36–37 to partially reconstruct the perturbed sample path until
synchronization (38) is met.

(c) Use Eq. 41 to calculate the perturbed delay D′
j, j = Ii ≤ j < I′

l(i).

(d) Use Eq. 50 to calculate the perturbed preamble P′
i,k, k = 1, . . . , l (i).

3. Obtain the SPA derivative estimate through Eqs. 43, 52.

This SPA estimation algorithm requires information from the whole observed
sample path, which may require substantial memory and may not be feasible for
sensor nodes. Therefore, we propose a serialized version which uses less storage:

1. Initialization: n := 0, i := 1, j := 1, D = 0, Q = 0. System buffer is empty.
2. Recording events {Ak} and {Sk} as time proceeds. When one BP’s events are

recorded, j := j + 1;
3. For BPi, reconstruct the partial sample path. If m (i) = j, that is, the synchro-

nization occurs at BPj, then:

(a) Compute Hni (Ui, Pi) using Eq. 26.
(b) Calculate the perturbed delay D′

j, j = Ii ≤ j < I′
l(i).

(c) Calculate the perturbed preamble P′
i,k, k = 1, . . . , l (i).

(d) Accumulate: D := D + 1
N Hni (Ui, Pi)

{∑
Ii≤ j<I′

l(i)

(
Dj (W, ω)−D′

j (W, ω)
)}

(e) Accumulate: Q := Q + 1
N

{[∑m−1
k=i Pi−∑l(i)−1

k=1 P′
i,k (W, ω)

]
Hni (Ui, Pi)−1

}

(f) i := i + 1 and remove BPi from the buffer (delete the corresponding events
from memory).

4. If N messages are observed, output
[

dJQ(W)

dW

]−
SPA

= Q,
[

dJD(W)

dW

]−
SPA

= D.

In this serialized algorithm, instead of recording the whole sample path in mem-
ory, accumulator variables D and Q are used, allowing the algorithm to “forget”

Discrete Event Dyn Syst (2010) 20:409–439 433

the BPs that have been processed. Hence only data from a few BPs are kept in the
system memory instead of the whole N-message sample path.

In practice, both sender and receiver partially observe the sample path on their
own. However, whichever party carries out the computation of the SPA derivative
estimates needs complete sample path information. We assume that each message
in the sender’s buffer is time-stamped by the sender. After the transmission of a
batch, the receiver obtains all information needed to compute the estimate. The
result can be transmitted back to sender, i.e. piggy-backed in hand-shake during the
next transmission. How the sample path information is exchanged between sender
and receiver does not affect the computation and the result of the SPA estimates.

4.3 Optimization using stochastic approximation algorithm

Since the combined performance index is Eq. 12, obviously, an unbiased SPA
estimator of dJ(W)/dW− is given by

[
dJ (W)

dW−

]

SPA
=
[

dJD (W)

dW−

]

SPA
+ α

[
dJQ (W)

dW−

]

SPA
(53)

Assuming J(W) is a differentiable function with respect to W, we have the derivative
of J (W) equal its left derivative:

dJ (W)

dW
= dJ (W)

dW−

so Eq. 53 is also an unbiased estimator of dJ (W) /dW. Using the gradient estimator
(53), we use a Stochastic Approximation (SA) algorithm (Kushner and George Yin
2003) of the form

Wk+1 = �[a,b]

[

Wk − β

kδ

[
dJ (Wk)

dW−
k

]

SPA

]

, k ≥ 0 (54)

with W0 being an initial point and �[a,b] [x] is a projection of x onto interval
[
a, b

]
.

The parameters β and δ in Eq. 54 need to be carefully chosen to ensure convergence
and regulate convergence speed. The guidelines are: (i) the algorithm converges
for β > 0 and 0.5 < δ ≤ 1; (ii) larger β and smaller δ will result in fast response
but also higher variance, while smaller β and larger δ will have a slower response.
In each step of the algorithm, we observe a sample path with N messages, obtain[
dJ (Wk) /dW_

k

]
SPA through the SPA algorithm, and use Eq. 54 to obtain Wk+1. By

the fact that Eq. 53 is unbiased, Wk converges to W∗ where dJ (W∗) /dW∗ = 0.

Theorem 4 Assume that there exists a unique W∗ ∈ [
a, b

]
where dJ (W∗) /dW∗ = 0.

Then, Wk converges to W∗.

Proof The convergence of the Stochastic Approximation algorithm has been studied
extensively in Kushner and George Yin (2003). In our case, we invoke a simpler
convergence theorem which is proven in Gokbayrak and Cassandras (2001). The
theorem (Theorem 6.1 in Gokbayrak and Cassandras 2001) states that, if all six
convergence criteria, denoted by H1, H2, A1, A2, E1, E2 are satisfied, the Stochastic
Approximation algorithm converges. These criteria are:

434 Discrete Event Dyn Syst (2010) 20:409–439

H1 There exists a unique optimal in [a, b].
H2 Define h (W) = dJ(W)/dW which is the true derivative. sup[a,b] ‖h (W)‖ < ∞
A1 Define ηk = β/kδ ,

∑∞
n=1 ηk = ∞ a.s.

A2
∑∞

n=1 η2
k < ∞ a.s.

E1 Define εk = [
dJ(Wk)/dW−

k

]
SPA − h (Wk) which is the estimation error.∑∞

n=1 ηk
∥∥E

[
εk+1|�k

]∥∥ < ∞ where {�k} is a filtration generated by the sample
path.

E2 E
[
ε2

k+1|�k
]

< σ 2
k where {σk} is a sequence adapted to {�k} such that∑∞

n=1 η2
kσ

2
k < ∞ a.s.

The assumption of the existence of a stationary point is H1 and thus is already
established. Using notations h (W) and εk, Eq. 54 is thus rewritten as:

Wk+1 = �[a,b]

[
Wk − β

kδ
(h (Wk) + εk)

]
, k ≥ 0

Based on the proof of Theorem 2 and 3, we know that h (Wk) is bounded (H2). For
simplicity, we also define ηk = β/kδ . Since 0.5 < δ ≤ 1, we have

∑∞
k=1 ηk = ∞ (A1)

and
∑∞

k=1 η2
k < ∞ (A2). Further, since our SPA estimator is unbiased, E [εk] = 0

(E1). The error variance E
[
ε2

k

]
is also bounded so that

∑∞
k=1 η2

k E
[
ε2

k

]
< ∞ (E2).

Define a Lyapunov function U (W) = ‖W − W∗‖2, with all criteria H1, H2, A1, A2,
E1, E2 all satisfied. Then, Theorem 6.1 in Gokbayrak and Cassandras (2001) states
that Wk → W∗ w. p. 1. ��

0 1 2 3 4
1

1.5

2

2.5

W

A
vg

.
D

e
la

y(
s)

 p
e

r
M

e
ss

a
g

e

Average

Theoretical

1 2 3 4

0.1

0.15

0.2

W

A
vg

.
P

re
a

m
b

le
(s

)
p

e
r

M
e

ss
a

g
e

Average

Theoretical

1 2 3 4

0.3

0.35

0.4

0.45

0.5

D
e

ri
va

tiv
e

Theoretical

SPA Estimator

1 2 3 4

−0.15

−0.1

−0.05

WW

D
e

ri
va

tiv
e

Theoretical

SPA Estimator

Fig. 8 SPA results with λ = 3, μ = 1, 0 ≤ W ≤ 4

Discrete Event Dyn Syst (2010) 20:409–439 435

Fig. 9 Optimization using
Stochastic Approximation
Algorithms. In the trajectory,
not all iteration points are
shown. The first 10 iteration
points are shown. After that,
points are shown every 10
iterations

0 1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

J

W

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

W

d
J
/d

W

Theoretical Value
Optimization Trajectory

Theoretical Value
Optimization Trajectory

5 Numerical results

5.1 Poisson arrival and sampling processes

First, we consider the case where the arrival and sampling processes are Poisson
with rate λ and μ, respectively so as to compare our results with the analysis of
Section 3. Figure 8 compares the performance metrics estimated with the analytical
expressions (7), (11) and the SPA estimates obtained through Eqs. 43 and 52 with the
derivatives obtained in Eq. 13, as well as with brute-force finite difference estimates,
including the 95% confidence intervals. It is worth pointing out that the average delay
derivative has a large variance but closely matches the theoretical value.

Figure 9 shows a typical trajectory of the optimization process using the SA
algorithm. Here, we use the objective function (12) with α = 20 and choose β = 6
and δ = 1 as the parameter values in Eq. 54. We performed 300 iterations and we
note that W is already in the vicinity of the optimal point after approximately 100
iterations, as shown in Fig. 10.

Fig. 10 Convergence of W

0 50 100 150 200 250 300
0

2

4

6

8

10

iterations

W

436 Discrete Event Dyn Syst (2010) 20:409–439

Fig. 11 A Markov Modulated
Poisson Process with two
states: ON/OFF

ON OFF ON

ON OFF

λ01

λ10

λ

5.2 Markov modulated poisson arrival process and uniformly distributed
sampling process

One feature of the SPA gradient estimator is that it does not depend on the arrival
process distribution, which allows the controller to adapt to different network traffic
patterns. In this section, we use a Markov Modulated Poisson Process (MMPP) to
model bursty data traffic in a WSN. A MMPP consists of an underlying continuous
time Markov process {Xt; t ≥ 0} and a function λ (Xt) which specifies the arrival rate
in each state. One simple MMPP example is a Poisson process with exponentially
distributed on-off durations.

1 2 3 4

1.5

2

2.5

3

W

A
vg

. D
el

ay
(s

) p
er

 M
es

sa
ge

1 2 3 4

0.3

0.4

0.5

W

A
vg

. P
re

am
bl

e(
s)

 p
er

 M
es

sa
ge

Average

1 2 3 4
0.58

0.6

0.62

0.64

0.66

W

D
er

iv
at

iv
e

Finite Difference

SPA Estimator

1 2 3 4

−0.2

−0.15

−0.1

−0.05

W

D
er

iv
at

iv
e

Finite Difference

SPA Estimator

Average

Fig. 12 SPA results with MMPP arrival process and Gamma sampling process

Discrete Event Dyn Syst (2010) 20:409–439 437

Fig. 13 On-line optimization
with arrival process being a
Markov Modulated Poisson
Process and the sampling
process having a Gamma
distribution for inter-sampling
time. The red curve of J(W) is
generated by exhausive
Monte-Carlo simulation

0 2 4 6 8 10
8

9

10

11

12

13

W

J

Trajectory
J

Figure 11 is an illustration of the on-off MMPP. Denote the transition rate of the
Markov chain by λ10 and λ11 as shown in Fig. 11, and by λ the arrival rate during ON
period. The steady state distribution of the Markov chain is πON = λ01 (λ10 + λ01)

−1

and πOF F = λ10 (λ10 + λ01)
−1. It is then straightforward to generate a sample path

of this process. In this example we set λ = 1, λ10 = 0.2, λ01 = 0.022 so the ON-OFF
duty cycle is 10% and arrival rate during the ON period is 1. We also set that inter-
polling time distribution of the receiver polling epochs is a Gamma distribution with
parameter (5, 2).

Figures 12 and 13 show the derivative estimates obtained and a sample trajectory
of the optimization process Eq. 54. Unfortunately, under MMPP arrivals and Gamma
distribution for the sampling process, there are no analytical results for comparison
purposes. Therefore, we used Monte Carlo simulation to approximate the response
curve J (W), which is the red curve in Fig. 13. We can still see that the SA algorithm
readily converges to the optimal W value in Fig. 13.

6 Conclusions

In this paper, we have proposed message batching approaches for reducing the
transmission energy consumption in WSNs. Under Markovian assumptions, we
derived analytical expressions for a performance objective as a function of the con-
trollable batching time parameter and included an analysis quantifying the benefit
of the batching scheme. When no analytical model is available, we have developed
a gradient estimator for time-based batching using Smooth Perturbation Analysis
(SPA) and proved its unbiasedness. The SPA estimators we have developed are
for left derivatives. SPA estimators for right derivatives can be derived in a similar
analysis, but will have a different form. Since the SPA gradient estimator does not
depend on the arrival distribution, it can be used in conjunction with a Stochastic
Approximation (SA) algorithm allowing the controllable parameter W to adapt to
possibly changing network traffic conditions. Our numerical results show that the
analytical and simulation results are consistent, and that the SA algorithm indeed
finds the optimal batching time, for both Poisson and MMPP arrival process models.

438 Discrete Event Dyn Syst (2010) 20:409–439

Future work is directed at extending this approach to multi-hop sensor networks.
Also, finding a good hybrid policy, namely, a batching policy using both time and
queue-length information is also a topic of interest.

References

Buettner M, Yee GV, Anderson E, Han R (2006) X-MAC: a short preamble MAC protocol for duty-
cycled wireless sensor networks. In: SenSys ’06: proceedings of the 4th international conference
on embedded networked sensor systems, New York, 1–3 November 2006, pp 307–320

Cassandras CG, Lafortune S (1999) Introduction to discrete event systems. Kluver, Norwell
Cassandras CG, Yu R (2000) A ‘surrogate problem’ approach for lot size optimization in manufac-

turing systems. In: Proceedings of the American control conference, Chicago, pp 3279–3283
Deb RK (1984) Optimal control of bulk queues with compound poisson arrivals and batch service.

Opsearch 21(4):227–245
Deb RK, Serfozo RF (1973) Optimal control of batch service queues. Advanced Applied Probability

5:340–361
El-Hoiydi A, Decotignie J-D (2004) WiseMAC: an ultra low power mac protocol for multi-hop

wireless sensor networks. In: Lecture notes in computer science, vol 3121. Springer, New York,
pp 18–31

Fu M, Hu J-Q (1997) Conditional Monte Carlo: gradient estimation and optimization applications.
Kluver, Norwell

Gaivoronski AA, Messina E (2006) Stochastic optimization algorithms for regenerative DEDS. In:
Lecture notes in control and information sciences, vol 197. Springer, Berlin, pp 320–331

Gokbayrak K, Cassandras CG (2001) Online surrogate problem methodology for stochastic discrete
resource allocation problems. J Optim Theory Appl 108(2):349–376

Gong W, Ho Y-C (1987) Smoothed (conditional) perturbation analysis of discrete event dynamical
systems. IEEE Trans Automat Contr 32(10):858–866

Joe I, Ryu H (2007) A patterned preamble MAC protocal for wireless sensor networks. In: Proceed-
ings of 16th international conference on computer communications and networks, ICCCN 2007,
Honolulu, 13–16 August 2007, pp 1285–1290

Kushner HJ, George Yin G (2003) Stochastic approximation and recursive algorithms and applica-
tions, 2nd edn. Springer, New York

Mahlknecht S, Bock M (2004) CSMA-MPS: a minimum preamble sampling mac protocol for low
power wireless sensor networks. In: Proceedings of IEEE international workshop on factory
communication systems, pp 73–80

Mangione-Smith B (1995) Low power communications protocols: paging and beyond. In: Proceed-
ings of IEEE symposium on low power electronics, San Jose, 9–11 October 1995, pp 8–11

Megerian S, Potkonjak M (2003) Wireless sensor networks. Wiley Encyclopedia of Telecommunica-
tions. Wiley, New York

Ning X, Cassandras CG (2006) Dynamic sleep time control in event-driven wireless sensor networks.
In: Proceedings of the 45th IEEE conference on decision and control. San Diego, 13–15 Decem-
ber 2006, pp 2722–2727

Ning X, Cassandras CG (2008) Message batching in wireless sensor networks—a perturbation
analysis approach. Technical report, Division of Systems Engineering, Boston University,
http://people.bu.edu/nx/MessageBatchingTR.pdf

Polastre J, Hill J, Culler D (2004) Versatile low power media access for wireless sensor networks.
In: SenSys ’04: proceedings of the 2nd international conference on embedded networked sensor
systems. ACM, New York, pp 95–107

Ross SM (1995) Stochastic processes. Wiley, New York
Shnayder V, Hempstead M, Chen B, Allen GW, Welsh M (2004) Simulating the power consumption

of large-scale sensor network applications. In: SenSys ’04: proceedings of the 2nd international
conference on embedded networked sensor systems. ACM, New York, pp 188–200

Sohrabi K, Gao J, Ailawadhi V, Pottie GJ (2000) Protocols for self-organization of a wireless sensor
network. IEEE Pers Commun 7(5):16–27

Ye W, Heidemann J, Estrin D (2004) Medium access control with coordinated adaptive sleeping for
wireless sensor networks. IEEE/ACM Trans Netw 12(3):493–506

http://people.bu.edu/nx/MessageBatchingTR.pdf

Discrete Event Dyn Syst (2010) 20:409–439 439

Xu Ning was born in Guangzhou, Guangdong, China. He received the B.Eng. degree from
Tsinghua University, Beijing, China in 2004, M.S. and Ph.D. degree from Boston University,
Boston, Massachusetts, US in 2008 and 2009, respectively. He specializes in the areas of stochastic
control, optimization and statistical learning, sensor network and robotics. He has briefly worked
at ExxonMobil Corporate Strategic Research, Annandale, New Jersey, US, and Siemens Corporate
Research, Princeton, New Jersey, US, in 2006 and 2008, respectively. Currently he is with Microsoft
Corporation, focusing on the Internet search technology. He is a member of the IEEE and the
INFORMS.

Christos G. Cassandras received the B.S. degree from Yale University, New Haven, CT, the M.S.E.E
degree from Stanford University, Stanford, CA, and the S.M. and Ph.D. degrees from Harvard
University, Cambridge, MA, in 1977, 1978, 1979, and 1982, respectively. From 1982 to 1984 he was
with ITP Boston, Inc. where he worked on the design of automated manufacturing systems. From
1984 to 1996 he was a Faculty Member at the Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst. Currently, he is Head of the Division of Systems Engineering
and Professor of Electrical and Computer Engineering at Boston University, Boston, MA and a
founding member of the Center for Information and Systems Engineering (CISE). He specializes in
the areas of discrete event and hybrid systems, stochastic optimization, and computer simulation,
with applications to computer networks, sensor networks, manufacturing systems, transportation
systems, and command/control systems. He has published over 250 papers in these areas, and four
books. Dr. Cassandras is currently Editor-in-Chief of the IEEE Transactions on Automatic Control
and has served on several editorial boards and as Guest Editor for various journals. He has also
served on the IEEE Control Systems Society Board of Governors. He is the recipient of several
awards, including the Distinguished Member Award of the IEEE Control Systems Society (2006),
the 1999 Harold Chestnut Prize, and a 1991 Lilly Fellowship. He is a member of Phi Beta Kappa and
Tau Beta Pi, a Fellow of the IEEE and a Fellow of the IFAC.

	Message Batching in Wireless Sensor Networks---A Perturbation Analysis Approach
	Abstract
	Introduction
	Problem description and discrete event model
	LPL and message batching problem
	Discrete event model

	Analytical solution with Poisson processes
	On-line gradient estimation and optimization
	Smoothed perturbation analysis
	SPA for the average delay metric
	SPA for the average preamble metric

	Implementation of SPA
	Optimization using stochastic approximation algorithm

	Numerical results
	Poisson arrival and sampling processes
	Markov modulated poisson arrival process and uniformly distributed sampling process

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

