
Load Balancing in Mobility-on-Demand Systems:
Reallocation Via Parametric Control Using Concurrent Estimation

Rebecca M. A. Swaszek1 and Christos G. Cassandras1,2

1Division of Systems Engineering, 2Department of Electrical and Computer Engineering
Boston University, Boston, MA 02215, USA

E-mail:{swaszek,cgc}@bu.edu

Abstract— Mobility-on-Demand (MoD) systems require load
balancing to maintain consistent service across regions with
uneven demand subject to time-varying traffic conditions. The
load-balancing objective is to jointly minimize the fraction of
lost user requests due to vehicle unavailability and the fraction
of time when vehicles drive empty during load balancing opera-
tions. In order to bypass the intractability of a globally optimal
solution to this stochastic dynamic optimization problem, we
propose a parametric threshold-based control driven by the
vehicles available in and en route to each region. This is still a
difficult parametric optimization problem for which one often
resorts to trial-and-error methods where multiple sample paths
are generated through simulation. In contrast, this paper uti-
lizes concurrent estimation methods to simultaneously construct
multiple sample paths from a single nominal sample path.
The performance of the parametric controller for intermediate
size systems is compared to that of a simpler single-parameter
controller, a state-blind static controller, a policy of no control,
and a theoretically-derived lower bound. Simulation results
show the value of state information in improving performance.

I. INTRODUCTION

Autonomous Taxi (AT) systems are expected to make
forays into the Mobility-on-Demand (MoD) transportation
sector currently served by ride-sharing companies and tra-
ditional taxis. All these systems are comprised of a fleet of
vehicles, service regions, and users with dynamic temporal-
spatial demand patterns. Service providers of AT fleets will
face myriad regulatory, safety, and management challenges.
Fleet management of MoD systems literature considers how
to efficiently route vehicles among regions to meet current
and projected demand and determine the appropriate fleet
size as to guarantee certain levels of system performance.
In this paper, we focus on the crucial operational challenge
of proactive load balancing which refers to the process
of dynamically redistributing the fleet so as to maintain
availability across service areas to meet future demand.
There is a trade-off between satisfying customer requests
and driving hours logged by empty vehicles performing load
balancing operations.

Within proactive rebalancing there are two approaches:
static controls based upon historical data and dynamic control
based upon the current state of the system. A closed Jackson
queueing network model with regards to the vehicles is used

*Supported in part by NSF under grants ECCS-1509084, DMS-1664644,
CNS-1645681, by AFOSR under grant FA9550-19-1-0158, by ARPA-Es
NEXTCAR program under grant DE-AR0000796 and by the MathWorks.

in [1] and [2]; the proposed controllers redistribute ATs by
creating static predetermined “false” user demand rates to
dispatch empty ATs from popular destination to popular ori-
gin regions regardless of the state of the system. To address
this limitation, [1] proposes a time-driven controller to evenly
redistribute the AT fleet among all regions at regular time
intervals. The receding horizon controller introduced in [3]
dynamically adjusts “false” user rates according to the state
of the system. Greedy state-based controllers in [4] relocate
available vehicles by considering the relative abundance of
vehicles and waiting/expected customers in adjacent regions.

Other authors utilize a flow abstraction such that user
demand rates induce vehicle “flows” between regions. In
order to stop some regions from running out while others
amass flow, a set of static controlled rates is proposed in
[5] to redistribute the flow to ensure stability; [6] builds off
the aforementioned work to minimize capital costs, operating
costs, and passenger experience, i.e., wait time.

In this paper, we use a queueing network model akin to
[1] with an objective to minimize the fraction of dropped
user requests (due to AT unavailability) and the fraction of
time ATs spend on load balancing operations driving empty
between regions. The optimal control over an infinite horizon
can be determined using dynamic programming, but the
“curse of dimensionality” renders such solutions intractable
for all but very small systems.

Our approach is to transform this intractable dynamic opti-
mization problem into a manageable parametric optimization
problem where the parameters are thresholds that direct
redistribution based upon the relative quantity of available
ATs in and en route to each region. These thresholds may
be tuned to various demand patterns (rush-hour, high traffic,
etc.). We propose two controllers: a time-driven single-
parameter controller and an event-driven multi-parameter
controller; the latter demonstrates superior performance but
its parameters require more effort to tune. The contribution
of this paper is to solve the proactive load balancing problem
of a MoD system by formulating a threshold-based paramet-
ric optimization problem and using concurrent estimation
methods [7],[8] to find well performing thresholds from a
single observed sample path of the queueing network, thus
bypassing the need for repeated trial-and-error. In addition,
we derive a lower bound to assess the performance of our
proposed threshold-based control.

2019 IEEE Intelligent Transportation Systems Conference (ITSC)
Auckland, NZ, October 27-30, 2019

978-1-5386-7023-1/19/$31.00 ©2019 IEEE 2148

Section II introduces the MoD system model framework
while Section III proposes two parametric threshold-based
controllers. Section IV derives an average best possible
performance lower bound and the parametric controllers’
performance is demonstrated in Section V. Finally, Section
VI concludes and highlights potential future work.

II. SYSTEM MODEL

We model a MoD system as a closed Jackson queueing
network of N nodes N = {1, ..., N} and m resources
representing regions and vehicles, respectively, similar to the
model in [1]. We focus on the load balancing of an urban
autonomous taxi fleet and as such shall refer to vehicles and
demands as ATs and requests, respectively.

Fig. 1 shows a region i which consists of a queue of
available ATs. In order to capture time-varying demand,
routing and service characteristics, we divide a finite time
period [0, T] into K intervals indexed by k = 1, 2, ...,K,
each of length I . Thus, the user request rate λi,k depends
on interval k = 1, 2, ...,K. When a user request occurs,
if there is an available idle AT, then the (user, AT) pair,
denoted by × and �, respectively, are joined and routed
with probability pi,j,k (including intra-region trips i = j)
to an infinite-capacity server Wi,j with service rate µi,j,k.
This server captures the travel time from i to j. Upon arrival
at region j, the pair is separated: the AT is routed with
probability 1 to the idle AT queue in region j and the user
exits the system. If there are no available ATs at the time of
the user request event, the user exits the system and incurs
a cost. A load balancing controller at each region, marked
by ♦, routes (according to some control policy) an empty
available AT to server Wi,j destined for region j.

Fig. 1. Region i consists of users and ATs that are coupled and routed
with probability pi,j,k to a infinite capacity server Wi,j , then uncoupled
and the AT routed into region j. Idle ATs may also be forced by a decision
♦ to depart empty from the idle queue in i for another region j.

State Space: Let xi(t) ∈ {0, 1, ...,m} be the number
of available idle ATs in region i ∈ N and x(t) =
[x1(t), ..., xN (t)] be the idle AT vector. Let yi,j(t) be the
number of full ATs (with passengers) en route from i to j
and Y(t) be the corresponding N × N matrix populated
by yi,j(t). Likewise, let zi,j(t) be the number of empty
ATs in server Wi,j and Z(t) be the corresponding N × N
matrix populated by zi,j(t). Finally let k(t) ∈ {1, ...,K}
be the interval that specifies the user arrival rates λi,k,
routing probabilities pi,j,k, and service rates µi,j,k in ef-
fect at time t. Thus, the state of the system is X (t) =
[x(t),Y(t), Z(t), k(t)].

Events: The system dynamics are event-driven with the
event set E = EU ∪ EC where EU and EC contain
the uncontrollable and controllable events, respectively. We
define the following uncontrollable event types within EU :
• κk event: the start of the kth interval which prompts a
change of λi,k, pi,j,k, and µi,j,k.
• δi,j event: a user request occurs for a trip departing from
region i with destination j (with the possibility that j =
i). Note that this request event does not necessitate an AT
departure in the case that region i has no available ATs.
• αi,j event: a full AT originating from i arrives at j.
• νi,j event: an empty AT originating from i arrives at j 6= i.

We also define the following controllable events in EC :
• ωi,j event: an empty AT (without passengers) departs from
the idle AT queue in region i destined for region j 6= i.
• σ event: a timeout event used for time-driven control.

The control policy we select determines when controllable
events are triggered. For example, a controllable ωi,j event
may be triggered by a timeout or the occurrence of an
uncontrollable event resulting in the state of the system
meeting certain criteria.

For a sample path of length T of the MoD system let
e = {e1, ..., eQT

} be the observed event sequence, ei ∈ E,
with corresponding event times τττ = {τ1, ..., τQT

} for a total
of QT events in [0, T]. Only at these event times τq may the
state of the system change. We may now write the state of
the system at time τq as X (τq) ≡ Xq , with xi(τq) ≡ xi,q ,
yi,j(τq) ≡ yi,j,q , zi,j(τq) ≡ xi,j,q , for all i ∈ N , where
q = 1, . . . , QT is the asynchronous event counter.
Controls: A control action in this system consists of forcing
an idle AT in some region i to travel empty to some other
region j 6= i. This action depends upon the availability of
idle ATs. Let ui,j,q(xi,q) ∈ {0, 1, ..., xi,q} be the number
of empty ATs forced from i to j when the qth event
occurs and let Uq(xq) be the N × N matrix populated by
ui,j,q(xi,q). The following feasibility constraint is required
for any control matrix Uq(xq):

N∑
j=1

ui,j,q(xi,q) ≤ xi,q ∀ i ∈ N (1)

For simplicity of notation, let us drop the explicit control
dependence on xi,q and write ui,j,q . Note that such controls
may be event-driven (deployed when the state of the system
satisfies certain conditions) or time-driven via the control-
lable timeout event σ.
State Dynamics: The inventory xi,q of the idle AT queue in
region i depends on both the uncontrollable and controllable
events:

xi,q =


xi,q−1 + 1 eq = αj,i or eq = νj,i

max{xi,q−1 − 1, 0} eq = δi,j

xi,q−1 − ui,j,q eq = ωi,j

xi,q−1 otherwise

(2)

where i, j ∈ N . Note that the max operation prevents the
idle AT queue inventory from falling below 0 in the case that
a δi,j user request event occurs and there are no idle ATs,
i.e., when a user exits the system prematurely as in Fig. 1.

2149

The number of full ATs yi,j,q en route from region i to
region j evolves according to:

yi,j,q =


yi,j,q−1 + 1 eq = δi,j and xi,q−1 > 0

yi,j,q−1 − 1 eq = αi,j

yi,j,q−1 otherwise
(3)

Likewise the number of empty ATs en route from i to j
evolves according to:

zi,j,q =


zi,j,q−1 + ui,j,q eq = ωi,j

zi,j,q−1 − 1 eq = νi,j

zi,j,q−1 otherwise
(4)

At time instants t = kI, k ∈ {1, . . . ,K} the interval
index k changes upon the occurrence of a κk event causing
the time-varying parameters to change: kq = kq−1 + 1
Objective Function: We formalize the trade-off in MoD fleet
management of meeting user requests and minimize load
balancing operations with a weighted sum of the probability
that a user’s request does not result in an AT departure (i.e., is
rejected as in Fig. 1) and the probability that an AT is driving
empty performing load balancing operations. The evaluation
of these probabilities is generally infeasible because of the
fast growth of the state space, rendering this task intracatable
except for the simplest of systems. In order to assess the
effect of controls ui,j,q on system performance, we replace
these probabilities with estimates consisting of the fraction
of rejected requests and total time spent driving empty in a
sample path over [0, T]. Let ρρρiT = {ρi,1, ..., ρi,Di

T
} be the

event times of all δi,j , j ∈ N user request events at region
i where Di

T is the total observed number of such events,
and let 1[·] be the usual indicator function. As defined in
Events, there are a total of QT events in [0, T] and the qth
event occurs at time τq .

The objective function we define is:

J(X0) = E

[
w

∑N
i=1

∑Di
T

q=1 1[xi(ρi,q) = 0]∑N
i=1D

i
T

+ (1− w)

∑QT

q=1

∑N
i=1

∑N
j=1(τq − τq−1)zi,j,q

Tm

]
(5)

where w ∈ (0, 1] is a weight coefficient. The first and
second part of (5) refer to the fraction of rejected users
unable to obtain an available AT (the numerator is the total
number of all user request events) and the fraction of vehicle-
hours ATs drive empty (the denominator is the total vehicle-
hours driven by the m vehicles in the fleet over [0, T]). The
weight coefficient w is used to quantify the trade-off between
customer satisfaction and load balancing. We exclude w = 0
as the optimal control is trivial when customer satisfaction
is irrelevant. If w = 1, the optimal control is still difficult to
determine: although load balancing may not be a direct cost,
the unavailability of ATs while performing load balancing
operations creates an indirect cost. Note that the objective
function in (5) is normalized so as to give values bounded
by [0, 1] and the weight w creates a convex combination of
the two objective components.

The optimization problem we formulate based on (5) is
to determine a control policy U(X) so as to minimize this
objective: J∗(X0) = min

U(X)
J(X0) (6)

III. PARAMETRIC CONTROL POLICIES

The optimal control (6) may be found via dynamic pro-
gramming using policy iteration (see [9]). However, such
methods are limited to small systems as the state space grows
combinatorially with the number of regions and ATs. For a
system with N regions and m ATs, the cardinality of the
state space is

(
m+2N2−1
2N2−1

)
and the cardinality of states with

at least N − 1 controls is:
(
m+2N2−1
2N2−1

)
−
(
m+2N2−N−1
2N2−N−1

)
.

An AT system with N=6 regions and m=50 taxis has over
3×1034 states. Utilizing sparse matrices and shared cloud
computing facilities, the largest possible systems that we
have been able to analyze are (N=2,m=10) and (N=3,m=5).
The latter required only 31 GB of memory, while solving for
N=3 regions and m=6 ATs required more than the 256 GB
allotted to a full node of 28 cores. This provides motivation
for seeking parametric control policies and assessing their
performance using the fraction estimates in (5).

We introduce a parametric controller for larger MoDs ex-
panding upon the framework of the “real-time” controller in
[1]; this “real-time” controller rebalances ATs evenly among
regions every half hour via an integer linear programming to
minimize the expected load balancing time. Unlike our loss
model in which user requests may be rejected, the model in
[1] includes a queue for waiting users such that the number
of ATs associated with a region is the sum of available ATs
and ATs en route with the number of users queued up waiting
for an AT subtracted from the latter.

Let Θ = [θ1, ..., θN] be a parameter vector with θi ≥ 0,
i = 1, . . . , N and

∑N
i=1 θi ≤ m defining a “fill to” level

for each of the N regions akin to (s, S) threshold policies
in supply chain and inventory management [10] where s
is a level that triggers a supply request and S triggers a
request to stop the supply process. Note that each interval
k = 1, 2, ...,K may have its own set of parameters to
account for different request patterns and traffic conditions.
For simplicity of notation, let ai(t) be the total number of
ATs available at or en route to region i at time t:

ai(t) = xi(t) +

N∑
j=1

(
yj,i(t) + zj,i(t)

)
(7)

Furthermore let us define a quantity Di(t) that is the
supply of available excess ATs if positive or the demand for
ATs if negative in region i : Di(t) = min{ai(t)−θi, xi(t)}
Note that Di(t) is an integer quantity as θi, ai(t), and xi(t)
are all integers. In order for feasible AT redistribution actions
to be triggered, it is a necessary condition that the overall
supply must exceed the demand in the following inequality:∑

k∈{i∈N|Di(t)>0}

Dk(t) ≥
∑

j∈{i∈N|Di(t)≤0}

Dj(t) (8)

This simply asserts that there is an adequate number of
available ATs in regions which are above their “fill-to” levels
specified in Θ which can be used to supply those regions
whose queues of available ATs are below their “fill-to”levels.

Assuming for the moment that there exists a well-defined
mechanism for triggering a process to redistribute ATs
among regions (to be further discussed in this section), this

2150

process consists of the following integer linear program with
decision variables ui,j ∈ {0, 1, 2, . . .}∀i, j ∈ N :

min
ui,j, i,j∈N

N∑
i=1

N∑
j=1

ui,j
µi,j

s. t.
N∑
j=1

ui,j ≤ xi(t)i ∈ N

(9)
θi ≤ ai(t) +

N∑
j=1

(
uj,i − ui,j

)
i ∈ N

The objective function of (9) minimizes empty vehicle
driving time; the first constraint maintains feasibility and the
second constraint requires the intended inventory for each
region to meet or exceed “fill to” levels θ1, ..., θN and . In
order to bypass the difficulty of integer programming, we
rewrite (9) as a relaxed linear program in the form of a
minimum cost flow problem in which regions indexed by i
with positive supply Di(t) are sources and negative demand
Di(t) are sinks with decision variable ui,j ≥ 0 ∀i, j ∈ N .

min
ui,j, i,j∈N

N∑
i=1

N∑
j=1

ui,j
µi,j

(10)

s. t. Di(t) ≥
N∑
j=1

(
ui,j − uj,i

)
i ∈ N

Note that the single constraint in (9) encompasses both
constraints in (10): 1, if Di(t) = ai(t) − θi, the constraint
in (10) is identical to the second constraint of (9); 2, if
Di(t) = xi(t), then i is a source such that no flow is directed
to it, i.e.,

∑N
j=1 uj,i = 0, therefore, the constraint in (10)

becomes identical to the first constraint of (9). We recover
the integer solution to (9) from this linear program since
integer solutions are a property of minimum cost flow linear
programs with integer sink and source quantities [11].

Depending upon the frequency at which these control
actions are implemented, there could be empty ATs cycling
inefficiently such as zi,j(t) > 0 and zj,i(t) > 0 simulta-
neously. To address this issue, we introduce an additional
parameter Ω which acts as either a scalar “timeout” in a
time-driven controller or as an integer threshold in an event-
driven controller. In either case, Ω defines the mechanism
that triggers solving (10) to determine the values of the
control variables ui,j , i, j ∈ N .
Single Scalar Parameter Time-Driven Controller:

For a time-driven controller, let the scalar parameter Ω ∈
(0,∞) be associated with the timeout event σ we defined
in Events such that event σ triggers the control actions in
(10) every Ω time units. The “real-time” controller proposed
in [1] can be recovered from our controller by setting all
θi = bmN c , i ∈ N in (9) and Ω = 30 minutes. Note
that this controller does not account for the system-specific
demand rates; for example consider a heterogeneous two-
region system – this control of distributing the fleet equally
between them would perform badly if one region experienced
far greater requests than the other.
N+1 Integer Parameter Event-Driven Controller:

To address the limitations of the aforementioned controller,
we define an event-driven controller to trigger a solution
of problem (10) whenever ai(t), the number of ATs in
or en route to a region, drops below the threshold θi by

some amount. In the simplest case, this occurs as soon as
ai(t) < θi, corresponding to a greedy mechanism that pulls
a single empty AT from the nearest region j with aj(t) > θj
and setting ui,j = 1. However, since we have at our disposal
a central controller with full information of the state space,
we can do better than that as explained next.

Let us redefine Ω ∈ {1, 2, ..,m} as an integer-valued
threshold parameter used to trigger the control actions re-
sulting from a solution of (10) whenever the condition
θi − ai(t) > Ω is satisfied. This will effectively send a total
of θi − ai(t) empty ATs to region i. However, this is still a
region-specific control that may be inefficient over the system
as a whole. As such, we instead trigger the control when the
sum-positive difference between the “fill-to” levels θi and
available or en route ATs ai(t) surpasses threshold Ω across
all regions for a global centralized control policy triggered
by: ∑

j∈{i∈N|ai(t)<θi}

(
θj − aj(t)

)
> Ω (11)

For example, consider the state of a system with N =
4, m = 20 in Fig. 2 with control parameter vector Θ =
[5, 3, 4, 5] is hashed in black and let Ω = 2. After each event,
the controller checks inequalities (8) and (11); if both hold,
then ωi,j events are induced as per (10). In this example,
(8) holds with (0+1+0+2) ≤ (3+0+3+0) and (11) holds with
(0+1+0+2) < 2.

Neighborhood
0

2

4

6

8

10

12

A
T

s

j
 [y

ji
(t)+z

ji
(t)] (ATs En Route)

x
i
(t) (Available ATs)

i
 ("Fill to" Level)

Fig. 2. Control parameters θi represent a “fill to” level for the number of
ATs available at or en route to region i. Below this threshold represents need;
above this threshold represents excess inventory to possibly send elsewhere.

This controller is triggered when one of the events defined
in Events causes a change in the value of some ai(t) in (11)
so that the sum crosses Ω either from below or from above.
This may happen in two ways: 1 When event δi,j occurs, i.e.,
a user requests to go from region i to j, which alters xi(t)
and yi,j(t) as per the state dynamics (2) and (3), respectively
(note that this assumes (8) already holds). 2 Event αj,i or νj,i
occurs, i.e., a full (respectively, empty) AT arrives at region i
and alters the value of xi(t) and yj,i(t) (respectively, zj,i(t)).
While the time-driven controller triggers control actions after
a predetermined length of time regardless of the state of the
system, the event-driven controller is only triggered when
the inventory levels fall sufficiently low across all regions.
Concurrent Estimation:

Both the time and event-driven controllers require parame-
ters be tuned to obtain the best performance attainable within
their parametric family of load balancing controllers. The
time-driven controller depends only on the scalar real-valued
parameter Ω so that “brute-force” trial-and-error simulation
can be used. However, such a “brute-force” method is

2151

infeasible for the event-driven controller with its vector of
N + 1 tunable integer parameters, i.e., Θ = [θ1, ..., θN] and
Ω ∈ {1, 2, ..,m} that gives rise to

∑m
i=1 i

(
i+N−1
N−1

)
possible

parameter vectors – a system of 6 regions and 50 ATs
has over 1×109 parameter vectors. Therefore, we turn to
Concurrent Estimation (CE) methods [8] which can construct
multiple sample paths concurrently with an observed nominal
sample path. Thus, we can simulate the system under a given
setting (Θ0,Ω0) and, upon completion of this simulation
run (or directly observed sample path in an actual MoD
based on real data collected) over [0, T], a large number
L ≤ m ·

∑m
i=1

(
i+N−1
N−1

)
of other feasible sample paths

(Θl,Ωl) are also available, l = 1, . . . , L. The value of L (the
number of concurrently estimated sample paths) is limited by
memory storage as the computation time of constructing a
single concurrent sample path is minimal (see [7],[8]).

The Markovian nature of the MoD model we have adopted
allows us to make use of the Standard Clock (SC) CE method
presented in [7],[8] with minor modifications. Details of the
original Standard Clock method, as well as the variant we
have adopted for our problem, are provided in [9]. Also
included are the details of the optimization scheme to find
the best control parameters. In short, we simulate a nominal
sample path over [0, T] with some starting parameter vector
and use CE to concurrently simulate 2N sample paths, each
of which uses a selected variation of the nominal parameter
vector. At the end of the simulation we begin a new iteration
by choosing the best performing sample path’s parameter
vector to use as the next nominal sample path’s vector and
create 2N more selected variations on this new nominal
parameter vector. This greedy algorithm stops when the best
performance of two successive iterations is less than some
chosen ε (thus, there is no guarantee of global optimality).
N2 Parameter Static Controller:

Both previously described controllers require tuning the
parameters via simulation or through a data-driven on-line
adaptation process. We shall compare in Section V these
controllers to an alternative simpler parametric controller
introduced in [5] whose parameters are determined by linear
programming and rely solely on the model parameters λi,j
and µi,j . This time-invariant and state-blind control sends
empty ATs from i to j at a static rate ri,j , i, j ∈ N such that
there are N2 rate parameters determined by the following
linear program that minimizes empty travel time and seeks
to equal the inflow and outflow of ATs at each region with
ri,j ≥ 0 ∀i, j ∈ N :

min
ri,j

N∑
i=1

N∑
j=1

ri,j
µi,j

(12)

s. t.
N∑
j=1

(λi,j + ri,j) =

N∑
j=1

(λj,i + rj,i) i ∈ N

This linear program is always feasible; for example setting
ri,j = λj,i ∀ i, j ∈ N satisfies the first constraint by sending
back empty taxis at the same rate and satisfies the second
constraint as λi,j ≥ 0. Note that if this controller directs at
time t an AT to leave region i for some j but xi(t) = 0 (i.e.,
region i does not have any idle ATs) neither a penalty nor
an event ωi,j occur.

IV. SYSTEM PERFORMANCE LOWER BOUND

In order to assess the performance of the parametric
controllers we establish a lower bound on best performance
possible on average.As the objective function in (5) is an
average over [0, T], we seek only an average performance
lower bound. Let us abstract the request arrival process
into a continuous request flow process with rate λi,j . On
average, region i will have an inflow of

∑N
j=1 λj,i and an

outflow of
∑N
j=1 λi,j with an average difference in request

flow: di =
∑N
j=1(λi,j − λj,i) such that we may define the

following two sets of regions depending on the sign of di:
G = {i ∈ N|di < 0} B = {i ∈ N|di ≥ 0}
There are two sources of system costs in the objective

function (5): unsated user requests for ATs and empty AT
traveling time. Regions within B will run out of AT flow as
they are a more popular origin than destination, thus they will
reject a request flow di. For this abstracted flow AT system
an amount p of flow lost by not being sated with available
ATs costs the system c(p) as defined by:

c(p) = p · 1/
N∑
i=1

N∑
j=1

λi,j (13)

Regions within B will build up excess AT flow and are
candidates to send empty AT flow out. Suppose that p empty
ATs are sent from i to j at the beginning of a time period,
with an average trip time 1

µi,j
for a total mean empty AT

driving time p
µi,j

. As there are a total of m AT-hours, the
mean number of empty ATs driving is p

µi,jm
. Similarly, for

the abstracted fluid AT system forcing an AT flow of p from
i to j, the system cost incurred is as follows; note that both
(13) and (14) are linear functions of the flow p.

C(p, i, j) = p · 1/µi,jm (14)

Consider two types of decision variables: βj , j ∈ B, as
the fraction of positive request difference dj that will be left
unsated and vi,j as the forced empty AT flow from i ∈ G
to j ∈ B that will sate the remaining [1 − βj] fractional
difference in flow. The following linear program finds a lower
bound with less than N2 + N decision variables. The first
and second parts of the objective function are the cost of
ignoring a fraction βj and sating the fraction [1 − βj] of
difference in request dj from (13) and (14), respectively.
The first constraint requires that the fraction [1 − βj] of
difference in request is sated in “bad” regions. The second
constraint places limitations on the empty AT flows from
“good” regions.

LB = min
vi,j ,βj

∑
j∈B

(
djβj∑N

i=1

∑N
k=1 λi,k

+
∑
i∈G

vi,j
µi,jm

)
(15)

s. t. dj(1− βj) =
∑
i∈G

vi,j j ∈ B

− di ≥
∑
j∈B

vi,j i ∈ G

0 ≤ vi,j i ∈ G, j ∈ B 0 ≤ Bj ≤ 1 j ∈ B

2152

V. SIMULATION EXAMPLE: A 6-REGION SYSTEM

Consider an N=6 MoD system with an objective function
weight w=0.5 (whose request and travel rates may be found
in [9]). In order to assess the performance of our event-
driven parametric controller, we compare it to the time-driven
controller, the static controller in [5], the lower bound derived
in (15), and a policy of no control.

The event-driven and time-driven controllers require N +
1 integer and 1 real-valued parameters respectively, which
are determined using the concurrent estimation techniques
described in detail in [9] applied to a simulated system. After
running many iterations on a shared cloud computer cluster
in MATLAB 2018b, the event and time-driven parameters in
Table I were determined to perform the best for fleet sizes:
[]50, 75, 100, 125].

TABLE I
EVENT AND TIME-DRIVEN CONTROLLER PARAMETERS: N=6 SYSTEM

Control Event-Driven Time-Driven
m θ1 θ2 θ3 θ4 θ5 θ6 Ω Ω

50 10 7 4 1 4 7 5 24
75 15 13 8 4 12 13 8 12

100 20 16 11 7 16 20 14 12
125 27 19 13 7 19 25 22 18

As these parameter vectors were determined to be the
best via simulation, they are likely local minima of the
objective function. Iterations stopped when slight deviations
(i.e. θ′i = θi + 1) had little effect on the objective function
of a sufficiently long sample path (T=100,000 time units).

Fig. 3 shows the average simulated performance for all
fleet sizes and controllers. The N2 parameters of the static
false rate controller introduced in [5] may be found in [9].
All systems performed about the same under no control
with about 37% of user requests unsated – as the fleet size
increased more vehicles sat idle in unpopular origin regions.
As expected, the N+1 parameter event-driven controller
with its state-dependent control and system-specific tuned
parameters performs the best across all fleet sizes.

50 60 70 80 90 100 110 120

m (Fleet Size)

0

0.05

0.1

0.15

0.2

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

No Control

Static Control

Single Parameter Time-Driven Controller

N+1 Parameter Event-Driven Controller

Average Best Possible Performance Lower Bound

Fig. 3. The performance of a system with fleet sizes 50, 75, 100, and 125
under no control, static control, time-driven control, event-driven control,
and the average best possible performance lower bound.

The intermediate fleet sizes studied here are where the true
benefits of the event-driven controller are to be observed for
this particular 6-region system. Note that the event and time-
driven controllers quickly approach the lower bound as the
fleet size increases but the static controller does not– this
advantage is due to the event and time-driven controllers use
of state information. We ignore fleets of less than 50: they
are unstable and perform poorly no matter the control, since
the underlying MoD system is under-capacitated with an
insufficient number of vehicles to satisfy the given demand.

We also ignore fleets over 125: they perform well no matter
the control, as they are over-capacitated. Table II shows a
detailed performance comparison of the controllers and the
lower bound derived in (15) for a fleet size of 75 ATs.

TABLE II
N=6, m=75 SYSTEM PERFORMANCE COMPARISON

Control None Static Time
Driven

Event
Driven

Lower
Bound

% Users Rejected 38.0 11.8 7.0 3.4 0
% ATs Drive Empty 0 6.0 8.2 7.8 6.8
J̄ (w = 0.5) 19.0 8.9 7.6 5.6 3.4

VI. CONCLUSIONS AND FUTURE WORK

Load balancing in MoD systems requires empty vehicles
be sent empty to mitigate the temporal demand patterns
that deplete some service regions of available vehicles. We
have defined an objective function to jointly minimize the
fraction of user requests denied due to unavailability and
the fraction of time vehicles drive empty– and derived its
lower bound. As optimal control via DP quickly becomes
intractable even for small dimensionality systems, we have
developed a parametric controller using thresholds on the
number of vehicles available in and en route to each region.
Well performing parameters are determined using Concurrent
Estimation methods which allow for the construction of mul-
tiple sample paths under different parameters from a single
nominal sample path. Simulations show the proposed event-
driven threshold-based controller performs significantly bet-
ter than static controllers and approaches the lower bound
for large fleet sizes. Future work will include using taxi data
and exploring a wider range of the control parameter space
by making a more efficient use of CE methods.

REFERENCES

[1] R. Zhang and M. Pavone, “Control of robotic mobility-on-demand sys-
tems: a queueing-theoretical perspective,” The International Journal of
Robotics Research, vol. 35, no. 1-3, pp. 186–203, 2016.

[2] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and
M. Pavone, “Toward a systematic approach to the design and eval-
uation of automated mobility-on-demand systems: A case study in
singapore,” in Road Vehicle Automation. Springer, 2014, pp. 229–
245.

[3] M. Ramezani and M. Nourinejad, “Dynamic modeling and control of
taxi services in large-scale urban networks: A macroscopic approach,”
Transportation Research Part C: Emerging Technologies, vol. 94, pp.
203–219, 2018.

[4] D. J. Fagnant and K. M. Kockelman, “The travel and environmental
implications of shared autonomous vehicles, using agent-based model
scenarios,” Transportation Research Part C: Emerging Technologies,
vol. 40, pp. 1–13, 2014.

[5] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load
balancing for mobility-on-demand systems,” The International Journal
of Robotics Research, vol. 31, no. 7, pp. 839–854, 2012.

[6] K. Spieser, S. Samaranayake, and E. Frazzoli, “Vehicle routing for
shared-mobility systems with time-varying demand,” in American
Control Conference (ACC), 2016. IEEE, 2016, pp. 796–802.

[7] C. G. Cassandras and C. G. Panayiotou, “Concurrent sample path
analysis of discrete event systems,” Discrete Event Dynamic Systems,
vol. 9, no. 2, pp. 171–195, 1999.

[8] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Springer Science & Business Media, 2009.

[9] R. Swaszek and C. Cassandras, “Load balancing in mobility-on-
demand systems: Reallocation via parametric control using concurrent
estimation,” arXiv preprint arXiv:1904.03755, 2019.

[10] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 2005, vol. 1, no. 3.

[11] M. S. Bazaraa, Linear programming and network flows, fourth edi-
tion.. ed. Hoboken, New Jersey: Wiley, 2010.

2153

