
Discrete Event Dyn Syst (2010) 20:37–62
DOI 10.1007/s10626-008-0052-5

Optimal Admission Control of Discrete Event Systems
with Real-Time Constraints

Jianfeng Mao · Christos G. Cassandras

Received: 16 January 2008 / Accepted: 30 September 2008 / Published online: 23 October 2008
© Springer Science + Business Media, LLC 2008

Abstract The problem of optimally controlling the processing rate of tasks in Dis-
crete Event Systems with hard real-time constraints has been addressed in prior work
under the assumption that a feasible solution exists. Since this cannot generally be the
case, we introduce in this paper an admission control scheme in which some tasks are
removed with the objective of maximizing the number of remaining tasks which are
all guaranteed feasibility. We derive several optimality properties based on which
we develop a computationally efficient algorithm for solving this admission control
problem under certain conditions. Moreover, when no future task information is
available, we derive necessary and sufficient conditions under which idling is optimal
and define a metric for evaluating when and how long it is optimal to idle. Numerical
examples are included to illustrate our results.

Keywords Discrete event system · Admission control · Real-time constraints

1 Introduction

A large class of Discrete Event Systems (DES) involves the control of resources
allocated to tasks according to certain operating specifications. The basic modeling

The authors’ work is supported in part by the National Science Foundation under Grants
DMI-0330171 and EFRI-0735974, by AFOSR under grants FA9550-04-1-0133 and
FA9550-04-1-0208, and by DOE under grant DE-FG52-06NA27490.

J. Mao (B) · C. G. Cassandras
Division of Systems Engineering and Center for Information
and Systems Engineering, Boston University,
Brookline, MA 02446, USA
e-mail: jfmao@bu.edu

C. G. Cassandras
e-mail: cgc@bu.edu

38 Discrete Event Dyn Syst (2010) 20:37–62

block for such DES is a single-server queueing system operating on a first-come-first-
served basis, whose dynamics are given by the well-known max-plus equation

xi = max(xi−1, ai) + si(ui)

where ai is the arrival time of task i = 1, 2, . . . ; xi is the time when task i completes
service; and si(ui) is its processing time which may be controllable through ui.
Examples arise in manufacturing systems, where the operating speed of a machine
can be controlled to trade off between energy costs and requirements on timely
job completion (Pepyne and Cassandras 2000); in computer systems, where the
CPU speed can be controlled to ensure that certain tasks meet specified execution
deadlines (Buttazzo 1997; Liu 2000); and in wireless networks where severe battery
limitations call for new techniques aimed at maximizing the lifetime of such a net-
work (Gamal et al. 2002; Miao and Cassandras 2006). In what follows, we concentrate
on the control ui being the processing rate of tasks and set ui = 1/τi where τi is the
processing time per operation in a task. If a task consists of μi operations, then we
have si(ui) = μiτi and we can rewrite the equation above as

xi = max(xi−1, ai) + μiτi

A particularly interesting class of problems arises when such systems are subject to
real-time constraints, i.e., xi ≤ di for each task i with a given “deadline” di. In order to
meet such constraints, one typically has to incur a higher cost associated with control
τi. Thus, in a broader context, we are interested in studying optimization problems of
the form:

min
τ1,...,τN

∑N

i=1
μiθ(τi)

s.t. xi = max(xi−1, ai) + μiτi ≤ di, i = 1, ..., N;
τi ≥ τmin, i = 1, ..., N. (1)

where θ(τi) is a given cost function, τmin is the minimal processing time per operation,
and all ai, di are known. Such problems have been studied for preemptive tasks
(Yao et al. 1995; Aydin et al. 2004), nonpreemptive periodic tasks (Jeffay et al. 1991;
Jonsson et al. 1999), and nonpreemptive aperiodic tasks (Gamal et al. 2002; Miao
and Cassandras 2006; Mao et al. 2007). The latter case is of particular interest in
wireless communications where nonpreemptive scheduling is necessary to execute
aperiodic packet transmission tasks which also happen to be highly energy-intensive;
in such cases, the cost function in Eq. 1 represents the energy required for a
packet transmission. One of the key challenges in dealing with Eq. 1 is to develop
computationally efficient solution approaches that can be used in real-time settings
and can be implemented in wireless devices with very limited computational power.

In prior work (Mao et al. 2007), we have shown that exploiting structural prop-
erties of the optimal state trajectory in Eq. 1 leads to a highly efficient (scalable)
Critical Task Decomposition Algorithm (CTDA) for obtaining a solution as long as
the problem is feasible. This leaves open the question of dealing with the case where
feasibility does not hold, which may often arise in practice. For example, tasks may
arrive in a bursty fashion causing a temporary system overload. When this happens,
some tasks will violate their real-time constraints even if all tasks are processed with

Discrete Event Dyn Syst (2010) 20:37–62 39

the minimal cycle time, τmin (i.e., the maximal rate 1/τmin). Therefore, some tasks
have to be sacrificed in order to allow the remaining ones to meet their deadlines.
Often, a subset of tasks may be dropped without adversely affecting the overall
system operation (we shall refer to these tasks as “removable” in the rest of the
paper), so that we have an opportunity to render the problem feasible by selectively
rejecting some such tasks. This naturally leads to an admission control problem where
the objective becomes to ensure that as many tasks as possible meet their deadlines
by rejecting some removable tasks.

To the best of our knowledge, work related to this admission control problem falls
into two categories. First, from the viewpoint of real-time systems, a similar problem
is formulated and studied in (Chetto and Chetto 1989; Tia et al. 1994; Silly et al. 1990;
Schwan and Zhou 1992), often referred to as Optimal Acceptance Test (OAT). The
motivation in this problem is similar to ours, i.e., to maximize the number of accepted
tasks. There are, however, two key differences: (i) The application environment
in OAT problems involves systems that are preemptive and adopting an Earliest
Deadline First (EDF) scheduling policy; in contrast, our focus is on resource-limited
systems where non-preemptive and First In First Out (FIFO) scheduling policies
are preferred and often required (e.g., in order to maintain the order of packet
transmissions). Note that these two different systems only coincide when all arrival
times and deadlines are “compatible”, i.e., ai < a j ⇒ di ≤ d j and di < d j ⇒ ai ≤ a j,
in which case FIFO is the same as EDF and a non-preemptive policy is optimal. (ii)
The control options are different: in OAT problems, control is restricted to accepting
a newly arriving task or not and all previously accepted tasks are committed to be
processed in the future even if they are still unprocessed; in contrast, our approach
is to allow the rejection of previously accepted but still unprocessed tasks as long
as they are removable. Obviously, this control option is more flexible and generally
results in a better solution as shown in our detailed analysis (see the example in
Section 3 illustrating this fact).

Second, from the viewpoint of scheduling theory in the Operations Research
literature the objective is to minimize the number of tardy (late) tasks. It can be
easily seen that minimizing the number of tardy tasks implies maximizing the number
of tasks that can meet their deadlines, which is the same as maximizing the number
of accepted tasks in our problem because only those tasks meeting their deadlines
will be accepted in our system. This setting also involves a non-preemptive single-
server system. The first such scheduling problem studied is the well-known Moore’s
problem (Moore 1968) with a single machine and all task arrival times set to 0
(expressed through the shorthand notation 1| · | ∑ U j, where U j is the indicator
function selecting tardy jobs and

∑
U j is the objective function). This problem can

be solved in O(n log n). Later, a more general scheduling problem was studied with
a single machine but different task arrival times (expressed as 1|r j| ∑ U j, where
r j means that task arrival times are arbitrary), which is proved to be NP-hard
(Lenstra et al. 1977). Then, a polynomially solvable case was found and solved in
O(n2) when all task arrival times and deadlines are compatible (as defined earlier)
(Kise et al. 1978). In recent years, several attempts were made to solve the more
general (1|r j| ∑ U j) problem. An efficient mixed integer programming problem was
formulated in Dauzère-Pérès and Sevaux (2002) by introducing a “master sequence”
and a branch and bound method is provided in Dauzère-Pérès and Sevaux (2004)
to derive the exact optimal solution. There are two key differences between our

40 Discrete Event Dyn Syst (2010) 20:37–62

problem and this scheduling problem: (i) We adopt a FIFO processing order because,
as already pointed out, we are interested in resource-limited systems, whereas the
processing order is not fixed in the general scheduling problem (1|r j|∑ U j). The
two problems do share the same optimal solution in the compatible case mentioned
above because the optimal processing order in this case is FIFO. Although the
problem is still NP-hard even if we fix the processing order to be FIFO, the system
is simplified and there is an opportunity to derive efficient solutions under certain
conditions. (ii) The scheduling problem (1|r j| ∑ U j) assumes that any task can miss
its deadlines, i.e., that all tasks are removable; this is only a special case (which we
previously considered in Mao and Cassandras 2007) of the more general problem we
are interested in.

The contribution of this paper is to formulate the admission control problem
described above, establish sufficient conditions which we prove can be exploited
to derive an optimal solution, and develop an efficient procedure termed Maximal
Shift Task Algorithm (MSTA) which can be used to obtain such a solution. The
MSTA may be used off line when all task information is known or on line at each
task departure event based on the task information currently available. In addition,
in the on-line version of the problem where task arrival information is not known
in advance we show that under certain necessary and sufficient conditions idling
is optimal (in the sense of maximizing the number of tasks that can be processed
without violating their deadlines) even though this may be counterintuitive. We
propose a metric based on distributional information characterizing task arrivals and
develop an algorithm for solving the on-line version of Eq. 1.

In Section 2 of the paper we formulate the admission control problem associated
with Eq. 1. In Section 3, we exploit some optimality properties leading to the
aforementioned MSTA. We consider the on-line admission control problem in
Section 4, provide numerical examples in Section 5, and conclude with Section 6.

2 Problem formulation

In this section, we will formulate the admission control problem whose solution will
maximize the number of accepted tasks leading to a feasible optimization problem
(1). First, however, we address the question of whether we can easily determine if
problem (1) is indeed feasible or not.

Lemma 2.1 Problem (1) is feasible if and only if τi = τmin for i = 1, ..., N is a
feasible solution.

Proof We first assume τi = τmin for i = 1, ..., n is a feasible solution of problem (1),
which immediately implies that problem (1) is feasible.

We then assume Problem (1) is feasible, which implies that there exists a feasible
solution τ ′

i for i = 1, ..., n such that τ ′
i ≥ τmin and its corresponding x′

i ≤ di for all
i = 1, ..., N. Let xi denote the departure time of task i when the solution is τi = τmin

for i = 1, ..., n. Since τ ′
i ≥ τmin = τi for i = 1, ..., N, we have x′

i ≥ xi for i = 1, ..., N.
Combining the two inequalities x′

i ≤ di and x′
i ≥ xi, we have xi ≤ di for all i = 1, ..., N,

which implies that τi = τmin for i = 1, ..., N is also feasible. ��

Discrete Event Dyn Syst (2010) 20:37–62 41

Using Lemma 2.1, it becomes easy to check whether xi ≤ di for all i = 1, ..., N
when τi = τmin and, therefore, whether an admission control process is in fact needed.
In what follows, without loss of generality, we assume ai ≥ 0 for i = 1, ..., N so as
to avoid unnecessary technical complications that may be introduced by allowing
negative event times. We then formulate the Admission Control Problem (ACP) as
follows by making use of Lemma 2.1:

max
z1,...,zN

∑
i∈R zi (2)

s.t. xi = max (xi−1, aizi) + μiτminzi, i = 1, ..., N; (3)

zi(xi − di) ≤ 0, i = 1, ..., N; x0 = 0; (4)

zi ∈ {0, 1}, i ∈ R; zi = 1, i /∈ R. (5)

where in Eqs. 2 and 5, R denotes the set of removable tasks and zi = 1 means
that the ith task is accepted, otherwise it is rejected. If zi = 1, then Eqs. 3 and 4
reduce to the same dynamics and real-time constraints as in Eq. 1 respectively. On
the other hand, if zi = 0 then task i will never occupy the server and its associated
real-time constraint can be overlooked, in which case we have xi = xi−1. Note that
the ACP also faces a feasibility question similar to Eq. 1, which is addressed in the
following lemma.

Lemma 2.2 The ACP is feasible if and only if its solution zi = 0 for all i ∈ R and
zi = 1 for all i /∈ R is feasible.

Proof Similar to the proof of Lemma 2.1. ��

Using Lemma 2.2, we see that the feasibility of the ACP depends on R, which
is uncontrollable since R is defined based on a given system design. If the ACP is
infeasible when R is too small (in the extreme, R = ∅), then admission control can
serve no purpose and the system needs to be redesigned. In this paper, we assume
that all non-removable tasks can meet their deadlines by dropping all removable
tasks, i.e., the feasibility condition of the ACP shown in Lemma 2.2 holds.

Clearly, the ACP is a 0–1 integer programming problem and can be solved (in
principle) through standard numerical methods. However, we emphasize again that
we are interested in real-time applications involving resource-limited systems where
such methods are both overly time consuming and not computationally affordable.
In what follows, we develop an efficient solution algorithm for the ACP by utilizing
the optimality properties presented in the next section.

3 Optimality properties

Before we formally study the optimality properties of the ACP, let us recall the
Optimal Acceptance Test (OAT) approach (Chetto and Chetto 1989; Tia et al. 1994;
Silly et al. 1990; Schwan and Zhou 1992) and consider an example as shown in
Table 1, where τmin = 1 and all six tasks are removable: The OAT is applied under
EDF in a preemptive setting. However, since in this example all arrival times

42 Discrete Event Dyn Syst (2010) 20:37–62

Table 1 An example i 1 2 3 4 5 6

ai 0 0.1 0.2 0.3 0.4 0.5
di 2 10 10.1 10.2 10.3 10.4
μi 1 8 2 2 2 2

and deadlines are compatible, the OAT is actually implementable in a FIFO and
nonpreemptive way. The OAT is applied at each task arrival time and its policy for
this compatible example reduces to the following: if the new arrival task can meet its
deadline, then it will be accepted; otherwise it is rejected.

Implementing the OAT for this example, we can easily see that the corresponding
solution will keep the first two tasks and drop all the rest, i.e.,

∑6
i=1 zi = 2. However,

we can clearly do much better if we do not restrict control to a newly arriving task.
Instead, suppose we still make admission decisions at each task arrival time and can
drop not only the newly arriving task but also all unprocessed tasks already accepted.
Then, when the third task arrives (at which time the first task is still in process
and the second task is in queue), we drop the second task. With this approach,
we ultimately obtain a solution in which we keep all tasks except the second one.
This results in

∑6
i=1 zi = 5, obviously a much better solution than the one obtained

through the OAT. At the same time, we realize that the price to pay is the increased
computational complexity imposed by the fact that we need to solve the ACP at each
decision point. Therefore, to make this improvement beneficial, we need to develop
a very efficient algorithm for solving the ACP. This is indeed possible and relies on
the optimality properties explored in the following sections.

3.1 Busy period and first infeasible task

Let Xi denote the departure time of task i in the ACP when zi = 1 for all i = 1, ..., N,
that is,

Xi = max(Xi−1, ai) + μiτmin, for i = 1, ..., N. (6)

Obviously, from Eq. 3, for any solution of the ACP, the corresponding departure
times xi must satisfy

xi ≤ Xi, for i = 1, ..., N (7)

Definition 3.1 A Busy Period (BP) is a set of contiguous tasks {k, ..., n}, such that
Xk−1 ≤ ak, Xn ≤ an+1 and Xi > ai+1 for i = k, ..., n − 1.

Based on this definition, the state trajectory defined by {Xi}, i = 1, ..., N, is
decomposed into a set of BPs that define a BP structure. Clearly, the BP structure can
be uniquely determined by ai and μi for i = 1, ..., N since Xi is immediately obtained
through Eq. 6.

Definition 3.2 An Infeasible Task (IT) is a task i such that Xi > di. A First Infeasible
Task (FIT) within a BP {k, ..., n} is a task m such that Xm > dm, Xi ≤ di for i =
k, ..., m − 1 and task m belongs to the BP {k, ..., n}.

Discrete Event Dyn Syst (2010) 20:37–62 43

An example of a BP, IT and FIT is given in Fig. 1. It is of course possible that a FIT
may not exist in a BP, in which case the BP need not be considered in what follows
since all tasks in it can meet their deadlines and BPs are decoupled from each other
as will be established in Lemma 3.2. We begin with the following lemma to identify
a useful property of any FIT.

Lemma 3.1 If m is a FIT belonging to the BP {k, ..., n}, then, for any feasible solution
of the ACP, there exists at least one task j ∈ R, k ≤ j ≤ m, such that z j = 0.

Proof Assume on the contrary that there exists some feasible solution such that
z j = 1 for all j = k, ..., m. From the definition of BP, we have Xk−1 ≤ ak. From Eqs. 3
and 7, we have xk−1 ≤ Xk−1, which implies that xk−1 ≤ ak. Combining this with the
assumption that z j = 1 for all j = k, ..., m and Eq. 3, we have xm = Xm. Since m is
a FIT, we have xm = Xm > dm which violates the constraint of zm(xm − dm) ≤ 0 in
Eq. 4 and contradicts the feasibility assumption. ��

Furthermore, the FIFO processing order facilitates the decomposition of the ACP
into several smaller problems corresponding to BPs.

Lemma 3.2 If FIFO is adopted, i.e., a1 ≤ · · · ≤ aN, then BPs are decoupled from
each other.

Proof Assume {k, ..., n} is an arbitrary BP. First, we show that all constraints related
to zk, ..., zn can be satisfied independent of z1, ..., zk−1 and of zn+1, ..., zN . Obviously,
the constraints in Eqs. 3 and 5 related to zk, ..., zn can be satisfied independent
of z1, ..., zk−1 and zn+1, ..., zN . In the following, we only focus on the constraints
in Eq. 4.

Without loss of generality, assume k ≤ i1 ≤ ... ≤ ip ≤ n, z j = 1 for j = i1, ..., ip and
z j = 0 for j
= i1, ..., ip. Since z j = 0 for j
= i1, ..., ip, the constraint z j(x j − d j) ≤ 0
can be satisfied independent of z1, ..., zk−1 and zn+1, ..., zN for all j
= i1, ..., ip. This
leaves only zi1 , ..., zip to consider next.

Fig. 1 Example of a busy
period, infeasible task and first
infeasible task

11 22 33 44 55

11 22 33 44 55

a
1 a2 a

3 a4 a5

x
1

x
2

x
3 x

4
x
5

d
1 d

2
d
3 d

4
d
5

Busy Period Busy PeriodBusy Period

Feasible TaskFeasible Task

Infeasible TaskInfeasible Task

First Infeasible Task

11 22 33 44 55

11 22 33 44 55

a
1 a2 a

3 a4 a5

x
1

x
2

x
3 x

4
x
5

d
1 d

2
d
3 d

4
d
5

Busy Period Busy PeriodBusy Period

Feasible TaskFeasible Task

Infeasible TaskInfeasible Task

First Infeasible Task

44 Discrete Event Dyn Syst (2010) 20:37–62

From the definition of BP, we have Xk−1 ≤ ak. From Eqs. 3 and 7, we have
xk−1 ≤ Xk−1. Since FIFO is adopted, it follows that xk−1 ≤ Xk−1 ≤ ak ≤ ai1 ≤ ... ≤
aip . Combining this with Eq. 3, we have

xi1 = max(ai1 , xk−1) + μi jτmin = ai1 + μi jτmin;
xi j = max(ai j, xi j−1) + μi jτmin, j = 2, ..., p.

which implies that x j is independent of z1, ..., zk−1 and of zn+1, ..., zN for j = i1, ..., ip.
Thus, the constraint z j(x j − d j) ≤ 0 can be satisfied independent of z1, ..., zk−1 and
of zn+1, ..., zN for j = i1, ..., ip. We have, therefore, established that tasks k, ..., n
satisfy their corresponding constraints independent of z1, ..., zk−1 and of zn+1, ..., zN .
Then, since the cost function (2) is the summation of z1, ..., zN , the cost related to
zk, ..., zn can also be separated from z1, ..., zk−1 and zn+1, ..., zN . It follows that BPs
are decoupled from each other. ��

Based on Lemma 3.2, the ACP can be decomposed into a number of smaller
problems and we need only focus on finding a solution for each single BP {k, ..., n}
instead of the full ACP that involves {1, ..., N}. In the following section, we will
introduce another concept based on BPs, termed a Maximal Shift Task, which leads
to the key theorem.

3.2 Maximal shift task

In this section, we focus on a BP {k, ..., n} which has a FIT m. Let X j
i denote

the departure time of task i when only task j is dropped, and let S j
i denote the

corresponding departure time shift of task i resulting from the removal of only task j,
that is,

S j
i = Xi − X j

i (8)

We then define a Maximal Shift Task as follows:

Definition 3.3 A Maximal Shift Task (MST) relative to a FIT m within a BP {k, ..., n}
is a task r, k ≤ r ≤ m, such that

Sr
m ≥ S j

m, ∀ j ∈ R and k ≤ j ≤ r − 1; (9)

Sr
m > S j

m, ∀ j ∈ R and r + 1 ≤ j ≤ m. (10)

An example of a MST is shown in Fig. 2, where task m = 3 is the FIT and task
r = 2 is the MST relative to task 3.

Next, we derive several lemmas regarding a MST before obtaining the main
theorem. We will make use of the following convenient notation:

C j
i = min

l= j+1,...,i
(Xl−1 − al), j < i and C j

i = +∞, i = j (11)

where we can see that C j
i is the smallest waiting time experienced by tasks j + 1, ..., i.

Discrete Event Dyn Syst (2010) 20:37–62 45

Fig. 2 Example of a departure
time shift and a MST r = 2
relative to the FIT m = 3

11 22 33 44 55

a
1 a2 a

3 a4 a5

x
1

x
2

x
3 x

4
x
5

d
1 d

2
d
3 d

4
d
5

11 33 44 55

a
1

a
3 a4 a5

x
1

x
3 x

4
x
5

d
1

d
3 d

4
d
5

Departure Time Shift of Task 3 by Dropping Task 2

Maximal Shift Task for m=3

2

3S

11 22 33 44 55

a
1 a2 a

3 a4 a5

x
1

x
2

x
3 x

4
x
5

d
1 d

2
d
3 d

4
d
5

11 33 44 55

a
1

a
3 a4 a5

x
1

x
3 x

4
x
5

d
1

d
3 d

4
d
5

Departure Time Shift of Task 3 by Dropping Task 2

Maximal Shift Task for m=3

2

3S

Lemma 3.3 For any i, j such that j ≤ i and both tasks i, j belong to the same BP,

S j
i = min

(
C j

i ,X j − X j−1
)

(12)

Proof Since j ≤ i and both tasks i, j belong to a same BP, we have

Xl = Xl−1 + μlτmin, j + 1 ≤ l ≤ i (13)

By the definition of X j
i , we have

X j
j = X j−1 (14)

X j
l = max

(
al,X j

l−1

)
+ μlτmin, j + 1 ≤ l ≤ i (15)

It follows from Eqs. 13 and 14 that

X j − X j
j = X j − X j−1

and from Eqs. 13 and 15 we get

Xl − X j
l = min

(
Xl−1 − al,Xl−1 − X j

l−1

)
, j + 1 ≤ l ≤ i

Combining two equations above, we have

Xi − X j
i = min(Xi−1 − ai, ...,X j − a j+1,X j − X j−1)

which implies Eq. 12 by using Eqs. 8 and 11. ��

Lemma 3.4 For any i, j such that j < i and both tasks i, j belong to the same BP, if
a j ≤ a j+1 ≤ · · · ≤ ai, then

S j
i = min

(
C j

i , μ jτmin
)

(16)

46 Discrete Event Dyn Syst (2010) 20:37–62

Proof There are two possible cases: (i) Task j is not the first task in its corresponding
BP and (ii) Task j is the first one in the BP. For case (i), we directly have X j − X j−1 =
μ jτmin which implies Eq. 16 based on Lemma 3.3. For case (ii), since task j is the first
task in the BP, we have X j−1 ≤ a j and X j − a j = μ jτmin. Combining these facts with
a j ≤ a j+1 and Eq. 11, we have

X j − X j−1 ≥ X j − a j ≥ X j − a j+1 ≥ C j
i

μ jτmin = X j − a j ≥ X j − a j+1 ≥ C j
i

which implies Eq. 16 based on Lemma 3.3. ��

Lemma 3.5 For any i, j such that j ≤ i and both tasks i, j belong to the same BP, and
for any l ∈ { j, . . . , i},

S j
i = min

(
Cl

i ,S
j

l

)

Proof This is easily verified from Eqs. 11 and 12. ��

The theorem below identifies an important optimality property of the MST under
certain conditions. In particular, it singles out a MST as one that must be dropped in
coming up with a solution of the ACP.

Theorem 3.1 Suppose task m is a FIT in the BP {k, ..., n} and task r is the MST relative
to m. If ak ≤ ak+1 ≤ · · · ≤ ar and either of the two conditions below is satisfied:

(1) r = m or (2) Sr
m ≥ Xm − dm, (17)

then there must exist an optimal solution [z∗
1, ..., z∗

N] of the ACP such that z∗
r = 0.

Proof Assume on the contrary that z∗
r = 1 in all ACP solutions. Based on Lemma

3.1, there always exists some task q (k ≤ q ≤ m) which is removed in any feasible
solution. Without loss of generality, there must exist an optimal solution [z∗

1, ..., z∗
N]

such that z∗
r = 1 and z∗

q = 0 (q
= r).
Let us construct a potential solution [z̄1, ..., z̄N] such that z̄r = 0, z̄q = 1 and

z̄i = z∗
i for all i
= q, r; that is, the role of r and q is interchanged in [z∗

1, ..., z∗
N] and

[z̄1, ..., z̄N]. If we can show that [z̄1, ..., z̄N] is a feasible solution, then [z̄1, ..., z̄N] must
also be optimal because

∑N
i=1 z̄i = ∑N

i=1 z∗
i , which contradicts the assumption that r is

admitted in all optimal solutions. Therefore, the theorem can be proved by showing
the feasibility of the potential solution [z̄1, ..., z̄N].

Let x∗
i and x̄i denote the departure time of task i resulting from the optimal solu-

tion [z∗
1, ..., z∗

N] and the potential solution [z̄1, ..., z̄N] respectively. In the following,
we will prove the feasibility of [z̄1, ..., z̄N], that is, we will show that

z̄i(x̄i − di) ≤ 0, ∀ i = 1, ..., N (18)

First, we prove Eq. 18 for i = 1, ..., k − 1, i.e.,

z̄i(x̄i − di) ≤ 0, ∀ i = 1, ..., k − 1 (19)

Since [z∗
1, ..., z∗

N] must be feasible, we have

z∗
i

(
x∗

i − di
) ≤ 0, ∀ i = 1, ..., N (20)

Discrete Event Dyn Syst (2010) 20:37–62 47

Since z̄i = z∗
i for i = 1, ..., k − 1, we have x̄i = x∗

i for i = 1, ..., k − 1. Combining this
with Eq. 20, we obtain Eq. 19.

Second, we prove Eq. 18 for i = k, ..., m − 1, i.e.,

z̄i(x̄i − di) ≤ 0, ∀ i = k, ..., m − 1 (21)

Since m is the first infeasible task, we have

Xi ≤ di ∀ i = k, ..., m − 1 (22)

Since x̄i is the departure time after the possible removal of some tasks,

x̄i ≤ Xi, ∀ i = 1, ..., N (23)

Combining Eqs. 23 and 22, we have x̄i ≤ di for all i = k, ..., m − 1, which implies
Eq. 21.

Third, we prove Eq. 18 for i = m, i.e.,

z̄m(x̄m − dm) ≤ 0 (24)

If condition (1) holds, we have r = m and z̄m = z̄r = 0 so that Eq. 24 immediately
follows. If condition (2) holds, then Sr

m ≥ Xm − dm and Eq. 8 imply that X r
m ≤ dm.

Since at least task r is removed in [z̄1, ..., z̄N], we have x̄m ≤ X r
m. Therefore, it

immediately follows that x̄m ≤ dm, which also implies Eq. 24.
Finally, we prove Eq. 18 for i = m + 1, ..., N, i.e.,

z̄i(x̄i − di) ≤ 0, ∀ i = m + 1, ..., N (25)

for which there are two possible cases.
Case 1: No task between k and r is dropped in the optimal solution [z∗

1, ..., z∗
N], that

is, z∗
i = 1 for all i = k, ..., r. In this case, by Lemma 3.1, there is at least one task

dropped in {r + 1, ..., m} in the optimal solution [z∗
1, ..., z∗

N]. Thus, we can select q
to be the first task removed after r, that is, q > r, z∗

q = 0, and z∗
i = 1 for i = r, ...,

q − 1. Since task r is the only task removed between k and q in the potential solution
[z̄1, ..., z̄N], we have x̄q = X r

q . Similarly, task q is the only task removed between k
and q in the optimal solution [z∗

1, ..., z∗
N], so we have x∗

q = X q
q . Then, from Eq. 8,

we have

Sr
q = Xq − x̄q, Sq

q = Xq − x∗
q (26)

and from Lemma 3.5,

Sr
m = min

(
Cq

m,Sr
q

)
, Sq

m = min
(
Cq

m,Sq
q

)
(27)

Since r is the MST and r < q, we obtain from Eq. 10 that

Sr
m > Sq

m (28)

Using Eqs. 27 and 28, we can easily verify that Sr
q > Sq

q and combining this with
Eq. 26, we have x̄q < x∗

q. From the system dynamics, we have

x̄i = max(x̄i−1, aiz̄i) + z̄iμiτmin, ∀ i = q + 1, ..., N

x∗
i = max

(
x∗

i−1, aiz∗
i

) + z∗
i μiτmin, ∀ i = q + 1, ..., N

48 Discrete Event Dyn Syst (2010) 20:37–62

Since x̄q < x∗
q and z̄i = z∗

i for i = q + 1, ..., N, we can easily see that x̄i ≤ x∗
i for all

i = q + 1, ..., N, which implies

z̄i(x̄i − di) ≤ z∗
i (x∗

i − di), ∀ i = q + 1, ..., N

Combining this with Eq. 20, we have

z̄i(x̄i − di) ≤ 0, ∀ i = q + 1, ..., N (29)

and since q ≤ m, we obtain Eq. 25.
Case 2: At least one task is dropped between k and r in the optimal solution

[z∗
1, ..., z∗

N]. Thus, we can select q to be the last task removed before r, that is, q < r,
z∗

q = 0, and z∗
i = 1 for i = q + 1, ..., r. From Lemma 3.5, we have

Sr
m = min

(
Cr

m,Sr
r

)
, Sq

m = min
(
Cr

m,Sq
r

)
(30)

Since r is the MST and q < r, we obtain from Eq. 9:

Sr
m ≥ Sq

m (31)

We now further divide Case 2 into two subcases, Sr
r < Sq

r and Sr
r ≥ Sq

r in Eq. 30,
as follows.

Case 2a: Sr
r < Sq

r . In this case, it follows from Eqs. 30 and 31 that

Sr
r ≥ Cr

m, Sq
r ≥ Cr

m (32)

Let l = arg mini=r+1,...,m{Xi−1 − ai}. Then, from Eq. 11,

Cr
m = Xl − al+1, Cr

l ≥ Xl − al+1 (33)

Invoking Lemma 3.5, we have

Sr
l = min

(
Cr

l ,Sr
r

)
, Sq

l = min
(
Cr

l ,Sq
r

)
(34)

Combining Eqs. 32, 33 and 34, we have

Sr
l ≥ Xl − al+1, Sq

l ≥ Xl − al+1

Then, from Eq. 8, we have

X r
l ≤ al+1, X q

l ≤ al+1

Since x̄l ≤ X r
l and x∗

l ≤ X q
l , we have

x̄l ≤ al+1, x∗
l ≤ al+1

which means that both x̄i and x∗
i for i = l + 1, ..., N only depend on z̄i and z∗

i for
i = l + 1, ..., N respectively. Since z̄i = z∗

i for i = l + 1, ..., N, we have x̄i = x∗
i for

i = l + 1, ..., N, which implies that

z̄i(x̄i − di) ≤ 0, ∀ i = l + 1, ..., N (35)

Since l ≤ m, we obtain Eq. 25 for this subcase.
Case 2b: Sr

r ≥ Sq
r . We now introduce another potential solution [z̃1, ..., z̃N] of

the ACP such that

z̃i = z̄i = z∗
i , i
= q, r; z̃i = 1, i = q, r. (36)

Discrete Event Dyn Syst (2010) 20:37–62 49

Its associated departure times satisfy

x̃q−1 = x̄q−1 = x∗
q−1

x̃i = max(x̃i−1, ai) + μiτmin, i = q, ..., r. (37)

It follows from Eq. 36 that [z̄1, ..., z̄N] is obtained by removing only task r from
[z̃1, ..., z̃N] and that [z∗

1, ..., z∗
N] is obtained by removing only task q from [z̃1, ..., z̃N].

Now, if there exists some i (q + 1 ≤ i ≤ r) such that x̃i−1 ≤ ai, then removing task q
from the solution [z̃1, ..., z̃N] has no effect on x̃r because tasks q and r are decoupled
by task i, that is, x∗

r = x̃r. Since [z̄1, ..., z̄N] has task r removed relative to [z̃1, ..., z̃N],
we have x̄r ≤ x̃r, therefore

x∗
r ≥ x̄r (38)

Let us now consider the remaining case where x̃i−1 > ai for all q + 1 ≤ i ≤ r. Then,
Eq. 37 reduces to

x̃i = x̃i−1 + μiτmin, i = q + 1, ..., r. (39)

Since task r is removed in [z̄1, ..., z̄N] and Sr
r = min(+∞, μrτmin) = μrτmin, we have

x̄r = x̃r−1 = x̃r − μrτmin = x̃r − Sr
r (40)

Since task q is removed in [z∗
1, ..., z∗

N], x∗
q = x∗

q−1. Using this fact along with Eq. 39
and x∗

i = max(x∗
i−1, ai) + μiτmin, we have

x̃i − x∗
i = min(x̃i−1 − ai, x̃i−1 − x∗

i−1), i = q + 1, ..., r.

which implies that

x̃r − x∗
r = min

(
x̃r−1 − ar, x̃r−1 − x∗

r−1

)

= min
(
x̃r−1 − ar, min

(
x̃r−2 − ar−1, x̃r−2 − x∗

r−2

))

= · · · = min
(

x̃r−1 − ar, x̃r−2 − ar−1, ..., x̃q − aq+1, x̃q − x∗
q

)

Let C̃ j
i = minl= j+1,...,i(x̃l−1 − al). Combining this with the equality above, we have

x̃r − x∗
r = min

(
C̃q

r , x̃q − x∗
q

)
= min

(
C̃q

r , x̃q − x̃q−1

)
(41)

In the following, we show that if ak ≤ ak+1 ≤ · · · ≤ ar, then

x∗
r = x̃r − min

(
C̃q

r , μqτmin

)
(42)

There are two possible cases: (i) x̃q−1 > aq and (ii) x̃q−1 ≤ aq. For case (i), from
Eq. 37, we have x̃q − x̃q−1 = μqτmin which implies Eq. 42 by using Eq. 41. For case
(ii), from ak ≤ ak+1 ≤ · · · ≤ ar, we have aq ≤ aq+1 and

x̃q − x̃q−1 ≥ x̃q − aq ≥ x̃q − aq+1 ≥ C̃q
r

μqτmin = x̃q − aq ≥ x̃q − aq+1 ≥ C̃q
r

which implies Eq. 42 by using Eq. 41.

50 Discrete Event Dyn Syst (2010) 20:37–62

Since x̃i ≤ Xi, we have

C̃q
r ≤ min

i=q+1,...,r
(x̃i−1 − ai) ≤ min

i=q+1,...,r
(Xi−1 − ai) = Cq

r (43)

which implies that

min
(
C̃q

r , μqτmin
) ≤ min

(
Cq

r , μqτmin
) = Sq

r (44)

It follows from Eq. 42 and Eq. 44 that x∗
r ≥ x̃r − Sq

r . Combining this with Eq. 40 and
Sr

r ≥ Sq
r , we obtain

x∗
r ≥ x̃r − Sq

r ≥ x̃r − Sr
r = x̄r

that is, Eq. 38 again holds. From Eq. 38 and the fact that z̄i = z∗
i for i = r + 1, ..., N,

we have x̄i ≤ x∗
i for i = r + 1, ..., N, which implies

z̄i(x̄i − di) ≤ z∗
i (x∗

i − di) ≤ 0, ∀ i = r, ..., N (45)

Since r ≤ m, we obtain Eq. 25 for this subcase as well, which completes the proof. ��

Corollary 3.1 Suppose task m ∈ R is a FIT and task r is its corresponding MST. If
a1 ≤ · · · ≤ ar and dm−1 ≤ dm, then there must exist an optimal solution [z∗

1, ..., z∗
N] of

the ACP such that z∗
r = 0.

Proof There are two possible cases: (i) r = m (ii) r < m. For the first case, we have
z∗

r = 0 based on Theorem 3.1. For the second case, since task r is a MST and r < m,
we have Sr

m ≥ Sm
m , which implies that

Xm − Sr
m ≤ Xm − Sm

m = Xm − μ jτmin = Xm−1 (46)

Since m is the first infeasible task, we have Xm−1 ≤ dm−1. Then, from dm−1 ≤ dm,
we have Xm−1 ≤ dm. Combining this with Eq. 46, we have Xm − Sr

m ≤ dm, that is,
Sr

m ≥ Xm − dm. Then, from Theorem 3.1, we have z∗
r = 0. ��

Theorem 3.1 provides a sufficient condition Eq. 17 towards optimality. If the
condition is satisfied, we can directly remove the corresponding MSTs, construct a
new smaller problem and check the condition again. If the condition is still satisfied,
we can keep removing MSTs. Furthermore, if the condition is never violated until a
feasible schedule is obtained (such as the compatible case in Corollary 3.1), then the
remaining tasks turn out to yield the optimal solution. Even if the condition Eq. 17
is not satisfied, Theorem 3.1 can still help us develop an efficient algorithm to derive
a near-optimal solution. Before doing so, we introduce another step which can be
utilized to improve the efficiency of such an algorithm.

3.3 Deadline reduction

In this section, we take advantage of the fact that non-removable tasks implicitly
impose more stringent deadlines on some removable tasks. In particular, all tasks
before a non-removable one must complete early enough to guarantee that this
non-removable task meets its deadline even if the deadlines of these previous tasks
are relatively loose. The key idea then is that the existence of non-removable tasks

Discrete Event Dyn Syst (2010) 20:37–62 51

provides an opportunity to modify the ACP by reducing some task deadlines without
affecting the optimal solution. To formalize this, let

δi = min(di, δ j − μ jτmin), for i = 1, ..., N − 1 and δN = dN,

j = arg min
l≥i

{l : l /∈ R} (47)

where task j is simply the first non-removable task after task i. If no such j exists, we
have δi = di.

Lemma 3.6 An optimal solution of the ACP is invariant to the replacement of di by δi

for i = 1, ..., N.

Proof Assume z1, ..., zN is an arbitrary feasible solution in the ACP with task
deadlines d1, ..., dN . First, we prove that z1, ..., zN is also feasible in the ACP with
δ1, ..., δN replacing d1, ..., dN . For each task i, there are two possible cases, (i) zi = 0
and (ii) zi = 1. For case (i), since zi = 0, task i’s deadline can be overlooked, so
replacing di with δi will still satisfy Eq. 4.

For case (ii), without loss of generality, assume j1, ..., jp are non-removable tasks
after task i, where j1 ≤ ... ≤ jp. Since there are no non-removable task after task jp,
we have δ jp = d jp from Eq. 47. Since jp /∈ R, we have z jp = 1, which requires

x jp ≤ d jp = δ jp

Since jp−1 /∈ R, we have z jp−1 = 1, which requires x jp ≤ d jp . Moreover, to satisfy
the constraint above, i.e., x jp ≤ δ jp , task jp−1 should also satisfy x jp−1 ≤ δ jp − μ jpτmin.
Therefore, we have

x jp−1 ≤ min(d jp−1 , δ jp − μ jpτmin) = δ jp−1

Similarly, we proceed to task jp−2 and obtain:

x jp−2 ≤ min(d jp−2 , δ jp−1 − μ jp−1τmin) = δ jp−2

Finally, we get

x j1 ≤ min(d j1 , δ j2 − μ j2τmin) = δ j1

Since in case (ii) we have zi = 1, this implies that xi ≤ di. Furthermore, to satisfy
the constraint x j1 ≤ δ j1 , task i should also satisfy xi ≤ δ j1 − μ j1τmin. Therefore, it
follows that

xi ≤ min(di, δ j1 − μ j1τmin) = δi

which implies that replacing di by δi will still satisfy Eq. 4.
In view of the above, any feasible solution in the original ACP with task deadlines

d1, ..., dN is also feasible in the modified ACP with δ1, ..., δN . From Eq. 47, we have
δi ≤ di for i = 1, ..., N, which implies that any feasible solution in the modified ACP
with δ1, ..., δN is also feasible in the original ACP with d1, ..., dN . Therefore, the
feasible space is invariant by replacing di by δi for i = 1, ..., N, which implies that
the optimal solution is also invariant. ��

Lemma 3.7 If task m is a FIT in the modified ACP with task deadlines δ1, ..., δN, then
task m must be removable.

52 Discrete Event Dyn Syst (2010) 20:37–62

Proof Assume on the contrary that task m is a FIT and non-removable with
δ1, ..., δN . Without loss of generality, task m belongs to the BP {k, ..., n}. Since task m
is a FIT, we have

Xm > δm and X j ≤ δ j, for k ≤ j ≤ m − 1. (48)

Combining this with the fact that task m is non-removable in the modified ACP with
δ1, ..., δN , we have

Xm−1 ≤ δm−1 = min(dm−1, δm − μmτmin) ≤ δm − μmτmin

Moreover, it must hold that m > k, otherwise the ACP is infeasible. Thus, tasks
m − 1 and m belong to the same BP, which implies that Xm = Xm−1 + μmτmin.
Combining this fact with the inequality above, we have Xm ≤ δm, which contradicts
Xm > δm in Eq. 48. ��

The value of the deadline reduction process resulting in a modified ACP with
invariant optimal solutions lies in the fact that the new deadlines tend to be ordered
in a way which is closer to the compatible case (i.e., ai < a j ⇒ δi ≤ δ j and δi < δ j ⇒
ai ≤ a j). Consequently, it is more likely that the conditions of Corollary 3.1 are
satisfied, hence the optimality condition (17) in Theorem 3.1 also holds. Therefore,
the deadline reduction in Eq. 47 can improve the applicability of Theorem 3.1. The
following corollary is a useful special case that demonstrates this effect.

Corollary 3.2 If task m is a FIT in the modified ACP with δ1, ..., δN, FIFO is adopted,
and μi = μ j for all i, j, then an optimal solution of the original ACP with d1, ..., dN

satisfies z∗
m = 0.

Proof Without loss of generality, task m belongs to the BP {k, ..., n}. Since FIFO is
adopted, from Lemma 3.4, we have

S j
m = min

(
C j

m, μ jτmin
)
, for k ≤ j ≤ m

Then from μi = μ j for all i, j, we have

Sm
m ≥ S j

m, for k ≤ j < m (49)

Since task m is a FIT in the modified ACP with δ1, ..., δN , task m must be removable
from Lemma 3.7. Combining this with Eq. 49 and the definition of MST, we conclude
that task m is the MST. From Theorem 3.1, an optimal solution of the ACP with
δ1, ..., δN implies that z∗

m = 0. Then, from Lemma 3.6, an optimal solution of the ACP
with d1, ..., dN also satisfies z∗

m = 0. ��

It is interesting to observe that a FIT may be non-removable in the original
ACP with d1, ..., dN and, further, the FIT may not be the MST; in this case, the
optimality condition (17) in Theorem 3.1 may not be applied. However, all FITs must
be removable in the modified ACP with δ1, ..., δN and the optimality condition (17)
can be guaranteed for the case in Corollary 3.2.

Discrete Event Dyn Syst (2010) 20:37–62 53

Table 2 First order maximal shift task algorithm (MSTA-1)

Step 1: Reduce di to δi for i = 1, ..., N;
Step 2: Pick a BP {k, ..., n}, identify its FIT m and find the MST r;
Step 3: If r = m or Sr

m ≥ Xm − δm, then construct a new ACP by removing task r;
else construct a new ACP by removing task m.

Step 4: If there are no ITs in the new ACP, then end; otherwise goto Step 2.

3.4 Maximal shift task algorithm

In this section, we develop two efficient algorithms to derive a near-optimal (and pos-
sibly optimal) solution, termed First Order Maximal Shift Task Algorithm (MSTA-1)
and Second Order Maximal Shift Task Algorithm (MSTA-2) respectively.

Table 2 describes MSTA-1, where the optimality condition (17) is checked in
Step 3. If the optimality condition (17) is satisfied, MSTA-1 provides the optimal
solution. Otherwise, a gap between its derived solution and the true optimal so-
lution results from the possible failure to satisfy the optimality condition (17). In
MSTA-1, we simply drop the FIT m when the optimality condition (17) fails.
Obviously, this procedure cannot guarantee optimality because it is possible to
remove more than one task before the FIT m to save more ITs after m. Therefore, we
actually face two options when the optimality condition (17) is not met: (i) Drop the
FIT m, or (ii) Keep the FIT m. Although we cannot determine which option is better
in polynomial time, we can still increase the probability of choosing the better option
by estimating and comparing the optimal number of accepted tasks under each of
these two options.

Based on this idea, we obtain MSTA-2 in Table 3, where the optimality condition
(17) is still checked in Step 3. The difference is that we do not simply drop m,
but make decisions based on an estimated optimal number of accepted tasks under
options (i) and (ii) mentioned above (denoted by U1 and U2 respectively) whenever
the optimality condition (17) is not met. MSTA-1 can obtain the lower bounds of the
optimal number of accepted tasks, which are good candidates for the two estimates
U1 and U2. Under option (i), we just remove task m, construct a new ACP, and
estimate the resulting optimal number of accepted tasks by MSTA-1. Under option
(ii), since we decide to keep the FIT m, task m can be regarded as non-removable.
Therefore, we can apply a deadline reduction process as in the previous section, that
is, reduce δi to min(δi, δm − μmτmin) for all tasks i < m. Then, we can estimate the
optimal number of accepted tasks for option (ii) by MSTA-1 based on the reduced
deadlines. By comparing the estimates, MSTA-2 can obtain a smaller optimality gap
than MSTA-1.

Table 3 Second order maximal shift task algorithm (MSTA-2)

Step 1: Reduce di to δi for i = 1, ..., N;
Step 2: Pick a BP {k, ..., n}, identify its FIT m and find the MST r;
Step 3: If r = m or Sr

m ≥ Xm − δm, then construct a new ACP by removing task r;
else compute U1 and U2 by applying MSTA-1;

If U1 ≥ U2, then construct a new ACP by removing m;
else δi := min(δi, δm − μmτmin) for i < m and goto Step 2;

Step 4: If there are no ITs in the new ACP, then end; otherwise goto Step 2.

54 Discrete Event Dyn Syst (2010) 20:37–62

Table 4 Branch and bound algorithm

Step 1: Reduce di to δi for i = 1, ..., N;
Step 2: Pick a BP {k, ..., n}, identify its FIT m and find the MST r;
Step 3: If r = m or Sr

m ≥ Xm − δm, then construct a new ACP by removing task r;
else construct a new ACP by setting δm = Xm − Sr

m and removing task r.
Step 4: If there are no ITs in the new ACP, then end; otherwise goto Step 2.

In view of the analysis above, a natural question is whether we can develop
an nth (n ≥ 3) Order Maximal Shift Task Algorithm (MSTA-n) to further reduce
the optimality gap. Indeed, we can always obtain MSTA-n by using MSTA-(n − 1)

to estimate U1 and U2 in Step 3. However, this process will result in higher
computational complexity. The worst case complexity of MSTA-1 is O(N2). For
MSTA-2, the worst case complexity becomes to O(N3). Based on simulation exper-
iments, MSTA-2 obtains sufficiently good results so it does not appear necessary to
increase n to 3 or more in practice.

3.5 Branch and bound algorithm

In this section, we describe a branch and bound algorithm which we use to obtain
an exact optimal solution serving as a baseline for the purpose of computing the
optimality gap of MSTA-1 or MSTA-2. In the “branch” part, we break the ACP into
subproblems. We only need to do so when we encounter a FIT m not satisfying the
optimality condition (17). In this case, we break it into two subproblems: one is a new
ACP obtained by adding the constraint zm = 0 and the other a new ACP obtained
by setting δi = min(δi, δm − μmτmin) for i < m.

In the “bound” part, we seek to obtain upper and lower bounds for the optimal
number of accepted tasks. MSTA-1 and MSTA-2 can obtain lower bounds and we
can derive an upper bound through the algorithm in Table 4, in which we actually
construct a new ACP with larger deadlines and can guarantee to obtain its optimal
solution. Since larger deadlines implies a larger optimal number of accepted tasks, its
optimal solution becomes an upper bound of the optimal number of accepted tasks
for the original ACP.

4 On-line admission control

So far, we have assumed that all task arrivals, number of operations, and deadlines
are known at the time we solve the ACP and, subsequently, the original problem
(1). This corresponds to an off-line approach. In this section, we tackle the on-
line admission control problem where all tasks are assumed removable and arrival
information is unavailable until tasks actually do arrive. Therefore, one can proceed
in two ways: (i) Based only on the information available for tasks already in queue,
and (ii) Using information in the form of the joint distribution of the arrival time,
deadline, and required number of operations of the next arriving task.

We begin with case (i). Without loss of generality, we assume the current decision
point is at time t > 0. Note that all tasks that arrived before t and have not been
processed yet can be regarded as a set of tasks sharing a common arrival time t.
Their arrival times and deadlines become compatible. Based on the results obtained

Discrete Event Dyn Syst (2010) 20:37–62 55

in classical scheduling theory, the optimal way to process these tasks is using the
Earliest Deadline First (EDF) policy. Since all tasks have the common arrival time t,
EDF is also FIFO and MSTA-1 can obtain the optimal admission control for all tasks
in queue from Corollary 3.1.

Next, we consider case (ii), i.e., making decisions based on uncertain information
about the next arriving task. Two natural questions arise: Is it possible to improve
performance by using such information, and, if so, how to accomplish it? The first
question can be answered through the simple example in Fig. 3, in which the next
arriving task 5 is imminent and has an urgent deadline, while the current task 1 has a
large number of operations and a relatively loose deadline. If no idling is allowed,
task 5 has to be rejected. However, it can be saved without adversely affecting
other tasks by slightly idling the processor as shown in Fig. 3. When distribution
information for the next arrival task is available, it is possible to compute some metric
quantifying the likelihood that the case above can occur. If the metric shows it can
happen with sufficiently high probability, then we may rescue the upcoming task by
postponing the start of the current task (i.e., by explicitly idling) and still successfully
process the postponed task. The net effect is better performing admission control
with high probability.

4.1 Idling conditions

To answer the second question, we can get some clues from the answer to the first
one. In particular, the key is to specify the aforementioned metric and compute it.
The theorem below is a step in this direction. Without loss of generality, assume that
at the current decision time, t, there are n remaining tasks after applying admission
control through MSTA-1 and they satisfy d1 ≤ d2 ≤ ... ≤ dn and t + ∑i

j=1 μ jτmin ≤ di

for i = 1, ..., n (as already mentioned, MSTA-1 yields the optimal solution in this

Fig. 3 No idling vs. idling

55

11

11 22 33 44

x
1

x
2

x
3 x

4

x
1

x
3 x

4
x
2

a
1
a
2 a3 a4

55 22 33 44

11

x
1

x
3 x

4
x
5

d
1

d
3 d

4
d
5

22 33 44

a
5

a
5 d

2

a
1
a
2 a3 a4

a
1
a
2 a3 a4

x
5

x
2

d
1

d
3 d

4
d
5 d

2

d
1

d
3 d

4d
2

Decision

Point

No Idling

Idling

55

11

11 22 33 44

x
1

x
2

x
3 x

4

x
1

x
3 x

4
x
2

a
1
a
2 a3 a4

55 22 33 44

11

x
1

x
3 x

4
x
5

d
1

d
3 d

4
d
5

22 33 44

a
5

a
5 d

2

a
1
a
2 a3 a4

a
1
a
2 a3 a4

x
5

x
2

d
1

d
3 d

4
d
5 d

2

d
1

d
3 d

4d
2

Decision

Point

No Idling

Idling

56 Discrete Event Dyn Syst (2010) 20:37–62

case). Moreover, the optimal processing time per operation can be assigned to task
1 using the CTDA (Mao et al. 2007) which solves problem (1). Let τ1 be this
processing time and let an+1, dn+1 and μn+1 denote the arrival time, deadline, and
number of operations of the next arriving task respectively. We are interested in
establishing necessary and sufficient conditions under which the optimal number of
remaining tasks that are all feasible (determined through MSTA-1 without any future
information available) can be improved by idling given some future information.
Then, clearly the optimal number of remaining tasks that are all feasible is at least
n. If we consider the next arriving task only, then the best we can do is increase this
number to n + 1.

It follows that the statement “we can improve the optimal number of remain-
ing tasks that are feasible under no future information” is equivalent to the two
conditions:

Condition 1 The optimal number of remaining tasks is n if we do not postpone
task 1.

Condition 2 The optimal number of remaining tasks is n + 1 if we idle and post-
pone task 1.

Theorem 4.1 Assume the current decision point is t and there are n tasks in queue that
are feasible. Let �(i) denote the set of tasks before task i and task i itself when all n + 1
tasks are sorted in ascending order of deadline and �(i) = �(i)\{1}. Condition 1 and
Condition 2 are satisfied if and only if

∃ i ∈ {2, ..., n + 1}, t + μ1τ1 +
∑

j∈�(i)
μ jτmin > di; (50)

an+1 +
∑

j∈�(i)
μ jτmin ≤ di, ∀ i = 1, ..., n + 1. (51)

Proof Let us first show that Condition 1 and Condition 2 are satisfied. We begin by
proving that

an+1 ≤ t + μ1τ1, (52)

Using the definitions of �(i) and �(i), we have
∑

j∈�(i)
μ jτmin ≤

∑
j∈�(i)

μ jτmin (53)

By Eq. 50, there exists some task i such that

t + μ1τ1 +
∑

j∈�(i)
μ jτmin > di

By Eq. 51, we have

an+1 +
∑

j∈�(i)
μ jτmin ≤ di

Combining the three inequalities above, we obtain the inequality 52.
Second, we consider the case where task 1 is not postponed, implying that t +

μ1τ1 is the next decision point. From Eq. 52, task n + 1 has arrived at this decision
point so that t + μ1τ1 + ∑

j∈�(i) μ(j)τmin is the earliest departure time of task i for all
i = 2, ..., n + 1.

Discrete Event Dyn Syst (2010) 20:37–62 57

Based on Lemma 2.1, we can check feasibility by analyzing the earliest departure
time which is achieved through the minimal processing time per operation τmin. Then,
from Eq. 50, at least one of tasks 2, ..., n + 1 will violate its deadline. By assumption,
there are n feasible tasks in queue so that we can always attain the feasibility of these
n tasks by removing task n + 1. Therefore, the optimal number of remaining tasks is
n if we do not postpone task i, i.e., Condition 1 is met.

Next, we consider postponing task 1, implying that an+1 is the next decision
point and an+1 + ∑

j∈�(i) μ(j)τmin is the earliest departure time of task i for all i =
1, ..., n + 1.

Similarly, we can still check feasibility based on the earliest departure time from
Lemma 2.1. Then, from Eq. 51, all n + 1 tasks can meet their deadlines. Thus,
Condition 2 is satisfied as well.

Now let us establish Eqs. 51 and 50 when Condition 1 and Condition 2 are satisfied.
First, we consider postponing task 1. From Condition 2 and Lemma 2.1, all n + 1
tasks can meet their deadlines by using the minimal processing time per operation
τmin, which turns out to be the inequality (51).

Second, we prove Eq. 52 has to be satisfied. Assume on the contrary that an+1 >

t + μ1τ1. From Eqs. 53 and 51 obtained above, we have

an+1 +
∑

j∈�(i)
μ jτmin ≤ di, ∀ i = 2, ..., n + 1

Combining it with an+1 > t + μ1τ1, all the other tasks can still meet their deadline by
using τmin if we do not postpone task 1, which means the optimal number of remaining
task also equals to n + 1 in the case of not postponing task 1. This contradicts
Condition 1 and leads to the conclusion that Eq. 52 must hold.

Finally, we consider the case where task 1 is not postponed. It follows from
Eq. 52 that t + μ1τ1 + ∑

j∈�(i) μ(j)τmin is the earliest departure time of task i for all
i = 2, ..., n + 1. Then, from Condition 1 and Lemma 2.1, if we do not postpone task
1, there is at least one among tasks 2, ..., n + 1 such that its earliest departure time is
larger than its deadline, which is precisely inequality (50). ��

4.2 On-line admission control algorithm

Let f denote the joint distribution of (an+1, dn+1, μn+1) and P(t, f) denote the
probability that (an+1, dn+1, μn+1) satisfies Eqs. 50 and 51 at the decision point
t. From Theorem 4.1, P(t, f) can be the metric to indicate how likely it is that
idling and postponing the current task improves performance. Thus, if P(t, f) > p
(typically, p = 0.5), then we postpone the current task and otherwise immediately
process it. Although P(t, f) may not be easy to compute in closed form, one can
always estimate it through Monte Carlo methods, that is, randomly generating M
samples of (ai

n+1, di
n+1, μ

i
n+1) and calculating

∑M
i=1 1(ai

n+1, di
n+1, μ

i
n+1)/M, where 1(·)

is the indicator function indicating whether (ai
n+1, di

n+1, μ
i
n+1) satisfies Eqs. 50 and

51. When selecting M, we face a trade-off between computing time and the extent of
performance improvement we can realize. We can save computing time by reducing
M, but the estimation of P(t, f) becomes less accurate. To guarantee a performance
improvement, we need to increase the threshold, p, which in turn results in reduced
improvement of performance.

Further, if the decision is to idle, there remains a question regarding the length
of idling. Let P(t + w, f) denote the probability that (an+1, dn+1, μn+1) satisfies

58 Discrete Event Dyn Syst (2010) 20:37–62

Table 5 On-line admission control algorithm

Step 1: Sort all tasks waiting in queue in ascending order of deadline and apply MSTA and CTDA;
Step 2: Estimate P(t, f) by Monte Carlo method;
Step 3: If P(t, f) > 0.5, then estimate w∗ and postpone the current task for w∗; otherwise just

process the current task.

Eqs. 50 and 51 if we postpone the current task by w and the next task still does
not arrive. Define

� = {w : P(t + w, f) ≤ 0.5, w ≥ 0} and w∗ = min
w∈�

w.

We can see that w∗ is the optimal idling time. However, w∗ is much harder to
compute in closed form than P(t, f). Let L = mini=1,...,n(di − ∑i

j=1 μiτmin). We can
bound w∗ as follows: 0 ≤ w∗ ≤ L − t, because Eq. 51 requires the next task to arrive
before L. Moreover, it is clear that the longer idling is, the less likely we are to
increase the optimal number of remaining tasks since less time becomes available for
rescuing the next task. Thus, assuming that P(t + w, f) is monotonically decreasing
in w, an estimate of w∗ may be efficiently obtained through simple binary search
over the interval [0, L − t]. This discussion leads to the on-line admission control
algorithm shown in Table 5.

5 Numerical results

5.1 Optimality gap

We first compare the optimality gap of the three algorithms: OAT (discussed in
Section 1), MSTA-1 and MSTA-2. In this experiment, interarrival times have an
exponential distribution with mean 8, μi is a random integer uniformly distributed
in {1, ..., 10}, di − ai is uniformly distributed in [2μi, 4μi] and τmin = 1. We test cases
where N varies from 20 to 50 in increments of 3 and randomly generate 100 samples
for each N. The results are shown in Fig. 4, in which the optimality gap G(U) is
normalized using

G(U) = (UB − U)/(N − UB)

where UB is the optimal number of accepted tasks obtained by the branch and bound
algorithm and U is the result obtained by any one of the three algorithms of interest.
The plots on the left compare the optimality gap in the average case and the ones
on the right compare the optimality gap in the worst case. It can be easily seen that
MSTA-2 has a much smaller optimality gap than the other two.

5.2 Idling vs non-idling

Next, we compare two on-line admission control algorithms: one without idling and
the other with idling. The setting of the on-line experiments is the same as above and
we select M = 50 and p = 0.5. Both algorithms were programmed using MATLAB
7.1 on an Intel Pentium4 3.06GHz, 1.0GB RAM machine. Figure 5 compares the
performance of these two on-line algorithms, in which the average number of tasks

Discrete Event Dyn Syst (2010) 20:37–62 59

OAT MSTA-1 MSTA-2

20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 M
ax

im
u

m
 G

ap

 Number of Tasks
20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

 M
ea

n
 G

ap

 Number of Tasks

Fig. 4 Mean and maximum optimality gaps

removed is plotted as a function of the total number of tasks N. We see that idling
results in removing about 28 − 31% fewer tasks compared to no idling. Figure 6
compares the complexity of these two on-line algorithms in terms of average CPU
time. Obviously, on-line admission control without idling has a lower complexity
because it does not need to calculate the metric P(t, f) and the length of idling.
However, the algorithm with idling is still very efficient (e.g., it can obtain on-lines
solutions for N = 1000 tasks in less than 0.9 seconds, i.e., less than 0.9 milliseconds
for each task). Moreover, the efficiency can be further improved by programming in
C code instead of MATLAB.

Fig. 5 Performance
comparison of two on-line
algorithms

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

A

ve
ra

g
e

N
u

m
b

er
 o

f T
as

ks
 R

em
ov

ed

 Number of Tasks: N

No idling
Idling

60 Discrete Event Dyn Syst (2010) 20:37–62

Fig. 6 Complexity comparison
of two on-line algorithms

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A

ve
ra

g
e

C
P

U
 t

im
e

(s
ec

o
n

d
)

 Number of Tasks: N

No idling

Idling

6 Conclusions

In this paper, we have removed the restriction that a feasible solution exists in
Problem (1) for DES with hard real-time constraints and have formulated an
associated admission control problem (ACP) for maximizing the number of tasks
processed which are guaranteed feasibility. We exploit an optimality property based
on identifying and removing “maximal shift tasks” and develop an efficient admission
control algorithm, termed Maximal Shift Task Algorithm (MSTA). We show that
the MSTA yields an optimal solution when a sufficient condition is satisfied, which
actually applies to many situations in practice. Further, we exploit an invariance
property of the ACP with respect to reducing deadlines of certain tasks and modify
the original MSTA, referred to as First Order Maximal Shift Task Algorithm
(MSTA-1), to obtain a Second Order Maximal Shift Task Algorithm (MSTA-2). The
latter reduces the optimality gap present when MSTA-1 is only able to deliver a near-
optimal solution.

In addition, we have shown that in on-line control cases where no future task
information is available, idling, though possibly counterintutive, may in fact be
optimal. We have also derived necessary and sufficient conditions under which this
property holds and have defined a metric for evaluating when and how long it is
optimal to idle.

Problem (1) characterizes a single-stage DES. Multi-stage systems studied in Mao
and Cassandras (2006) face similar feasibility issues, which are complicated by the
coupling among stages. Our ongoing work is aimed at studying the admission control
problem in such systems.

References

Aydin H, Melhem R, Mossé D, Mejia-Alvarez P (2004) Power-aware scheduling for periodic real-
time tasks. IEEE Trans Comput 53(5):584–600, May

Discrete Event Dyn Syst (2010) 20:37–62 61

Buttazzo GC (1997) Hard real-time computing systems: predictable scheduling algorithms and ap-
plications. Kluwer, Norwell

Chetto H, Chetto M (1989) Some results of the earliest deadline scheduling algorithm. IEEE Trans
Software Eng 15(10):1261–1269

Dauzère-Pérès S, Sevaux M (2002) Using lagrangean relaxation to minimize the weighted number of
late jobs on a single machine. Nav Res Logist 50(3):273–288

Dauzère-Pérès S, Sevaux M (2004) An exact method to minimize the number of tardy jobs in single
machine scheduling. J Sched 7(6):405–420

Gamal AE, Nair C, Prabhakar B, Uysal-Biyikoglu E, Zahedi S (2002) Energy-efficient scheduling of
packet transmissions over wireless networks. In: Proceedings of IEEE INFOCOM, vol 3, 23–27.
IEEE, New York, pp 1773–1782

Jeffay K, Stanat DF, Martel CU (1991) On non-preemptive scheduling of periodic and sporadic tasks.
In: Proc. of the IEEE real-time systems symposium. IEEE, Piscataway, pp 129–139

Jonsson J, Lonn H, Shin KG (1999) Non-preemptive scheduling of real-time threads on multi-level-
context architectures. In: Proceedings of the IEEE workshop on parallel and distributed real-
time dystems, vol 1586. Springer, Berlin, pp 363–374

Kise H, Ibaraki T, Mine H (1978) A solvable case of the one-machine scheduling problem with ready
and due times. Oper Res 26(1):121–126

Lenstra JK, Rinnooy Kan AHG, Brucker P (1977) Complexity of machine scheduling problems. Ann
Discrete Math 1:343–362

Liu JWS (2000) Real-time systems. Prentice Hall, Englewood Cliffs
Mao J, Cassandras CG (2006) Optimal control of multi-stage discrete event systems with real-time

constraints. In: Proc. of 45rd IEEE conf. decision and control. IEEE, Piscataway, pp 1057–1062
(subm. to IEEE Trans. on Automatic Control, 2007)

Mao J, Cassandras CG (2007) Optimal admission control of discrete event systems with real-time
constraints. In: Proc. of 46rd IEEE conf. decision and control. IEEE, Piscataway

Mao J, Cassandras CG, Zhao QC (2007) Optimal dynamic voltage scaling in power-limited systems
with real-time constraints. IEEE Trans Mobile Comput 6(6):678–688, June

Miao L, Cassandras CG (2006) Optimal transmission scheduling for energy-efficient wireless net-
works. In: Proceedings of INFOCOM. IEEE, Piscataway

Moore JM (1968) A n job, one machine sequencing algorithm for minimizing the number of late jobs.
Manag Sci 15(1):102–109

Pepyne DL, Cassandras CG (2000) Optimal control of hybrid systems in manufacturing. In: Proceed-
ings of the IEEE, vol 88. IEEE, Piscataway, pp 1108–1123

Schwan K, Zhou H (1992) Dynamic scheduling of hard real-time tasks and real-time threads. IEEE
Trans Softw Eng 18(8):736–748

Silly M, Chetto H, Elyounsi N (1990) An optimal algorithm guaranteeing sporadic tasks in hard real-
time systems. In: Proceedings of the 2nd IEEE symposium on parallel and distributed processing.
IEEE, Piscataway, pp 578–585

Tia T, Liu W, Sun J, Ha R (1994) A linear-time optimal acceptance test for scheduling of hard real-
time tasks. Preprint, Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign

Yao F, Demers A, Shenker S (1995) A scheduling model for reduced cpu energy. In: Proceedings of
the 36th Annual symposium on foundations of computer science (FOCS’95). IEEE Computer
Society, Los Alamitos, pp 374–382

62 Discrete Event Dyn Syst (2010) 20:37–62

Jianfeng Mao received the B.E. degree (Major in Automatic Control) and M.E. degree (Major
in Control Theory and Applications) from Tsinghua University, Beijing, China in 2001 and 2004,
respectively. Currently, he is a Ph.D. candidate of Systems Engineering at Boston University, Boston,
MA. He specializes in the areas of modeling and optimization of complex systems with application
to sensor networks, manufacturing systems. He is a student member of IEEE.

Christos G. Cassandras received the B.S. degree from Yale University, New Haven, CT, the M.S.E.E
degree from Stanford University, Stanford, CA, and the S.M. and Ph.D. degrees from Harvard
University, Cambridge, MA, in 1977, 1978, 1979, and 1982, respectively. From 1982 to 1984 he was
with ITP Boston, Inc. where he worked on the design of automated manufacturing systems. From
1984 to 1996 he was a Faculty Member at the Department of Electrical and Computer Engineering,
University of Massachusetts, Amherst. Currently, he is Head of the Division of Systems Engineering
and Professor of Electrical and Computer Engineering at Boston University, Boston, MA and a
founding member of the Center for Information and Systems Engineering (CISE). He specializes in
the areas of discrete event and hybrid systems, stochastic optimization, and computer simulation,
with applications to computer networks, sensor networks, manufacturing systems, transportation
systems, and command/control systems. He has published over 250 papers in these areas, and four
books. Dr. Cassandras is currently Editor-in-Chief of the IEEE Transactions on Automatic Control
and has served on several editorial boards and as Guest Editor for various journals. He has also
served on the IEEE Control Systems Society Board of Governors. He is the recipient of several
awards, including the Distinguished Member Award of the IEEE Control Systems Society (2006),
the 1999 Harold Chestnut Prize, and a 1991 Lilly Fellowship. He is a member of Phi Beta Kappa and
Tau Beta Pi, a Fellow of the IEEE and a Fellow of the IFAC.

	Optimal Admission Control of Discrete Event Systems with Real-Time Constraints
	Abstract
	Introduction
	Problem formulation
	Optimality properties
	Busy period and first infeasible task
	Maximal shift task
	Deadline reduction
	Maximal shift task algorithm
	Branch and bound algorithm

	On-line admission control
	Idling conditions
	On-line admission control algorithm

	Numerical results
	Optimality gap
	Idling vs non-idling

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

