
The event-driven paradigm for control, communication and
optimization

Christos G. Cassandras*

Division of Systems Engineering and Center for Information and Systems Engineering, Boston
University, Boston, MA, USA

(Received 31 December 2013; accepted 17 January 2014)

The event-driven paradigm offers an alternative to the time-driven paradigm for
modelling, sampling, estimation, control and optimization. This has come about lar-
gely as a consequence of systems being increasingly networked, wireless and con-
sisting of distributed communicating components. The key idea is that control
actions need not be dictated by time steps taken by a “clock”; rather, an action
should be triggered by an “event” which may be a well-defined condition on the
system state, including the possibility of a simple time step, or a random state transi-
tion. We provide an overview of recent developments in event-driven approaches
and focus on two areas to illustrate their value. First, in distributed systems, we
describe how event-driven, rather than synchronous, communication can guarantee
convergence in cooperative distributed optimization while provably maintaining
optimality. Second, in hybrid systems where events naturally decompose state trajec-
tories into different discrete states (modes), we review the theory of infinitesimal
perturbation analysis (IPA) which offers an event-driven “IPA calculus” for evaluat-
ing (or estimating in the case of stochastic systems) gradients of performance met-
rics, thus facilitating the solution of a large class of control and optimization
problems.

Keywords: event-driven control; distributed systems; hybrid systems; infinitesimal
perturbation analysis

1. Introduction

The time-driven paradigm for the modelling and analysis of dynamic systems is
founded on the centuries-old theoretical framework provided by differential (or differ-
ence) equations. In this paradigm, time is an independent variable and, as it evolves, so
does the state of the system. Conceptually, there is an underlying “clock” and with
every “clock tick” a state update is performed, including the case where no change in
the state occurs. Methodologies for sampling, estimation, communication, control and
optimization are also founded on the same time-driven principle. The digital technologi-
cal advances of the 1970s and beyond have facilitated the implementation of this para-
digm with digital clocks embedded in hardware and used to drive the collection of data
or the actuation of devices employed to control various processes.

In a world increasingly networked, wireless and involving large-scale distributed
systems, the universal value of this point of view has understandably come to question.
While it is always possible to postulate an underlying clock with time steps dictating
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state transitions, it may not be feasible to guarantee the synchronisation of all
components of a distributed system to such a clock; nor is it efficient to trigger actions
with every time step when such actions may be unnecessary. The event-driven para-
digm offers an alternative, complementary look at control, communication and optimi-
zation. The key idea is that a clock should not be assumed to dictate actions simply
because a time step is taken; rather, an action should be triggered by an “event” speci-
fied as a well-defined condition on the system state or as a random state transition.
Note that such an event could be defined to be the occurrence of a “clock tick”, so that
this framework may in fact incorporate time-driven methods as well. On the other
hand, defining the proper “events” requires more sophisticated techniques compared to
simply reacting to time steps.

This alternative event-driven view is well-motivated. For starters, there are many
natural discrete event systems (DES) where the only changes in their state are dictated
by event occurrences. The Internet is a prime example, where “events” are defined by
packet transmissions and receptions at various nodes, causing changes in the contents
of various queues. For such systems, a time-driven modelling approach may not only
be inefficient, but also potentially erroneous, as it cannot deal with events designed to
occur concurrently in time. Beyond these systems, there are many more which are
“hybrid” in nature, i.e. at least some of their state transitions are caused by (possibly
controllable) events. The recent emergence of cyber-physical systems (CPS) is an
example of this hybrid structure, where physical processes are modelled through time-
driven dynamics, while various embedded sensing and actuating devices interfacing
with these processes operate in event-driven mode. Last but not least, many systems of
interest are networked and spatially distributed. In such settings, especially when
energy-constrained wireless devices are involved, frequent communication among sys-
tem components can be inefficient, unnecessary and sometimes infeasible. Thus, rather
than imposing a time-driven communication mechanism, it is reasonable to seek instead
to define specific events which dictate when a particular node in a network needs to
exchange information with one or more other nodes. When, in addition, the environ-
ment is stochastic, significant changes in the operation of a system are the result of ran-
dom event occurrences, so that, once again, understanding the implication of such
events and reacting to them is crucial.

Besides their modelling potential, it is important to note that event-driven approaches
to fundamental processes such as sampling, estimation and control possess important
properties related to variance reduction and robustness of control policies to modelling
uncertainties. These properties render them attractive, compared to time-driven
alternatives.

The importance of event-driven behaviour in dynamic systems was recognised and
studied in the early 1980s with the emergence of DES, e.g. see Cassandras and
Lafortune (2008) and references therein. In recent years, however, there have been
significant developments in applying event-driven methods (also referred to as
“event-based” and “event-triggered”) to classical feedback control systems; see Arzen
(2002), Heemels, Sandee, and Bosch (2008), Lunze and Lehmann (2010), Tabuada
(2007), Anta and Tabuada (2010) and references therein. For example, in Heemels
et al. (2008) a controller for a linear system is designed to update control values only
when a specific error measure (e.g. for tracking or stabilisation purposes) exceeds a
given threshold, while refraining from any updates otherwise. It is also shown how
such controllers may be tuned and how bounds may be computed in conjunction with
known techniques from linear system theory. As another example, in Anta and Tabuada
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(2010) an event-driven approach termed “self-triggered control” determines instants
when the state should be sampled and control actions taken for some classes of
non-linear control systems. Benefits of event-driven mechanisms for estimation
purposes are considered in Astrom and Bernhardsson (2002) and Shima, Rasmussen,
and Chandler (2007). In Astrom and Bernhardsson (2002), for instance, an event-based
sampling mechanism is studied where a signal is sampled only when measurements
exceeded a certain threshold and it is shown that this approach outperforms a classical
periodic sampling process at least in the case of some simple systems. Finally, in
distributed systems, event-driven mechanisms have the advantage of significantly
reducing communication among networked components without affecting desired
performance objectives; see Wang and Lemmon (2011), Zhong and Cassandras (2010),
Heemels, Donkers, and Teel (2013). In Heemels et al. (2013), a control scheme com-
bining periodic (time-driven) and event-driven control is used for linear systems to
update and communicate sensor and actuation data only when necessary in the sense of
maintaining a satisfactory closed-loop performance. It is shown that this goal is attain-
able with a substantial reduction in communication over the underlying network. In
Zhong and Cassandras (2010), on the other hand, the goal is for a system of networked
components to cooperatively maximise (or minimise) a given objective; it is shown that
an event-driven scheme can still achieve the optimization objective while drastically
reducing communication (hence, prolong the lifetime of a wireless network.)

In the remainder of this paper, we limit ourselves to discussing how the
event-driven paradigm is applied in two areas. First, in distributed systems, we review
the framework in Zhong and Cassandras (2010) illustrating how event-driven, rather
than synchronous, communication can guarantee convergence in cooperative distributed
optimization while provably maintaining optimality. This can significantly reduce the
energy consumption of wireless devices used in distributed systems (sensor networks,
multi-agent systems, etc.) Second, in hybrid systems (HSs), we consider a general-pur-
pose control and optimization framework where controllers are parameterised and the
parameters are adaptively tuned on line based on observable data. This process is car-
ried out based on gradients of given performance measures with respect to these param-
eters, so as to iteratively adjust their values. When the environment is stochastic, this
entails generating gradient estimates with desirable properties such as unbiasedness.
This gradient estimation approach is based on the Infinitesimal Perturbation Analysis
(IPA) theory (Cassandras & Lafortune, 2008; Ho & Cao, 1991) adapted to HSs and
results in an “IPA calculus” developed in Cassandras, Wardi, Panayiotou, and Yao
(2010) which amounts to a set of simple event-driven iterative equations. This IPA
calculus may be used to obtain state sensitivity estimates on line and, ultimately, to
solve a large class of optimization problems with little or no knowledge of the noise
or random processes affecting their dynamics. As we will see, the event-driven nature
of these equations provides a scalable setting for addressing potentially very complex
control and optimization problems.

2. Event-driven control and optimization in distributed systems

Distributed control and optimization arise in settings which involve multiple controlla-
ble system components cooperating toward a common objective without a central con-
troller to coordinate their actions. The cooperating components define a dynamic
system which may be thought of as a network with each component corresponding to a
node maintaining its own state si, i = 1, …, N. The goal of each node is to control its
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state so as to optimize some system-wide objective expressed as a function HðsÞ of
s ¼ ½s1; . . .; sN � and possibly the state of the environment.

To achieve such a goal in a dynamic and uncertain environment, the nodes must
share, at least partially, their state information. However, this may require a large
amount of information flow and becomes a critical issue when the system consists of
wireless communicating nodes which are often small, inexpensive devices with limited
resources (e.g. a sensor network). Aside from energy required to move (if nodes are
mobile), communication is known to be by far the largest consumer of the limited
energy of a node (Shnayder, Hempstead, Chen, Allen, & Welsh, 2004), compared to
other functions such as sensing and computation. Moreover, every communication
among nodes offers an opportunity for corruption or loss of information due to random
effects or adversarial action. Therefore, it is crucial to reduce communication between
nodes to the minimum possible. This in turn imposes a constraint on the optimization
task performed by each node, since it requires that actions be taken without full knowl-
edge of other nodes’ states. Standard synchronisation schemes require that nodes
exchange state information frequently, usually periodically, which can clearly be ineffi-
cient and, in fact, often unnecessary since it is possible that: (i) system inactivity makes
the periodic (purely time-driven) exchange of information unnecessary, (ii) occasional
state information is adequate for control and/or optimization mechanisms which do not
require perfect accuracy at all times and (iii) the state information of other nodes can
often be estimated reasonably well and explicit communication is thus redundant. This
motivates the need for asynchronous optimization mechanisms in which a node com-
municates with others only when it considers it indispensable; in other words, each
node tries to reduce the cost of communication by transmitting state information only
under certain conditions and only as a last resort. The conditions under which a node
takes such communication actions defines “events” which in turn drive an underlying
optimization scheme.

This general setting applies to a variety of application domains. If the nodes are
vehicles, one of the objectives may be to control their locations so as to maintain some
desirable formation (Lawton, Young, & Beard, 2000; Ögren, Fiorelli, & Leonard, 2004)
while following a given trajectory. In a sensor network, nodes must be placed so as to
achieve objectives such as maximising the probability of detecting events in a given
region or maintaining a desired distance from data sources that ensures high-quality
monitoring (Cassandras & Li, 2005; Cortés et al., 2004; Ganguli, Cortés, & Bullo,
2006; Hokayem, Stipanovic, & Spong, 2007; Hussein & Stipanovic, 2007;
Meguerdichian, Koushanfar, Potkonjak, & Srivastava, 2001; Mihaylova, Lefebvre,
Bruyninckx, & Gadeyne, 2002; Zhong & Cassandras, 2011; Zou & Chakrabarty,
2003); this is often referred to as a “coverage control” problem. Related to coverage
control is the “persistent monitoring” problem where nodes must monitor a dynamically
changing environment which cannot be fully covered by a stationary team of nodes; in
this case, all areas of a mission space must be visited infinitely often (Pasqualetti,
Franchi, & Bullo, 2012; Smith, Schwager, & Rus, 2012; Cassandras, Lin, & Ding,
2013). In some cases, the state of a node may not be its location but rather its percep-
tion of the environment which changes based on data directly collected by that node or
communicated to it by other nodes; consensus problems fall in this category (DeGroot,
1974; Jadbabaie, Lin, & Morse, 2003; Moreau, 2005).

We consider a distributed system viewed as a network of N cooperating nodes. The
system’s goal is to minimise an objective function HðsÞ known to all nodes with every

6 C.G. Cassandras

D
ow

nl
oa

de
d 

by
 [

17
3.

48
.1

07
.1

26
] 

at
 1

6:
46

 0
1 

M
ay

 2
01

4 



node controlling its individual state si 2 R
ni , i = 1, …, N. The state update scheme

employed by the ith node is of the general form

siðk þ 1Þ ¼ siðkÞ þ aidiðsðkÞÞ; k ¼ 0; 1; . . . (1)

where αi is a constant positive step size and diðsðkÞÞ is an update direction evaluated at
the kth update event (see also (Bertsekas & Tsitsiklis, 1997)). We normally use

diðsðkÞÞ ¼ �riHðsðkÞÞ
where rHðsðkÞÞ is the gradient of HðsðkÞÞ and riHðsðkÞÞ 2 R

ni . In general, each state
is characterised by dynamics of the form _siðtÞ ¼ fiðsi; ui; tÞ where ui 2 R

l is a control
vector; for our purposes, however, we treat si as a directly controllable vector. Thus, in
(1) we view si(k + 1) as the desired state determined at the kth update event and assume
that the control ui is capable of reaching si(k + 1) from si(k) within a time interval
shorter than the time between update events.

A fundamental difficulty in (1) is that sðkÞ is in fact not fully known to node i.
Thus, diðsðkÞÞ has to be evaluated by synchronising all nodes to provide their states to
node i at the time its kth update event takes place. This is extremely costly in terms of
communication; it also assumes no delays so that the state information can be accurate.
Alternatively, node i can evaluate diðsðkÞÞ using estimates of sj for all j ≠ i relying on
prior information from node j and possibly knowledge of its dynamics. This gives rise
to the state update scheme

siðk þ 1Þ ¼ siðkÞ þ adiðsiðkÞÞ; k ¼ 0; 1; . . . (2)

used by nodes i = 1, …, N, where diðsiðkÞÞ is an update direction such that siðkÞ is
the state estimate vector evaluated by node i at the kth update event. There are various
ways for node i to estimate the state of some j ≠ i. As an example, the simplest esti-
mate is to use the most recent state information received from node j.

To be more precise, let tk, k = 1, 2, …, denote the time when any one node
performs a state update, i.e. it takes an action based on (2). We impose no constraint
on when such an update event occurs at a node and only assume that every node
performs an update with sufficient frequency relative to the updates of other nodes (this
assumption is formally stated in Zhong & Cassandras, 2010). Next, let us discuss the
state communication process which is, in general, decoupled from the state update
process. Let s j

n be the nth time when node j broadcasts its true state to its neighbouring
nodes, n = 1, 2, … and set s j

0 ¼ 0. We assume that at all communication event times,
the state information broadcasted by node j can reach any other node with bounded
delay, i.e. we assume that the underlying network is connected (if connectivity is lost
by some node, then a related problem is to ensure that the node, if mobile, can control
its state so as to re-establish such connectivity). We are interested in the most recent
communication event from a node j ≠ i and define

s jðkÞ ¼ maxfs j
n : s

j
n 6 tk ; n ¼ 0; 1; 2; . . .g (3)

as the time of the most recent communication event at node j up to a state update event
at tk. In order to differentiate between a node state at any time t and its value at the
specific update times tk, k = 0, 1, …, we use xi(t) to denote the former and observe that
si(k) = xi(tk). Returning to the issue of how node i may estimate the state of some j ≠ i,
the simplest is to use the most recent state information received at time τ j(k), i.e.

sijðkÞ ¼ xjðs jðkÞÞ (4)
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Alternatively, node i may use a dynamic linear estimate of the form

sijðkÞ ¼ xjðs jðkÞÞ þ tk � s jðkÞ
Dj

� aj � dj;sjðkÞ (5)

where Δj is an estimate of the average time between state updates at node j (e.g. a
known constant if node j performs periodic updates) and dj;sjðkÞ is the update direction
communicated by node j at time τ j(k) along with its state. Note that [tk− τ j(k)]/Δj is an
estimate of the number of state updates at j since its last communication event. Observe
that under the assumption that the precise local decision-making process of j is known
to i, then i can evaluate sijðkÞ using this information with initial condition xj(τ

j(k)). In
this case, the estimate is error-free except for noise that may have affected the actual
state evolution of node j in the interval [τ j(k), tk]. In general, the value of an estimate
sijðkÞ used by node i to estimate node j’s state depends on tk, the most recent communi-
cation event time τ j(k), and the actual state xj(τ

j(k)) of node j at that time. In practice,
we have found that the simple estimate in (4) performs very well in implementing the
event-driven scheme that follows.

We now concentrate on the key issue related to an event-driven communication
scheme: determining instants when a node j may communicate its state to other nodes
through communication events. Such communication events occur at different times for
each node, as do each node’s state update events, so that the resulting mechanism is
fully asynchronous. The scheme developed and analysed in Zhong and Cassandras
(2010) is one where a node j maintains an error function gðxjðtÞ; xijðtÞÞ of its actual
state xj(t) relative to its state as estimated by other nodes i ≠ j, xijðtÞ (which node j can
evaluate). This function measures the quality of the state estimate of node i with the
requirement that

gðxiðtÞ; x j
iðtÞÞ ¼ 0 if xiðtÞ ¼ x j

iðtÞ (6)

Examples of gðxiðtÞ; x j
iðtÞÞ include k xiðtÞ � x j

iðtÞ k1 and k xiðtÞ � x j
iðtÞ k2. If

different nodes use different means to estimate i’s state, then generally x j
iðtÞ 6¼ xki ðtÞ for

nodes j ≠ k and communication may be limited to a node-to-node process. Let δi(k)
be an error threshold, determined by node i after the kth state update event. Let ~kit be
the index of the most recent state update time of node i up to t, and sijn be the nth
time when node i sends its true state to node j. Let us also set sij0 ¼ 0 for all i, j. Then,
the communication event policy at node i with respect to node j is specified by

s ij
n ¼ infft : gðxiðtÞ; xi jðtÞÞ > dið~kitÞ; t[ sijn�1g (7)

When a communication event is triggered by (7) at sijn , assuming negligible commu-
nication delay, xji is instantaneously set to xiðsijnÞ, i.e. xi jððsijnÞþÞ ¼ xiðsijnÞ. Therefore, the
error measure is reset to zero, i.e. gðxiððsijnÞþÞ; xi jððsijnÞþÞÞ ¼ 0. In other words, a node
does not incur any communication cost unless it detects that the deviation of its state
from the other nodes’ estimate of its state becomes too large; this may happen due to
the normal state update (2) accumulating noise, imperfect state estimation or through
unexpected state changes (e.g. if a mobile node encounters an obstacle).

Regarding the choice of threshold δi(k), the basic idea is to use a large value at the
initial stages of the optimization process and later reduce it to ultimately ensure conver-
gence. The approach we follow is to control δi(k) in a manner which is proportional to
kdiðsiðkÞÞk2, the Euclidean norm of the update direction at the kth update event hence-
forth denoted by ‖⋅‖. Thus, let
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diðkÞ ¼ KdkdiðsiðkÞÞk if a state update occurs at tk
diðk � 1Þ otherwise

�
(8)

where Kδ is a positive constant. We also impose an initial condition such that

dið0Þ ¼ Kdkdiðsið0ÞÞk; i ¼ 1; . . .;N (9)

and

sijð0Þ ¼ xjð0Þ (10)

Note that (10) can be readily enforced by requiring all nodes to share their initial
states at the beginning of the optimization process, i.e. sij0 ¼ 0 for all i, j; since gener-
ally gðxið0Þ; x j

ið0ÞÞ > dið0Þ, this triggers (7) and results in gðxiðð0ÞþÞ; x j
iðð0ÞþÞÞ ¼ 0:

for all i = 1, …, N. Also note that since siðkÞ is node i’s local estimate of sðkÞ at tk, the
computation in (8) requires only local information.

First, assuming negligible communication delays, it is proved in Zhong and
Cassandras (2010) that under rather mild technical conditions the resulting optimization
scheme converges and leads to a minimum of HðsÞ; this minimum may be local or
global depending on the nature of the objective function. The analysis is based on the
distributed optimization framework in Bertsekas and Tsitsiklis (1997), but the emphasis
here is on controlling the asynchronous occurrence of communication events through
the threshold-based scheme outlined above in a way that may drastically reduce the
number of such events while still guaranteeing convergence. In what follows, we state
the assumptions and the theorem found in Zhong and Cassandras (2010).

Assumption 1. There exists a positive integer B such that for every i = 1, …, N and k ≥ 0 at
least one of the elements of the set {k − B + 1, k − B + 2, …, k} is such that a state update
occurs at tk.

Assumption 2. The objective function HðsÞ, where s 2 R
m, m ¼ PN

i¼1 ni, satisfies the
following:

(a) HðsÞ > 0 for all s 2 R
m

(b) H( ⋅ ) is continuously differentiable and ∇H( ⋅ ) is Lipschitz continuous, i.e.
there exists a constant K1 such that for all x; y 2 R

m,
krHðxÞ � rHðyÞk 6 K1kx� yk:

Assumption 3. There exist positive constants K2 and K3 such that for all i = 1, …, N and
k 2 Ci, we have

(a) diðkÞ0riHðsiðkÞÞ 6 �kdiðkÞk2=K3

(b) K2kriHðsiðkÞÞk 6 kdiðkÞk

Assumption 4. The error function gðxiðtÞ; xjiðtÞÞ satisfies the following:

(a) There exists a positive constant K4 such that k xiðtÞ � x j
iðtÞ k6 K4gðxiðtÞ; x j

iðtÞÞ
for all i, j, t

(b) gðxiðtÞ; x j
iðtÞÞ 6 dið~kitÞ where ~kit was defined earlier as the index of the most

recent state update time of node i up to t.
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Theorem 1: Under Assumptions 1–4, the communication event policy (7), and the state
update scheme (2), if the error threshold δi(k) controlling communication events is set by
(8)–(9), then there exist positive constants α and Kδ such that limk!1rHðsðkÞÞ ¼ 0.

When an explicit noise term is included in (2), this analysis still leads to a similar
convergence result under some additional conditions bounding this noise term. Finally,
we also allow communication delays to be non-negligible, as long as there exists an
upper bound in the number of state update events that occur between the time of a
communication event initiated by a node and the time when all nodes receive the com-
municated message. This requires a simple modification in how communication events
are generated. However, the resulting optimization mechanism is shown to still con-
verge to a minimum of HðsÞ and a formal result similar to Theorem 1 can be found in
Zhong and Cassandras (2010).

This event-driven distributed optimization approach has been applied to coverage
control problems in which a scheme based on (2) is used in order to deploy sensor
nodes in a region (possibly containing polygonal obstacles) so as to maximise the prob-
ability of detecting events (e.g. unknown data sources) in this region. Compared to the
work in Cassandras and Li (2005), where it was assumed that all nodes have perfect
state information by synchronising update events with communication events, this syn-
chronisation requirement is relaxed and communication events are limited to occur
according to the event-driven policy outlined above, leading to convergence to the
optimum.

3. Event-driven perturbation analysis and optimization in HSs

A HS consists of both time-driven and event-driven components (Cassandras &
Lygeros, 2007). The modelling, control and optimization of these systems is quite chal-
lenging. In particular, the performance of a Stochastic Hybrid System (SHS) is
generally hard to estimate because of the absence of closed-form expressions capturing
the dependence of interesting performance metrics on design or control parameters.
Most approaches rely on approximations and/or using computationally taxing methods,
often involving dynamic programming techniques. The inherent computational com-
plexity of these approaches makes them unsuitable for online optimization. In the case
of parametric optimization, on the other hand, application of IPA (Cassandras, Wardi,
Melamed, Sun, & Panayiotou, 2002; Cassandras et al., 2010) to SHS has been very
successful in online applications. This general-purpose framework is depicted in
Figure 1 where an observed sample performance metric is denoted by LðhÞ and its gra-
dient, as evaluated by IPA, is denoted by rLðhÞ. This is used by a standard gradient-
based scheme to iterate on the value of h which characterises a control or design policy
subsequently affecting the performance of the HS. Note that rLðhÞ is evaluated based
on readily available data observed from a single sample path of the SHS. More impor-
tantly, as discussed in the remainder of this section, this gradient estimate is obtained
in event-driven fashion and possesses several attractive properties.

As indicated in Figure 1, the ultimate goal of the iterative process shown is to max-
imise Ex½Lðh;xÞ�, where we use ω to emphasise dependence on a sample path ω of
the SHS. This is possible under standard ergodicity conditions imposed on the underly-
ing stochastic processes, as well as the assumption that a single global optimum exists;
otherwise, the gradient-based approach is simply continuously attempting to improve
the observed performance Lðh;xÞ. Thus, we are interested in estimating the gradient
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dJ ðhÞ
dh

¼ dEx½Lðh;xÞ�
dh

by evaluating dLðh;xÞ
dh based on directly observed data. We obtain h� (under the conditions

mentioned above) by optimizing JðhÞ through an iterative scheme of the form

hnþ1 ¼ hn � gnHðhn;xnÞ; n ¼ 0; 1; . . . (11)

where fgng is a stepsize sequence and Hðhn;xnÞ is the estimate of dJðhÞ
dh at h ¼ hn (in

IPA, this is the sample derivative dLðh;xÞ
dh ). The conditions under which such algorithms

converge are well-known (e.g. see (Kushner and Yin, 1997)). Moreover, it can be
shown that such gradient estimates are independent of the probability laws of the sto-
chastic processes involved, require minimal information from the observed sample path,
and they are unbiased under very mild technical conditions (Cassandras et al., 2010).

In order to formally apply IPA and optimization methods to SHS, we need to establish
a general modelling framework. We use a standard definition of a hybrid automaton
(Cassandras & Lygeros, 2007). Thus, let q 2 Q (a countable set) denote the discrete state
(or mode) and x 2 X � R

n denote the continuous state. Let υ 2 Υ (a countable set)
denote a discrete control input and u 2 U � R

m a continuous control input. Similarly, let
δ 2 Δ (a countable set) denote a discrete disturbance input and d 2 D � R

p a continuous
disturbance input. The state evolution is determined by means of (i) a vector field f :Q ×
X ×U ×D→ X, (ii) an invariant (or domain) set Inv: Q ×Υ × Δ→ 2X, (iii) a guard set
Guard: Q ×Q ×Υ × Δ → 2X and (iv) a reset function r :Q ×Q × X ×Υ × Δ → X. The
system remains at a discrete state q as long as the continuous (time-driven) state x does
not leave the set Inv(q, υ, δ). If x reaches a set Guard(q, q′, υ, δ) for some q′ 2 Q, a
discrete transition can take place. If this transition does take place, the state instanta-
neously resets to (q′, x′) where x′ is determined by the reset map r(q, q′, x, υ, δ). Changes
in υ and δ are discrete events that either enable a transition from q to q′ by making sure
x 2 Guard(q, q′, υ, δ) or force a transition out of q by making sure x ∉ Inv(q, υ, δ). We
will classify all events that cause discrete state transitions in a manner that suits the
purposes of IPA. In what follows, we limit ourselves to an overview of the “IPA calculus”
and refer the reader to Cassandras et al. (2010) and Kebarighotbi and Cassandras (2012)
for more details and application examples.

The purpose of IPA is to study the behaviour of a HS state as a function of a
parameter vector θ 2 Θ for a given compact, convex set H � R

l. Let {τk(θ)},
k = 1, …, K, denote the occurrence times of all events in the state trajectory. For

Figure 1. Online gradient-based optimization framework for SHSs.
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convenience, we set τ0 = 0 and τK+1 = T. Over an interval [τk(θ), τk+1(θ)), the system
is at some mode during which the time-driven state satisfies _x ¼ fkðx; h; tÞ. An event
at τk is classified as

(i) Exogenous if it causes a discrete state transition independent of θ and satisfies
dsk
dh ¼ 0;

(ii) Endogenous, if there exists a continuously differentiable function
gk :R

n �H ! R such that sk ¼ minft[ sk�1 : gkðxðh; tÞ; hÞ ¼ 0g; and
(iii) Induced if it is triggered by the occurrence of another event at time τm ⩽ τk.

IPA specifies how changes in θ influence the state x(θ, t) and the event times τk(θ)
and, ultimately, how they influence interesting performance metrics which are generally
expressed in terms of these variables. Given h ¼ ½h1; . . .; hC�T, we use the Jacobian
matrix notation:

x0ðh; tÞ 	 @xðh; tÞ
@h

; s0k 	
@skðhÞ
@h

; k ¼ 1; . . .;K

for all state and event time derivatives. For simplicity of notation, we will omit θ from
the arguments of the functions above unless it is essential to stress this dependence. It
is shown in Cassandras et al. (2010) that x′(t) satisfies:

d

dt
x0ðtÞ ¼ @fkðtÞ

@x
x0ðtÞ þ @fkðtÞ

@h
(12)

for t 2 (τk, τk+1) with boundary condition:

x0ðsþk Þ ¼ x0ðs�k Þ þ ½ fk�1ðs�k Þ � fkðsþk Þ�s0k (13)

for k = 0, …, K. We note that whereas x(t) is often continuous in t, x′(t) may be discon-
tinuous in t at the event times τk, hence the left and right limits above are generally
different. If x(t) is not continuous in t at t = τk, the value of xðsþk Þ is determined by the
reset function r(q, q′, x, υ, δ) discussed earlier and

x0ðsþk Þ ¼ drðq; q0; x; t; dÞ
dh

(14)

Furthermore, once the initial condition x0ðsþk Þ is given, the linearised state trajectory
{x′(t)} can be computed in the interval t 2 τk(θ), τk+1(θ)) by solving (12) to obtain:

x0ðtÞ ¼ e

R t

sk

@fkðuÞ
@x

du Z t

sk

@fkðvÞ
@h

e
�
R t

sk

@fkðuÞ
@x

du
dvþ nk

2
64

3
75 (15)

with the constant ξk determined from x0ðsþk Þ in either (13) or (14).
In order to complete the evaluation of x0ðsþk Þ in (13), we need to also determine s0k .

Based on the event classification above, s0k ¼ 0 if the event at τk is exogenous and

s0k ¼ � @gk
@x

fkðs�k Þ
� ��1 @gk

@h
þ @gk

@x
x0ðs�k Þ

� �
(16)

if the event at τk is endogenous (i.e. gkðxðh; skÞ; hÞ ¼ 0:), defined as long as
@gk
@x fkðs�k Þ 6¼ 0 (details may be found in Cassandras et al., 2010) Finally, if an induced
event occurs at t = τk and is triggered by an event at τm ≤ τk, the value of s0k depends
on the derivative s0m. The event induced at τm will occur at some time τm +w(τm), where

12 C.G. Cassandras
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w(τm) is a (generally random) variable which is dependent on the continuous and
discrete states x(τm) and q(τm), respectively. This implies the need for additional state
variables, denoted by ym(θ, t), m = 1, 2, …, associated with events occurring at times
τm, m = 1, 2 … The role of each such state variable is to provide a “timer” activated
when a triggering event occurs. Triggering events are identified as belonging to
a set EI � E and let ek denote the event occurring at sk . Then, define
F k ¼ fm : em 2 EI ;m 
 kg to be the set of all indices with corresponding triggering
events up to τk. Omitting the dependence on θ for simplicity, the dynamics of ym(t) are
then given by

_ymðtÞ ¼ �CðtÞ sm 
 t\sm þ wðsmÞ;m 2 Fm

0 otherwise

�

ymðsþmÞ ¼
y0 ymðs�mÞ ¼ 0;m 2 Fm

0 otherwise

� (17)

where y0 is an initial value for the timer ym(t) which decreases at a “clock rate” C(t) > 0
until ym(τm +w(τm)) = 0 and the associated induced event takes place. Clearly, these state
variables are only used for induced events, so that ymðtÞ ¼ 0 unless m 2 Fm. The value
of y0 may depend on θ or on the continuous and discrete states x(τm) and q(τm), while
the clock rate C(t) may depend on x(t) and q(t) in general, and possibly θ. However, in
most simple cases where we are interested in modelling an induced event to occur at
time τm + w(τm), we have y0 = w(τm) and C(t) = 1, i.e. the timer simply counts down for
a total of w(τm) time units until the induced event takes place. Henceforth, we will
consider ym(t), m = 1, 2, …, as part of the continuous state of the SHS and we set

y0mðtÞ 	
@ymðtÞ
@h

; m ¼ 1; . . .;N : (18)

For the common case where y0 is independent of θ and C(t) is a constant c > 0 in (17),
the following lemma facilitates the computation of s0k for an induced event occurring at
τk. Its proof is given in Cassandras et al. (2010).

Lemma 1. If in (17) y0 is independent of θ and C(t) = c > 0 (constant), then s0k ¼ s0m.
With the inclusion of the state variables ym(t), m = 1, …, N, the derivatives x′(t), s0k ,

and y0mðtÞ can be evaluated through (12)–(17) and this set of equations is what we refer
to as the “IPA calculus.” In general, this evaluation is recursive over the event (mode
switching) index k = 0, 1, … In other words, the IPA estimation process in entirely
event driven.

For a large class of problems, the SHS of interest does not involve induced events
and the state does not experience discontinuities when a mode-switching event occurs.
In this case, the IPA calculus reduces to the application of three equations:

(i) (12), which describes how the state derivative x′(t) evolves over
[τk(θ), τk+1(θ)),

(ii) (13), which specifies the initial condition ξk in (12), and
(iii) either s0k ¼ 0 or (16) depending on the event type at τk(θ), which specifies the

event time derivative present in (13).

Since a performance metric LðhÞ is a function of the system state and event times, dLðhÞ
dh

can subsequently be obtained and used as shown in (11). Using the notation
L0kðx; t; hÞ 	 @Lkðx;t;hÞ

@h , we can rewrite dLðhÞ
dh as
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dLðhÞ
dh

¼
X
k

½s0kþ1 � Lkðsþkþ1Þ � s0k � Lkðsþk Þ� þ
Z skþ1

sk

@Lkðx; h; tÞ
@x

x0ðtÞ þ @Lkðx; h; tÞ
@h

� �
dt

� �

(19)

where as already mentioned, {τk(θ)}, k = 1, …, K, is the sequence of all event
occurrence times in the state trajectory. In the right-hand-side above, x′(t) and s0k are
determined through (12), (13) and (16). What makes IPA appealing is the simple form
the right-hand-side above often assumes. In fact, it is often the case that the integral
term vanishes, leaving only a dependence on information related to the event times τk,
τk + 1, resulting in an IPA estimator which is not only simple to implement, but also
independent of the time-driven dynamics fkðx; h; tÞ, hence also any associated noise
process Therefore, in such cases the sensitivity of a performance metric with respect to
θ is essentially dependent only on the event times and the system behaviour in a
neighbourhood of these times. This is formalised in the following result from Yao and
Cassandras (2011):

Theorem 2. If either condition (i) or (ii) below holds, then dLðhÞ
dh depends only on information

available at event times {τk}, k = 0, 1, …
(i) Lk(x, t, θ) is independent of t over [τk, τk + 1) for all k = 0, 1, …
(ii) Lk(x, t, θ) is only a function of x and the following condition holds for all t

2 [τk, τk + 1), k = 0, 1, …:

d

dt

@Lk
@x

¼ d

dt

@fk
@x

¼ d

dt

@fk
@h

¼ 0

This provides sufficient conditions under which dLðhÞ
dh is independent of t and involves

only the event time derivatives s0k , s
0
kþ1 and the “local” performance Lkðsþkþ1Þ, Lkðsþk Þ

which is obviously easy to observe. In other words, (19) reduces to

dLðhÞ
dh

¼
X
k

½s0kþ1 � Lkðsþkþ1Þ � s0k � Lkðsþk Þ�

Condition (ii) of Theorem 2 in particular is satisfied for a large class of systems and
objective functions L(θ). This is an instance of event-driven behaviour for performance
sensitivity estimates where the pertinent information is captured by the events taking
place in the HS while the state evolution in between events plays a minor or no role in
the sensitivity estimation process. Specific detailed examples illustrating this behaviour
are given in Cassandras et al. (2010). An additional attractive feature of the “IPA calcu-
lus” which can be seen from (19) is that it scales with events in the system. In other
words, the steps required to evaluate dLðhÞ

dh involve only events; in particular, while the
complexity of the system may increase prohibitively with its state dimensionality, the
complexity of performance sensitivity estimates increases only with the number of
events defined over sample paths of the system.

We conclude this overview of the “IPA calculus” with a comment on the
unbiasedness of the IPA derivative dL/dθ. This IPA derivative is statistically unbiased
(Cassandras & Lafortune, 2008; Ho & Cao, 1991) if, for every θ 2 Θ,
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E
dLðhÞ
dh

� �
¼ d

dh
E½LðhÞ� ¼ dJ ðhÞ

dh
:

An important property of IPA in the SHS setting is that it yields unbiased performance
derivatives for a large class of systems and performance metrics compared to the tradi-
tional DES setting. The following conditions have been established as sufficient for the
unbiasedness of IPA (Cassandras et al., 2010):

Theorem 3. Suppose that the following conditions are in force: (i) for every θ 2 Θ, the deriv-
ative dLðhÞ

dh exists w.p.1. (ii) w.p.1, the function L(θ) is Lipschitz continuous on Θ, and the
Lipschitz constant has a finite first moment. Fix θ 2 Θ. Then, the derivative dJ ðhÞ

dh exists, and
the IPA derivative dLðhÞ

dh is unbiased.
The crucial assumption above is the continuity of the sample performance function

L(θ), which in many SHS is guaranteed in a straightforward manner. Differentiability
w.p. 1 at a given θ 2 Θ often follows from mild technical assumptions on the probabil-
ity law underlying the system, such as the exclusion of co-occurrence of multiple
events. Lipschitz continuity of L(θ) generally follows from upper boundedness of
j dLðhÞÞdh j by an absolutely integrable random variable, generally a weak assumption. In
light of these observations, the proofs of unbiasedness of IPA have become standard-
ised and the assumptions in Theorem 3 can be verified fairly easily from the context of
a particular problem.

4. Conclusions

Glancing into the future of systems and control theory, the main challenges one sees
involve larger and ever more distributed wireless networked structures in application
areas spanning cooperative multi-agent systems, energy allocation and management and
transportation among many others. Barring any unexpected dramatic developments in
battery technology, limited energy resources in wireless settings will have to largely
dictate how control strategies are designed and implemented so as to carefully optimize
this limitation. Taking this point of view, the event-driven paradigm offers an alterna-
tive to the time-driven paradigm for modelling, sampling, estimation, control and opti-
mization, not to supplant it but rather complement it. As we have seen in two separate
areas which call for such alternatives, control actions need not always be dictated by
time steps taken by a “clock”, but they can often be triggered by “events” defined in a
versatile manner suitable for different applications. In distributed systems, we have
described how event-driven communication can guarantee convergence of optimization
schemes while provably maintaining optimality. Doing so, can drastically reduce the
energy associated with communication processes, therefore contributing to prolonging a
wireless network’s operational lifetime or limiting the need for frequent battery mainte-
nance. In HSs, we have reviewed the theory of IPA which offers a general-purpose
event-driven process for evaluating or estimating (in the case of stochastic systems)
gradients of performance metrics. Such information can then be used on line so as to
maintain a desirable system performance and, under appropriate conditions, lead to the
solution of optimization problems.
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