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Abstract— This paper presents eco-routing strategies for
plug-in hybrid electric vehicles, whereby we jointly compute
the routing and energy management strategy and the objective
is a combination of travel time and energy consumption.
Specifically, we first use Pontryagin’s principle to compute
the optimal Pareto front in terms of achievable fuel and
battery consumption for different types of road links. Second,
we leverage these Pareto fronts to formulate a network flow
optimization problem to compute the optimal routing and
energy management strategy, minimizing a combination of
travel time and energy consumption. Finally, we present a real-
world case-study for the Eastern Massachusetts highway sub-
network. The proposed approach allows to compute the optimal
solution for different objectives, ranging from minimum time to
minimum energy, revealing that by sacrificing a small amount
of travel time significant improvements in fuel consumption can
be achieved.

I. INTRODUCTION

HYBRID electric vehicles (HEVs) are emerging on the
market as a short-term solution to improve the fuel

economy and reduce the environmental impact of a wide
range of vehicles. Compared to pure internal combustion
engine (ICE) vehicles, they can achieve significant reduc-
tions in fuel consumption and emissions by recuperating
braking energy and operating the engine in a more efficient
fashion through load-point shifting [1]. Compared to electric
vehicles, HEVs have a significantly larger range, due to the
high energy density of fuels compared to today’s batteries.
Moreover, the refueling process is achieved in a couple
of minutes, whereas it usually takes hours to recharge a
battery. Plug-in HEVs feature the additional possibility to
directly recharge the battery, therefore allowing for a fully-
electric driving mode. In fact, depending on their battery
size, they can be driven 20–70 km in fully-electric mode,
which corresponds to the average daily commuting distance
in the US [2]. Nevertheless, to fully exploit the potential
of HEVs, the energy management system coordinating the
energy flows among the powertrain components needs to be
carefully designed. Specifically, the power split between the
engine and the electric machine is controlled to minimize
fuel consumption whilst meeting a predefined battery charge
target at the end of the driving mission. Conventional HEVs
are usually in battery-charge-sustaining mode, whilst plug-
in HEVs also allow battery-discharging modes, for instance
through fully-electric driving, as they can then be recharged
like conventional electric vehicles. To this end, predictive
information on the optimal battery energy trajectory to be
followed during the driving mission can provide significant
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Fig. 1. Road digraph with blue dots representing intersections and arcs
denoting road-links (black). In green the optimal eco-route is shown together
with the optimal battery energy trajectory.

additional benefits with respect to reactive strategies. The
possibility of also controlling the speed profile (as with
adaptive cruise controllers or autonomous vehicles) or the
vehicle route offer further margins to improve the fuel
economy of the HEV.

In this paper, we study the possibility of jointly computing
the optimal routing and energy management strategies mini-
mizing a combination of travel time and energy consumption,
thus providing the route to be followed and the battery charge
trajectory to be tracked by the energy management system,
as shown in Fig. 1.

Literature Review: The work presented in this paper con-
tributes to two streams of research, namely high-level energy
management of hybrid electric powertrains and vehicle rout-
ing. In the following, we review these two streams in turn.

The fuel-optimal control of HEVs is divided into non-
causal optimization methods for the strategic analysis of
perfectly known driving cycles and real-time control ap-
plications. Non-causal control approaches (i.e., where the
driving mission is assumed to be known a priori) are based
on dynamic programming [3], [4], convex optimization [5]–
[7] and Pontryagin’s minimum principle (PMP) [8]–[10],
whilst real-time algorithms rely on rule-based strategies [11],
[12], on equivalent consumption minimization strategies
(ECMS) [13], [14], and model predictive control [15]–[17].
Such approaches are based on the assumption that the route
is predefined and cannot be optimized. However, state-of-the-
art control algorithms rely on predictive route information,
such as an expected driving cycle or an optimal battery
energy trajectory to track, since it can significantly improve
the overall performance [18].

Traditional vehicle routing algorithms try to find the
fastest or shortest path routes [19], [20], whereas eco-routing
algorithms seek to find the routes that minimize the energy
consumption costs. For conventional ICE vehicles there are
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already many eco-routing algorithms available capable of
finding the energy-optimal paths based on historical and real-
time traffic data [21]–[23], but to date there is little research
that addresses the case of plug-in HEVs [24]. As shown in
[25], the performance of eco-routing algorithms is highly
sensitive to the energy model used to estimate the energy
cost on each link of the network. The challenging aspect of
solving the eco-routing algorithm for plug-in HEVs relies on
finding an energy model for these types of vehicles which can
calculate both the electrical energy consumption and the fuel
consumption. Jurik et al. [26] used the longitudinal dynamics
to address the eco-routing problem for HEVs. A charge
depleting first approach was studied in [27] and [28] to find
the eco-route for plug-in HEVs. More recently, De Nunzio
et al. proposed a semi-analytical solution of the powertrain
energy management based on Pontryagin’s minimum princi-
ple to address the eco-routing of HEVs [29]. Houshmand et
al. [30] devised a combined routing and powertrain control
algorithm which simultaneously finds the energy optimal
route as well as the optimal energy management strategy
in terms of battery state of charge and fuel consumption. In
[30], however, the possibility to recharge the battery on some
parts of the route was neglected and only charge-sustaining
or discharging operation was allowed.

Statement of Contributions: In this paper we devise op-
timal eco-routing strategies for plug-in HEVs by jointly
optimizing the route and the high-level energy management
strategy with objective of minimizing a combination of travel
time and energy consumption. In particular, we first formu-
late the fuel-optimal energy management problem for a given
driving cycle consisting of a predefined speed-trajectory to
be followed. Considering a road network, we associate each
road link with a predefined driving cycle capturing the road
type and the traffic level. Using the PMP-based approach
presented in [31], we rapidly solve the fuel-optimal energy
management problem with a high-fidelity vehicle model for
different battery charge targets and generate a Pareto front
for each road link, describing the fuel consumption that
would result from traversing it with a given battery charge
target. Finally, we leverage the Pareto fronts to formulate the
optimal eco-routing problem using a network flow model that
can be parsed as a mixed-integer linear program (MILP) and
solved with off-the-shelf optimization algorithms. This way,
given an origin-destination pair and a desired battery state
of energy at the end of the driving mission, our approach
provides the optimal route to be followed together with an
optimal battery energy trajectory that can be tracked by on-
board energy management systems. We test our algorithm
on the Eastern Massachusetts highway sub-network, showing
that eco-routing strategies can significantly reduce fuel con-
sumption and distance driven with merely limited increase
in travel time.

This paper is structured as follows: In Section II we
introduce the model of the PHEV and formulate the optimal
eco-routing problem as a MILP. We present numerical results
in Section III and conclude the paper in Section IV with a
discussion and an overview on future research.
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Fig. 2. P3 parallel-hybrid powertrain configuration.

II. METHODOLOGY

This section introduces a flow optimization approach for
eco-routing. We first describe the model of the plug-in
HEV in Section II-A. Second, we compute the Pareto fronts
for fuel and battery energy for different driving cycles in
Section II-B. Finally, Section II-D formulates the optimal
routing and energy management problem for a given road
network.

A. Plug-in Hybrid Electric Vehicle Model
Without loss of generality, we consider the P3 parallel-

hybrid electric powertrain shown in Fig. 2 consisting of
an ICE, a single-clutch gearbox, a single electric machine
connected to a fixed-transmission-ratio gearbox and a battery.
The modeling approach used in this work is based on [1]. For
the sake of simplicity, we drop time-dependence whenever it
is clear from the context.

Consider a driving cycle consisting of a speed trajectory
v(t), an acceleration trajectory a(t) and a road grade trajec-
tory ϑ(t). The required force at the wheels Freq results from
the drag force Fd (comprising aerodynamic resistance, rolling
friction and gravitational force) and the inertial force as

Freq = Fd(v,ϑ)+mtot(γ) ·a, (1)

where ϑ is the road grade and mtot accounts for the inertia
of the vehicle and its moving parts as a function of the gear-
ratio γ .

The speed and the torque at the torque-split result from
the required force as a function of the wheel radius rw and
the final drive ratio γfd as

ωts = v · γfd

rw
(2)

Ttrac,ts = (Freq−Fbrk) ·
rw

γfd
, (3)

where we assume the braking force Fbrk to be positive only
when the electric recuperation limit is reached. Given a motor
torque at the torque-split Tm,ts, the resulting engine torque at
the torque-split is

Te,ts = Ttrac,ts−Tm,ts. (4)

We condense the clutch position and the selected gear in the
variable i, with i= 0 representing a disengaged clutch and the
engine off, and i > 0 an engaged clutch with a selected gear
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i ∈ {1,2,3,4,5,6} and the engine on. The engine speed ωe
and the engine torque Te result from the gearbox efficiency,
the clutch position and the selected gear-ratio. If the clutch
is engaged, the engine speed must be in the range

ωe,min ≤ ωe ≤ ωe,max, (5)

whereas the maximum engine torque must be below a speed-
dependent characteristic as

Te ≤ Te,max(ωe). (6)

The fuel flow
∗
mf is given by the engine map

∗
mf = Mf(ωe,Te). (7)

The electrical power of the motor Pm,el depends on its
speed ωm, torque Tm and efficiency ηm, which is character-
ized by the map

ηm = Mm(ωm,Tm). (8)

The minimum and maximum motor torques are given by the
speed dependent characteristics

Tm,min(ωm)≤ Tm ≤ Tm,max(ωm), (9)

whereas the motor speed is limited as

0≤ ωm ≤ ωm,max. (10)

The power drawn at the battery terminal Pb is a sum of
the electrical motor power and the power provided to the
auxiliaries of the vehicle Paux, i.e.,

Pb = Pm,el +Paux. (11)

Considering the DC-DC converter efficiency and the internal
losses of the battery, the dynamics of the battery’s state of
energy are

d
dt

Eb =−Pi, (12)

where the internal battery power Pi is characterized by the
map

Pi = Mb(Pb,Eb). (13)

Assuming a sufficiently large battery, we focus on the relative
change in state of charge over the driving cycle given by

∆Eb(t) = Eb(t)−Eb(0). (14)

This way we formulate the minimum-fuel control problem
as follows.

Problem 1 (Minimum-fuel Energy Management Problem).
The optimal energy management strategy is found as the
solution of

min
i,Tm

∫ T

0

∗
mf(t)dt

s.t. (1)− (14)
∆Eb(0) = 0
∆Eb(T ) = ∆Eb,f,

(15)

where ∆Eb,f is the given charge or discharge target over the
driving cycle.

The optimization problem 1 has one state variable (namely,
∆Eb) and two input variables (the clutch state with the
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Fig. 3. Relative fuel energy consumption characteristic for a range of
battery recharge targets (dots), and piecewise-affine fit (solid line).

selected gear i as well as the motor torque Tm). Therefore, it
can be solved with optimization approaches such as dynamic
programming. Alternatively, non-causal PMP can be used to
simulate a perfectly tuned energy management system [31].

B. Pareto Frontiers
Given a driving cycle v(t), a(t), ϑ(t), we solve problem 1

for a set of ∆Eb,f and store its optimal objective as the
corresponding fuel energy consumption:

Ef(∆Eb,f) = Hl ·
∫ T

0

∗
m
?

f (t)dt, (16)

where
∗
m
?

f (t) is the solution to (15) given ∆Eb,f, and Hl stands
for the lower heating value of the fuel. Scaling the fuel and
battery energy with the length of the driving cycle S, we
obtain the discrete characteristic ef(∆eb) shown in Fig. 3,
where ef = Ef/S and ∆eb = ∆Eb/S. Finally, we fit the Pareto
front with the convex piecewise affine function

ef(∆eb) = ak ·∆eb +bk if ∆eb ∈
[
∆ek

b,∆ek+1
b

)
, (17)

whereby ak ≤ ak+1 and ak ·∆ek+1
b +bk = ak+1 ·∆ek+1

b +bk+1,
where k∈ [1, . . . ,K] =K and K is the number of affine lines.
Moreover, we set the reachable battery discharge and charge
limits as ∆eb,min = ∆e1

b and ∆eb,max = ∆eK+1
b .

C. Road Digraph
We model the road network as a digraph G = (V ,A )

consisting of a set of vertices V and a set of arcs A ⊆V ×V .
Herein, vertices i∈V represent intersections and arcs (i, j)∈
A road links. Each arc has a specific length di j and a travel
time ti j, and is associated with a driving cycle representing
the road type through the parameters {ak(i, j),bk(i, j)}k
of the Pareto front presented in the previous Section II-
B. This way, we capture fuel consumption as a function
of battery energy consumption, assuming that fuel-optimal
energy management strategies are used.

D. Eco-driving Problem Formulation
We capture the chosen route with the binary variable

x(·, ·) ∈ {0,1}N , which is 1 for each arc (i, j) traversed and
0 otherwise, and where N = |A | is the cardinality of the arc
set. We define the fuel consumption to cross an arc on A
as Ef(·, ·) ∈ RN

+ and the change in battery state of energy as
∆Eb(·, ·) ∈ RN . Given an origin o ∈ V , a destination d ∈ V ,
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an initial battery energy Eb,0, and a minimum and maximum
battery energy Eb,min and Eb,max, respectively, it holds that

∑
i:(i, j)∈A

x(i, j)+1 j=o = ∑
k:( j,k)∈A

x( j,k)+1 j=d ∀ j ∈ V (18a)

x(i, j) ∈ {0,1} ∀(i, j) ∈A (18b)
Ef(i, j)≥ 0 ∀(i, j) ∈A (18c)

Eb,0 +∑
(i, j)∈A

∆Eb(i, j) ∈
[
Eb,min,Eb,max

]
(18d)

∆Eb(i, j) ∈
[
∆eb,min(i, j),∆eb,max(i, j)

]
·di j ∀(i, j) ∈A , (18e)

where 1{·} is a Boolean indicator function. Specifically, we
preserve route continuity and integrality in (18a) and (18b).
We allow fuel consumption to be non-negative in (18c),
enforce the state of energy of the battery at the end of the
mission to be within the battery size in (18d), and limit the
reachable battery charge and discharge in (18e) depending
on the arc length. We define the eco-routing objective as the
monetarily weighted combination of travel time and fuel and
battery consumption

J1
(
x(·, ·),Ef(·, ·),∆Eb(·, ·)

)
=

∑
(i, j)∈A

(
α ·Vt · ti j +(1−α) ·

(
Vf ·Ef(i, j)−Ve ·∆Eb(i, j)

))
· x(i, j),

(19)
where α ∈ (0,1) is a time-to-energy weighting factor, whilst

Vt, Vf, Ve represent the cost of time, fuel and electricity. We
formally state the optimal eco-routing problem as follows.

Problem 2 (Eco-routing Problem). The optimal eco-routing
strategy is found as the solution of

min
x(·,·),Ef(·,·),∆Eb(·,·)

J1
(
x(·, ·),Ef(·, ·),∆Eb(·, ·)

)
(20a)

s.t. (18)

Ef(i, j) =
{

ak(i, j) ·∆Eb(i, j)+bk(i, j) ·di j if x(i, j) = 1
0 if x(i, j) = 0

∀k ∈K ,(i, j) ∈A (20b)
∆Eb(i, j) = 0 if x(i, j) = 0 ∀(i, j) ∈A , (20c)

where {ak(·, ·)}k and {bk(·, ·)}k represent the Pareto optimal
fuel-to-battery line for every road arc.

Problem 2 has a non-smooth and nonlinear form. However,
it can be relaxed to a mixed-integer linear problem by first
defining the cost

J2
(
x(·, ·),Ef(·, ·),∆Eb(·, ·)

)
=

∑
(i, j)∈A

α ·Vt · ti j · x(i, j)+(1−α) ·
(
Vf ·Ef(i, j)−Ve ·∆Eb(i, j)

)
,

(21)
and then stating the relaxed eco-routing problem using the

big-M formulation as follows [32].

Problem 3 (Relaxed Eco-routing Problem). The relaxed
optimal eco-routing problem is

min
x(·,·),Ef(·,·),∆Eb(·,·)

J2
(
x(·, ·),Ef(·, ·),∆Eb(·, ·)

)
(22a)

s.t. (18)
Ef(i, j)≥ ak(i, j) ·∆Eb(i, j)+bk(i, j) ·di j−M ·

(
1− x(i, j)

)
∀k ∈K ,(i, j) ∈A (22b)

∆Eb(i, j) ∈ [−1,1] ·M · x(i, j) ∀(i, j) ∈A , (22c)

where M is a sufficiently large number.

This problem can be solved using off-the-shelf mixed-
integer linear program solvers. In the following lemma, we
prove that the solution to both problems is equivalent.

Lemma II.1 (Problem Equivalence). The solution of Prob-
lem 3 is also the solution of Problem 2.

Proof. Given M sufficiently large, constraint (22c) is equiv-
alent to (20c). Similarly, constraint (22b) is the convex
relaxation of (20b). Moreover, by inspection we see that the
minimizer of (22a) is a minimizer of (20a). We conclude the
rest of the proof by contradiction. Assume that the solution of
Problem 3 is not a feasible solution of Problem 2. This means
that constraints (18c) and (22b) hold with inequality on some
arc (i, j) ∈ A . Therefore, one could find a solution with a
smaller Ef(i, j) such that either (18c) (if x(i, j) = 0) or (22b)
(if x(i, j) = 1) hold with equality. Due to objective (22a),
this means that the solution of Problem 3 is not optimal,
contradicting the initial assumption. Therefore, the solution
of Problem 3 is also the solution of Problem 2, which
concludes the proof.

E. Discussion

A few comments are in order. First, we focus on a P3
hybrid electric powertrain architecture. Nevertheless, the pro-
posed methodology can be applied to any hybrid powertrain
topology with a power-split device. Second, the proposed
approach does not allow including the battery size in the
form of a path constraint, but it can be included as a
terminal constraint. Such an assumption is in order for large
batteries (as is the case for plug-in HEVs) and little elevation
difference. To include path constraints, one should know
the order of the arcs in the path within the optimization
problem, which is not possible in the current formulation.
One possibility could be to expand the graph in layers
describing the state of charge of the battery, as done in [33].

III. RESULTS

In order to evaluate the performance of the proposed algo-
rithm, we conduct a data-driven case study using the actual
traffic data from the Eastern Massachusetts (EMA) road
network collected by INRIX [34]. The sub-network including
the interstate highways of EMA (Fig. 4 left) is chosen for the
case study. Each link consists of several arcs referred to as
traffic message channels in the dataset. In this sub-network,
we have 298 road segments (considering both directions on
each road), and the average speed of each segment is avail-
able for the entire year of 2012 on a minute-by-minute basis.
Details regarding this sub-network can be found in [34]. As
an alternative benchmark, the traffic behaviour of the network
has been simulated in SUMO [35] using the extracted flow
data from the aforementioned traffic data-set. We consider
two sub-networks of the EMA traffic network to apply our
algorithms: the EMA small sub-network shown in Fig. 4 left
and the EMA medium sub-network shown in Fig. 4 right.
Since the Boston area does not display significant elevation
changes, we classify each link of the road graph as a function
of the traffic speed and associate them with the urban, the
suburban and the highway driving cycles NYC, UDDS and
HWFET, respectively [36] (Table I). We consider a full-
size plug-in HEV with a gasoline ICE and a 20 MJ battery
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TABLE I
DRIVING CYCLE ASSIGNMENT FOR EACH ROAD LINK

Traffic Mode Average speed
on the Link (kmph) Driving Cycle

Heavy Traffic [0,32] NYC
Medium Traffic (32,64] UDDS

Low Traffic > 64 HWFET

Fig. 4. EMA small sub-network (left) and EMA medium sub-network
(right) [34].

and compute the Pareto front for each of the driving cycles
with [31]. Fig. 3 shows the results for the HWFET driving
cycle. Each Pareto front was computed in about 5 s. Finally,
we set the value of time Vt to 24.40 USD/h [37], whilst
the cost of gasoline Vf and electricity Ve are set equal to
2.75 USD/gal (i.e., 0.023 USD/MJ) [38] and 0.114 USD/kWh
(i.e., 0.032 USD/MJ) [39], respectively.

A. Small Eastern Massachusetts Sub-network
Initially we assess the performance of the proposed eco-

routing algorithm by finding energy optimal routes over the
small EMA sub-network shown in Fig. 4 left. To conduct a
data-driven case study, we use the actual traffic data from
the Eastern Massachusetts (EMA) road network. These data
were collected by INRIX and provided by the Boston Region
Metropolitan Planning Organization, which includes average
speed of every link on a minute-by-minute basis for 2012. To
show the dependency of the eco-route on the speed of links,
we calculate the eco-route for different times of April 12,
2012, and show the energy cost and travel time for travelling
between node 1 and 5 (see Fig. 4 left). We compute the
optimal route for different hours of that day. This way, we
analyse the effect of traffic on the solution. Moreover, to
investigate the effect of the time-to-energy weight α on the
optimal routes and their corresponding cost and time, we
solve Problem 3 for α equal to almost 0, almost 1 (since
with α equal exactly 0 or 1, Problem 3 would relax) and 0.5,
corresponding to the time-optimal route, the energy-optimal
eco-route and the cost-optimal route (where the monetary
values of time, fuel and electricity are used as weights),
respectively. The solution of each problem took about 200 ms
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Fig. 5. Travel time, energy cost, and total cost for the O-D pair (1,5) in
the EMA small sub-network.

Distance Traveled [km]

B
a
tt
er
y
[M

J
]

F
u
el

[M
J
]

T
im

e
[m

in
]

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0

10

20

0

20

40

60

0

20

40

Fig. 6. Travel time, fuel consumption and battery state of energy along
the optimal routes for the O-D pair (2,7) in the medium EMA sub-network.

using Gurobi 8.1 [40] on commodity hardware. The results
for the O-D pair (1,5) in the EMA small sub-network shown
in Fig. 5 reveal that sometimes energy consumption can be
significantly reduced at the expense of little extra travel time.

B. Medium Eastern Massachusetts Sub-network with Traffic
Simulation

Since we did not want to rely solely upon the historical
traffic data to validate our routing algorithm, we decided
to simulate the traffic of the medium EMA sub-network
shown in Fig. 4 right, using SUMO (Simulation of Urban
MObility) [35]. Herein, we used the INRIX data to start
the simulation in SUMO to extract the flow data for the

737



Distance Traveled [km]

B
a
tt
er
y
[M

J
]

F
u
el

[M
J
]

T
im

e
[m

in
]

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

0

10

20

0

50

100

0

20

40

Fig. 7. Travel time, fuel consumption and battery state of energy along the
optimal routes for the O-D pair (4,16) in the medium EMA sub-network.

sub-network. The details of these calculations can be found
in [34], [41].

We then aggregated every 5 segments in the map into a
single arc and recorded its average speed. Thus we ended
up with a road graph consisting of 694 nodes and 617
arcs. Similarly as in the previous Section III-A, we compute
the optimal route and battery usage minimizing travel time,
cost and energy consumption for each of these routes for
different O-D pairs by solving Problem 3. The solution of
each problem took about 200 ms using Gurobi 8.1 [40] on
commodity hardware. Fig. 6 and 7 shows the cumulative
travel time, fuel consumption and battery state of energy for
the O-D pairs (2,7) and (4,16), respectively. Given the plug-
in nature of the HEV, the battery is always discharged. For
both O-D pairs, the time-optimal solution (yellow) entails the
highest fuel consumption. The cost-optimal (red) achieves
the same performance, whilst saving fuel due to the energy-
optimal energy management. The eco-route (blue), being
significantly shorter and slower, saves more than 50% in
terms of fuel consumption at the expense of about 10%
travel time. Fig. 8 shows the achieved travel time and fuel
consumption for different values of α , whereby the non-
smooth shape of the plot results from the discrete nature of
the routing problem, and highlights the fact that by sacrificing
a minor amount of travel time, fuel consumption can be
significantly reduced by taking a shorter and slower route.

IV. CONCLUSION

This paper presented an eco-routing algorithm to jointly
compute the optimal route and energy management strategy
for plug-in hybrid electric vehicles. Specifically, we first
parametrized the achievable fuel consumption as a function
of battery usage for different driving cycles, which we used
to characterize the road arcs in the network. Second, we
used a flow optimization model to formulate the optimal eco-
routing problem as a mixed-integer linear program that could
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Fig. 8. Relative fuel consumption and travel time for O-D pair (2,7) (upper
plot) and (4,16) (lower plot) for different values of α ∈ (0,1).

be rapidly solved with off-the-shelf optimization algorithms.
Finally, we validated the proposed algorithm on the Eastern
Massachusetts highway sub-network. Our results showed that
our approach can rapidly compute the optimal route and
energy management strategy for different optimization objec-
tives, and revealed that fuel consumption can be significantly
reduced at the expense of very little travel time.

This work can be extended in several directions. On the
one hand, we would like to explicitly include path constraints
such as battery size, for instance by expanding the graph to
capture different battery charge levels, as proposed in [33].
On the other hand, it is of interest to extend such an
approach to large fleets of vehicles providing on-demand
mobility [42]–[45].
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