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SUMMARY

We study the problem of routing vehicles with energy constraints through a network where there are at least
some charging nodes. We seek to minimize the total elapsed time for vehicles to reach their destinations
by determining routes, as well as recharging amounts when the vehicles do not have adequate energy for
the entire journey. For a single vehicle, we formulate a mixed-integer nonlinear programming problem and
derive properties of the optimal solution allowing it to be decomposed into two simpler problems. For a
multi-vehicle problem, where traffic congestion effects are included, we seek to optimize a system-wide
objective and formulate the problem by grouping vehicles into ‘subflows’. We also provide an alternative
flow optimization formulation leading to a computationally simpler problem solution with minimal loss in
accuracy. Because the problem size increases with the number of subflows, a proper selection of this number
is essential to render the problem computationally manageable and reflects a trade-off between proximity
to optimality and computational effort needed to solve the problem. We propose a criterion and procedure
leading to an appropriate choice of the number of subflows. We also quantify the ‘price of anarchy’ for this
problem and compare user-optimal to system-optimal performance. Finally, when the system consists of
both electric vehicles (EVs) and non-electric vehicles, we formulate a system-centric optimization problem
for optimal routing of both non-electric vehicles and EVs along with an optimal policy for charging EVs
along the way if needed. Numerical results are included to illustrate these approaches. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The increasing presence of battery-powered vehicles (BPVs), such as electric vehicles (EVs), in
traffic networks has created new challenges for integrating BPVs into such networks while also
maintaining high overall traffic performance levels. More generally, when the entities in a network
are characterized by physical attributes exhibiting a dynamic behavior, this behavior can play an
important role in the routing decisions thus giving rise to novel issues in classical network routing
problems [1]. In the case of BPVs, the key physical attribute is energy, and there are four BPV
characteristics that are crucial in routing problems: limited cruising range, long charge times, sparse
coverage of charging stations, and the BPV energy recuperation ability [2], which can be exploited.

In recent years, the vehicle routing literature has been enriched by work aiming to accommodate
the aforementioned BPV characteristics. For example, by incorporating the recuperation ability of
EVs (which leads to negative energy consumption on some paths), extensions to general shortest
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path algorithms are proposed in [2] that address the energy-optimal routing problem. The energy
requirements in this problem are modeled as constraints, and the proposed algorithms are evaluated
in a prototypical navigation system. Extensions provided in [3] employ a generalization of Johnson’s
potential shifting technique to make Dijkstra’s algorithm applicable to the negative link cost short-
est path problem so as to improve the results and allow for route planning of EVs in large networks.
This work, however, does not consider the presence of charging stations modeled as nodes in the
network. Charging times are incorporated into a multi-constrained optimal path planning prob-
lem in [4], which aims to minimize the length of an EV’s route and meet constraints on total
traveling time, total time delay due to signals, total recharging time, and total recharging cost; a par-
ticle swarm optimization algorithm is then used to find a suboptimal solution. In this formulation,
however, recharging times are simply treated as parameters and not as controllable variables. In [5],
algorithms for several routing problems are proposed, including a single vehicle routing problem
with inhomogeneously priced refueling stations for which a dynamic programming-based algo-
rithm is proposed to find a least cost path from source to destination. In [6], the same problem is
revisited, assuming that the recharging cost is a nonlinear function of the battery charging level
and a dynamic programming algorithm is proposed to find a minimum cost path for an EV. More
recently, an EV routing problem with time windows and recharging stations was proposed in [7],
where an EV’s energy constraint is first introduced into vehicle routing problems, and recharging
times depend on the battery charge of the vehicle upon arrival at the station. Controlling recharging
times is circumvented by simply forcing vehicles to be always fully recharged. In [8], an inte-
ger programming optimization problem was formulated to simultaneously find optimal routes and
charging station locations for commercial electric vehicles. In [9], a heuristic algorithm is proposed
to find the energy-optimal routing for EVs taking into account the energy recuperation, battery
capacity limitations, and dynamic energy cost imposed by the vehicle properties. Combinatorial
optimization methods for different aspects of EV management such as energy-efficient routing and
facility location problems are studied in [10]. In the unmanned autonomous vehicle (UAV) literature,
Sunder and Rathinam [11] consider a UAV routing problem with refueling constraints. In this prob-
lem, given a set of targets and depots, the goal is to find an optimal path such that each target
is visited by the UAV at least once, while the fuel constraint is never violated. A Mixed-Integer
Nonlinear Programming (MINLP) formulation is proposed with a heuristic algorithm to determine
feasible solutions.

In this paper, our objective is to study a vehicle total traveling time minimization problem (includ-
ing both the time on paths and at charging stations) as introduced in [12], where an energy constraint
is considered so that the vehicle is not allowed to run out of power before reaching its destination.
We view this as a network routing problem where vehicles control not only their routes but also
times to recharge at various nodes in the network. Our contributions are twofold. First, for the single
energy-aware vehicle routing problem, formulated as a MINLP, we show that there are properties of
the optimal solution and the energy dynamics allowing us to decompose the original problem into
two simpler problems, provided charging speeds are homogeneous (but charging prices need not
be the same). Thus, we separately determine route selection through a Linear Programming (LP)
problem and then recharge amounts through another LP or simple optimal control problem. Because
we do not impose full recharging constraints, the solutions obtained are more general than, for
example, in [7] and recover full recharging when this is optimal. Second, we study a multi-vehicle
energy-aware routing problem, where a traffic flow model is used to incorporate congestion effects.
This system-wide optimization problem appears to have not yet attracted much attention. By group-
ing vehicles into ‘subflows’, we are once again able to decompose the problem into route selection
and recharge amount determination, although we can no longer reduce the former problem to an LP.
Moreover, we provide an alternative flow-based formulation such that each subflow is not required
to follow a single end-to-end path but may be split into an optimally determined set of paths. This
formulation reduces the computational complexity of the MINLP problem by orders of magnitude
with numerical results showing little or no loss in optimality. We further study the ‘price of anar-
chy’ for the multi-vehicle routing problem so as to determine the difference in performance between
selfish routing and system-optimal routing. Finally, we address the issue of selecting the number of
subflows, seeking to keep it as small as possible.
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The structure of the paper is as follows. In Section 2, we introduce and address the single-vehicle
routing problem and identify properties, which lead to its decomposition. In Section 3, the multi-
vehicle routing problem is formulated, first as an MINLP and then as an alternative flow optimization
problem. We also investigate the price of anarchy for this problem and provide simulation examples
illustrating our approach and giving insights on the relationship between recharging speed and opti-
mal routes. In Section 4 we define a criterion and a systematic procedure for the proper selection of
the number of subflows. In Section 5, the multi-vehicle routing problem is revisited when the inflow
to the network contains both EVs and non-EVs. Finally, conclusions and further research directions
are outlined in Section 6.

2. SINGLE VEHICLE ROUTING

We consider a traffic network modeled as a directed graph G D .N ;A/ with N D ¹1; : : : ; nº and
jAj D m (Figure 1). Node i 2 N=¹nº represents a charging station, and .i; j / 2 A is an arc
(link) connecting node i to j . We assume for simplicity that all nodes have a charging capability,
although this is not necessary (we can always reduce a graph with some non-charging nodes into
one including only those that can charge BPVs). We also define I.i/ and O.i/ to be the set of start
nodes (respectively, end nodes) of arcs that are incoming to (respectively, outgoing from) node i ;
that is, I.i/ D ¹j 2 N j.j; i/ 2 Aº and O.i/ D ¹j 2 N j.i; j / 2 Aº.

We are first interested in a single-origin-single-destination vehicle routing problem. Nodes 1 and
n, respectively, are defined to be the origin and destination. For each arc .i; j / 2 A, there are two
cost parameters: the required traveling time �ij and the required energy consumption eij on this
arc. Note that �ij > 0 (if nodes i and j are not connected, then �ij D 1), whereas eij is allowed
to be negative due to a BPV’s potential energy recuperation effect [2]. Letting the vehicle’s charge
capacity be B , we assume that eij < B for all .i; j / 2 A. Because we are considering a single
vehicle’s behavior, we assume that it will not affect the overall network’s traffic state; therefore, �ij
and eij are assumed to be fixed depending on given traffic conditions at the time the single-vehicle
routing problem is solved. Clearly, this cannot apply to the multi-vehicle case in the next section,
where the decisions of multiple vehicle routes affect traffic conditions thus influencing traveling
times and energy consumption. Because the BPV has limited battery energy, it may not be able to
reach the destination without recharging. Thus, recharging amounts at charging nodes i 2 N are
also decision variables.

We denote the selection of arc .i; j / and energy recharging amount at node i by xij 2 ¹0; 1º,
i; j 2 N and ri > 0, i 2 N=¹nº, respectively. Moreover, because we take into account the vehicle’s
energy constraints, we use Ei to represent the vehicle’s residual battery energy at node i . Then, for
all Ej ; j 2 O.i/, we have

Ej D

²
Ei C ri � eij if xij D 1
0 otherwise

which can also be expressed as

Ej D
X
i2I.j /

.Ei C ri � eij /xij ; xij 2 ¹0; 1º

Figure 1. A seven-node network example for routing with recharging nodes.
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The problem objective is to determine a path from 1 to n, as well as recharging amounts, so as to
minimize the total elapsed time for the vehicle to reach the destination. Figure 1 is a sample network
for this vehicle routing problem. We formulate an MINLP problem as follows:

min
xij ;ri ; i;j2N

nX
iD1

nX
jD1

�ijxij C

nX
iD1

nX
jD1

rigxij (1)

s:t:
X
j2O.i/

xij �
X
j2I.i/

xj i D bi ; for each i 2 N (2)

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n (3)

Ej D
X
i2I.j /

.Ei C ri � eij /xij ; for j D 2; : : : ; n (4)

0 6 Ei 6 B; E1 given; for each i 2 N (5)

xij 2 ¹0; 1º; ri > 0 (6)

where g is the charging time per energy unit, that is, the reciprocal of a fixed charging rate. The
constraints (2)–(3) stand for the flow conservation, which implies that only one path starting from
node i can be selected, that is,

P
j2O.i/ xij 6 1 [13]. It is easy to check that this also implies

xij 6 1 for all i; j because b1 D 1, I.1/ D ¿. Constraint (4) represents the vehicle’s energy
dynamics. Finally, (5) indicates that the vehicle cannot run out of energy before reaching a node
or exceed a given capacity B . All other parameters are predetermined according to the network
topology. We point out that in this formulation, we assume homogeneous charging nodes (i.e., g is
fixed). The more general case of inhomogeneous charging nodes is addressed in [14] and is the
subject of continuing research.

2.1. Properties

Rather than directly tackling the MINLP problems (1)–(6), we derive some key properties that will
enable us to simplify the solution procedure. The main difficulty in this problem lies in the coupling
of the decision variables, xij and ri , in (4). The following lemma will enable us to exclude ri from
the objective function by showing that the difference between the total recharging energy and the
total energy consumption while traveling is given only by the difference between the vehicle’s
residual energy at the destination and at the origin.

Lemma 1
Given (1)–(6),

nX
iD1

nX
jD1

.rixij � eijxij / D En �E1 (7)

Proof
From (4), we sum up both sides to obtain

nX
jD2

Ej �

nX
jD2

X
i2I.j /

Eixij D

nX
jD2

X
i2I.j /

.ri � eij /xij (8)
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Moreover, we can write

nX
jD2

X
i2I.j /

Eixij D
X
i2I.2/

Eixi2 C � � � C
X
i2I.n/

Eixin

representing the sum of Ei on the selected path from node 1 to n, excluding En. On the other hand,
from (4), we have Ei D 0 for any node i not selected on the path. Therefore,

Pn
jD2Ej is the sum

of Ei on the selected path from node 1 to n, excluding E1. It follows that

nX
jD2

Ej �

nX
jD2

X
i2I.j /

Eixij D En �E1 (9)

Returning to (8), we use (9) and observe that all terms in the double sum
Pn
iD1

Pn
jD1.ri � eij /xij

are zero except for those with i 2 I.j /, we obtain

nX
iD1

nX
jD1

.ri � eij /xij D

nX
jD2

X
i2I.j /

.ri � eij /xij D

nX
jD2

Ej �

nX
jD2

X
i2I.j /

Eixij D En �E1

which proves the lemma. �

In view of Lemma 1, we can replace
Pn
iD1

Pn
jD1 rigxij in (1) by .En � E1/g CPn

iD1

Pn
jD1 eijgxij and eliminate the presence of ri , i D 2; : : : ; n�1, from the objective function.

Note that E1 is given, leaving us only with the task of determining the value of En. Now, let us
investigate the recharging energy amounts r�i , i D 1; : : : ; n � 1, in an optimal policy. There are
two possible cases: (i)

P
i r
�
i > 0, that is, the vehicle has to get recharged at least once; and .i i/P

i r
�
i D 0, that is, r�i D 0 for all i , and the vehicle has adequate energy to reach the destination

without recharging. For case (i), we establish the following lemma.

Lemma 2
If
P
i r
�
i > 0 in the optimal routing policy, then E�n D 0.

Proof
We use a contradiction argument. Assume that we have already achieved an optimal route, where
E�n > 0 and the objective function is J � D

P
i2P .�i;iC1 C r

�
i g/ for an optimal path denoted by

P . Without loss of generality, we re-index nodes so that we may write P D ¹1; : : : ; nº. Then, each
i 2 P such that i < n on this optimal path satisfies

E�iC1 D E
�
i C r

�
i � ei;iC1 (10)

Consider first the case where r�n�1 > 0. Let us perturb the current policy as follows: r
0

n�1 D r
�
n�1 �

�, and r
0

i D r
�
i for all i < n � 1, where � > 0. Then, from (10), we have

E�n D E1 C

n�1X
iD1

�
r�i � ei;iC1

�

Under the perturbed policy,

E
0

n D E1 C

n�1X
iD1

�
r
0

i � ei;iC1

�
D E1 C

n�1X
iD1

�
r�i � ei;iC1

�
�� D E�n ��

E
0

i D E
�
i ; for all i < n
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and, correspondingly,

J
0

D

n�1X
iD1

�
�i;iC1 C r

0

ig
�
D

n�1X
iD1

�
�i;iC1 C r

�
i g
�
��g D J � ��g

Because E�n > 0, we may select � > 0 sufficiently small so that E
0

n > 0, and the perturbed policy
is still feasible. However, J

0

D J � � �g < J �, which leads to a contradiction to the assumption
that the original path was optimal.

Next, consider the case where r�n�1 D 0. Then, because of E�n > 0 and ei;iC1 > 0 for all i 2 P ,
we can always find some j 2 P; j < n such that E�j > 0, r�j�1 > 0, and r�

k
D 0 for k > j . Thus,

still, because of (10), we have

E�j D E
�
n C

n�1X
kDj

ek;kC1 > 0

At this time, because r�j�1 > 0, the argument is similar to the case r�n�1 > 0, leading again to the
same contradiction argument, and the lemma is proved. �

Turning our attention to case (ii) where r�i D 0 for all i 2 ¹1; : : : ; nº, observe that problem (1)
can be transformed into

min
xij; i;j2N

nX
iD1

nX
jD1

�ijxij (11)

s:t:
X
j2O.i/

xij �
X
j2I.i/

xj i D bi ; for each i 2 N

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

Ej D
X
i2I.j /

.Ei � eij /xij ; for j D 2; : : : ; n (12)

0 6 Ei 6 B; E0 given; for each i 2 N

xij 2 ¹0; 1º (13)

In this case, constraint (12) gives

nX
jD2

Ej �

nX
jD2

X
i2I.j /

Ei D �

nX
jD2

X
i2I.j /

eijxij

Using (9) and Ei > 0, we have

En D E1 �

nX
jD2

X
i2I.j /

eijxij > 0

and it follows that

nX
iD1

nX
jD1

eijxij 6 E1 (14)

With (14) in place of (12), the determination of x�ij boils down to an integer linear programming
problem in which only variables xij , i; j 2 N , are involved, a much simpler problem.
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We are normally interested in case (i), where some recharging decisions must be made, so let us
assume that the vehicle’s initial energy is not large enough to reach the destination. Then, in view
of Lemmas 1 and 2, we have the following theorem.

Theorem 1
If
P
i r
�
i > 0 in the optimal policy, then x�ij , i; j 2 N , in the original problem (1) can be determined

by solving an LP problem

min
xij; i;j2N

nX
iD1

nX
jD1

.�ij C eijg/xij

s:t:
X
j2O.i/

xij �
X
j2I.i/

xj i D bi ; for each i 2 N

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

0 6 xij 6 1

(15)

Proof
Given Lemmas 1 and 2, we know that the optimal solution satisfies

P
i

P
j r
�
i x
�
ij D

P
i

P
j eijx

�
ij�

E1. Consequently, we can change the objective (1) to the form in the succeeding text without
affecting optimality

min
xij; i;j2N

nX
iD1

nX
jD1

.�ij C eijg/xij �E1g

Because ri no longer appears in the objective function and is only contained in the energy dynamics
(4), we can choose any ri satisfying the constraints (4)–(5) without affecting the optimal objective
function value. Therefore, x�ij can be determined by the following problem:

min
xij; i;j2N

nX
iD1

nX
jD1

.�ij C eijg/xij �E1g

s:t:
X
j2O.i/

xij �
X
j2I.i/

xj i D bi ; for each i 2 N

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

xij 2 ¹0; 1º

which is a typical shortest path problem formulation. Moreover, by the property of minimum cost
flow problems [15], the aforementioned integer programming problem is equivalent to the LP prob-
lem with the integer restriction of xij relaxed. Finally, because E1 is given, the problem reduces to
(15), which proves the theorem. �

Note that using Theorem 1, an optimal path is determined by solving an LP problem, and because
this is a convex optimization problem [16], the solution is the global optimum.

2.2. Determination of optimal recharging amounts r�i

Once we determine the optimal route, P , in (15), it is relatively easy to find a feasible solution for
ri , i 2 P , to satisfy the constraint (4), which is obviously non-unique in general. Then, we can
introduce a second objective into the problem, that is, the minimization of charging costs on the
selected path, because charging prices normally vary over stations. As before, we re-index nodes
and define P D ¹1; : : : ; nº. We denote the charging price at node i by pi . Once an optimal route
is determined, we seek to control the energy recharging amounts ri to minimize the total charging
cost dependent on pi , i 2 N=¹nº. This can be formulated as a multi-stage optimal control problem
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min
ri ; i2P

X
i2P

piri

s:t: EiC1 D Ei C ri � ei;iC1

0 6 Ei 6 B; E1 given

ri > 0 for all i 2 N

(16)

This is a simple two-point boundary-value problem and can be easily solved by discrete-time opti-
mal control approaches [17] or treating it as an LP problem where Ei and ri are both decision
variables.

Finally, we note that Theorem 1 holds under the assumption that charging nodes are homogeneous
in terms of charging speeds (i.e., the charging rate 1=g is fixed). However, our analysis allows for
inhomogeneous charging prices. The case of node-dependent charging rates is addressed in [14] and
can be shown to still allow a decomposition of the MINLP, although we can no longer generally
obtain an LP. Thus, alternative techniques need to be explored in order to reduce the computational
complexity of the problem.

It is important to ensure that a solution to the overall problem is computationally efficient, because
it may have to be repeatedly obtained during the course of a vehicle’s trip: Although we treat the state
variable Ei as deterministic, in reality, there is noise in the process that may force a re-evaluation
of routing and charging at each node when EiC1 is observed and may satisfy EiC1 D Ei C ri �
ei;iC1 Cwij , where wij is a random variable. In this case, one can re-solve the optimal routing and
charging problem for the vehicle with new initial conditions at node iC1, which is possible as long
as we only have to deal with the simple problems (15) and (16).

3. MULTIPLE VEHICLE ROUTING

The results obtained for the single vehicle routing problem pave the way for the investigation
of multi-vehicle routing, where we seek to optimize a system-wide objective by routing vehicles
through the same network topology. The main technical difficulty in this case is that we need to con-
sider the influence of traffic congestion on both traveling time and energy consumption. A second
difficulty is that of implementing an optimal routing policy. In the case of a centrally controlled
system, this can be accomplished through appropriately communicated commands. In the case
of a traffic network with individual drivers, implementation requires signaling mechanisms and
possibly incentive structures to enforce desired routes assigned to vehicles, bringing up a number of
additional research issues. In the sequel, we limit ourselves to resolving the first difficulty, leaving
implementation challenges as part of ongoing research.

If we proceed as in the single vehicle case, that is, determining a path selection through xkij ,
i; j 2 N , and recharging amounts rki , i 2 N=¹nº for all vehicles k D 1; : : : ; K, for some K, then
the dimensionality of the solution space is prohibitive. Moreover, the inclusion of traffic congestion
effects introduces additional nonlinearities in the dependence of the travel time �ij and energy con-
sumption eij on the traffic flow through arc .i; j /, which now depends on x1ij ; : : : ; x

K
ij . Instead, we

will proceed by grouping subsets of vehicles into N ‘subflows’, where N may be selected to render
the problem manageable (Section 4).

Let all vehicles enter the network at the origin node 1, and let R denote the rate of vehicles
arriving at this node. Viewing vehicles as defining a flow, we divide them into N subflows (we will
discuss the effect of N in Section 3.3), each of which may be selected so as to include the same
type of homogeneous vehicles (e.g., vehicles with the same initial energy). Thus, all vehicles in the
same subflow follow the same routing and recharging decisions so that we only consider energy
recharging at the subflow level rather than individual vehicles. Note that asymptotically, asN !1,
we can recover routing at the individual vehicle level.

Clearly, not all vehicles in our system are EVs, in which case these can be treated as uncon-
trollable interfering traffic and are accommodated in our analysis as long as their flow rates are
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known. For simplicity, we will assume here that every arriving vehicle is an EV and joins a subflow.
However, we will show in Section 5 how the problem can be solved by optimizing over both EVs
and non-EVs.

Our objective is to determine optimal routes and energy recharging amounts for each subflow of
vehicles so as to minimize the total elapsed time of these vehicle flows traveling from the origin
to the destination. The decision variables consist of xkij 2 ¹0; 1º for all arcs .i; j / and subflows
k D 1; : : : ; N , as well as charging amounts rki for all nodes i D 1; : : : ; n � 1 and k D 1; : : : ; N .
Given traffic congestion effects, the time and energy consumption on each arc depends on the
values of xkij and the fraction of the total flow rate R associated with each subflow k; the sim-
plest such flow allocation (which we will adopt) is one where each subflow is assigned R=N . Let

xij D
�
x1ij ; : : : ; x

N
ij

�T
and ri D

�
r1i ; : : : ; r

N
i

�T
. Then, we denote the traveling time (delay) a

vehicle will experience through link .i; j / by some nonlinear function �ij .xij/. The corresponding
energy consumption of the kth vehicle subflow through link .i; j / is a nonlinear function denoted
by ekij .xij/. As already mentioned, �ij .xij/ and ekij .xij/ can also incorporate the influence of uncon-
trollable (non-EV) vehicle flows, which can be treated as parameters in these functions (we discuss
this further in Section 5). Similar to the single vehicle case, we use Eki to represent the residual
energy of subflow k at node i given by the aggregated residual energy of all vehicles in the subflow.
If the subflow does not go through node i , then Eki D 0. The problem formulation is as follows:

min
xij;ri; i;j2N

nX
iD1

nX
jD1

NX
kD1

�
�ij .xij/x

k
ij

R

N
C rki gx

k
ij

�

s:t: for each k 2 ¹1; : : : ; N º W

(17)

X
j2O.i/

xkij �
X
j2I.i/

xkji D bi ; for each i 2 N (18)

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n (19)

Ekj D
X
i2I.j /

�
Eki C r

k
i � e

k
ij .xij/

�
xkij ; j D 2; : : : ; n (20)

Ek1 is given; Eki > 0; for each i 2 N (21)

xkij 2 ¹0; 1º; rki > 0 (22)

Obviously, this MINLP problem is difficult to solve. However, as in the single-vehicle case, we are
able to establish some properties that will allow us to simplify it.

3.1. Properties

Even though the term �ij .xij/ in the objective function is no longer linear in general, for each subflow
k, the constraints (18)–(22) are still similar to the single-vehicle case. Consequently, we can derive
similar useful properties for this problem in the form of the following two lemmas.

Lemma 3
For each subflow k D 1; : : : ; N ,

nX
iD1

nX
jD1

�
rki � e

k
ij .xij/

�
xkij D E

k
n �E

k
1 (23)
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Proof
From (20), we sum up both sides of the equation as follows:

For each k W
nX
jD2

Ekj D

nX
jD2

X
i2I.j /

�
Eki C r

k
i � e

k
ij .xij/

�
xkij

H)

nX
jD2

Ekj �

nX
jD2

X
i2I.j /

Eki x
k
ij D

nX
jD2

X
i2I.j /

�
rki � e

k
ij .xij/

�
xkij

(24)

Moreover,
Pn
jD2

P
i2I.j /E

k
i x

k
ij D

P
i2I.j /E

k
i

Pn
jD2 x

k
ij representing the sum of Eki on the

selected path from node 1 to n. On the other hand, from (20), we have Eki D 0 for node i not
selected on the route. Therefore,

nX
jD2

Ekj �

nX
jD2

X
i2I.j /

Eki x
k
ij D E

k
n �E

k
1

Back to (24),

X
i

X
j

�
rki � e

k
ij .xij/

�
xkij D

nX
jD2

X
i2I.j /

�
rki � e

k
ij .xij/

�
xkij

D

nX
jD2

Ekj �

nX
jD2

X
i2I.j /

Eki x
k
ij D E

k
n �E

k
1

which proves the result. �
Similar to Lemma 2, we can determine Ek�n when

P
i r
k�
i > 0 by Lemma 4

Lemma 4
If
Pn
iD1 r

k�
i > 0 in the optimal routing policy, then Ek�n D 0 for all k D 1; : : : ; N .

Proof
Assume that we have already achieved the optimal routes for these k vehicle subflows such that
Ek�n > 0 and the contribution of kth subflow to the objective function value

J �k D

nX
iD1

nX
jD1

�ij .xij/x
k�
ij

R

N
C

nX
iD1

nX
jD1

rk�i gxk�ij

Because only the second part of the objective function is dependent on rki , we only need to
concentrate on the value of

Pn
iD1

Pn
jD1 r

k�
i gxk�ij . Then each i < n on this route satisfies

Ek�iC1 D E
k�
i C r

k�
i � ei;iC1 (25)

where ei;iC1 is the value of ekij .xij/ on the determined route by xk�ij for all k. Now, if rk�n�1 > 0, then
let us perturb the current policy by

rk
0

n�1 D r
k�
n�1 ��

rk
0

i D r
k�
i ; for all i < n � 1
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where � > 0. Then according to (25), under the perturbed policy,

Ek
0

n D E
k�
n ��

Ek
0

i D E
k�
i ; for all i < n

and correspondingly, J
0

k
D J �

k
��g. Because Ek�n > 0, then as long as we make � small enough

such that Ek
0

n > 0, the perturbed policy is still feasible. However, J
0

k
is smaller than J �

k
, which

draws a contradiction to the assumption. Now, if rk�n�1 D 0, then because ofEk�n > 0 and ei;iC1 > 0
for all i , we can always find some j < n such that Ek�j > 0, rk�j�1 > 0, and rk�

l
D 0 for l > j .

Thus, still owing to (25), we have

Ek�j D E
k�
n C

n�1X
lDj

el;lC1 > 0

At this time, because rk�j�1 > 0, the argument is similar to the case rk�n�1 > 0, in which the lemma
can be justified by the contradiction argument. Consequently, the lemma is proven. �

In view of Lemma 3, we can replace
Pn
iD1

Pn
jD1 r

k
i gx

k
ij in (17) by

�
Ekn �E

k
1

�
g CPn

iD1

Pn
jD1 e

k
ij .xij/gxij and eliminate, for all k D 1; : : : ; N , the presence of rki , i D 1; : : : ; n� 1,

from the objective function similar to the single-vehicle case. Because Ek1 is given, this leaves only
the task of determining the value of Ekn . There are two possible cases: (i)

P
i r
k�
i > 0, that is, the

kth vehicle subflow has to get recharged at least once; and (ii)
P
i r
k�
i D 0, that is, rk�i D 0 for all

i , and the kth vehicle subflow has adequate energy to reach the destination without recharging.
Similar to the derivation of (14), case (ii) results in a new constraint

P
i

P
j e

k
ij .xij/x

k
ij 6 Ek1 for

subflow k. However, because ekij .xij/ now depends on all x1ij ; : : : ; x
N
ij , problem (17)–(22) with all

rki D 0 are not as simple to solve as was the case with (11)–(13). Let us instead concentrate on the
more interesting case (i) for which Lemma 4 applies and we have Ek�n D 0. Therefore, along with
Lemma 3, we have for each k D 1; : : : ; N

nX
iD1

nX
jD1

rki x
k
ij D

nX
iD1

nX
jD1

ekij .xij/x
k
ij �E

k
1

Then, proceeding as in Theorem 1, we can replace the original objective function (17) and obtain
the following new problem formulation to determine xk�ij for all i; j 2 N and k D 1; : : : ; N

min
xij; i;j2N

nX
iD1

nX
jD1

NX
kD1

�
�ij .xij/x

k
ij

R

N
C ekij .xij/gx

k
ij

�

s:t: for each k 2 ¹1; : : : ; N º WX
j2O.i/

xkij �
X
j2I.i/

xkji D bi ; for each i 2 N

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

xkij 2 ¹0; 1º

(26)

Because the objective function is no longer necessarily linear in xkij , (26) cannot be further simplified
into an LP problem as in Theorem 1. The computational effort required to solve this problem heavily
depends on the dimensionality of the network and the number of subflows. Nonetheless, from the
transformed formulation mentioned earlier, we are still able to separate the determination of routing
variables xkij from recharging amounts rki . Similar to the single-vehicle case, once the routes are
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determined, we can obtain any rki satisfying the energy constraints (20)–(21) such that Ekn D 0

thus preserving the optimality of the objective value. To further determine rk�i , we can introduce a
second level optimization problem similar to the single-vehicle case in (16). Next, we will present an
alternative formulation for the original problem (17)–(22), which lead to a computationally simpler
solution approach.

3.2. Flow control formulation

We begin by relaxing the binary variables in (22) and letting 0 6 xkij 6 1. Thus, we switch our
attention from determining a single path for any subflow k to several possible paths by treating xkij
as the normalized vehicle flow on arc .i; j / for the kth subflow. This is in line with many network
routing algorithms in which fractions xij of entities are routed from a node i to a neighboring node
j using appropriate schemes ensuring that, in the long term, the fraction of entities routed on .i; j /
is indeed xij [18]. Following this relaxation, the objective function in (17) is changed to

min
xij;ri; i;j2N

nX
iD1

nX
jD1

NX
kD1

�ij .xij/x
k
ij

R

N
C

nX
iD1

NX
kD1

rki g

Moreover, the energy constraint (20) needs to be adjusted accordingly. LetEkij represent the fraction
of residual energy of subflow k associated with the xkij portion of the vehicle flow exiting node i .
Therefore, the constraint (21) becomes Ekij > 0. We can now capture the relationship between the
energy associated with subflow k and the vehicle flow as follows:

2
4 X
h2I.i/

�
Ekhi � e

k
hi .xij/

�
C rki

3
5 xkijP

h2I.i/ x
k
hi

D Ekij (27)

EkijP
j2O.i/E

k
ij

D
xkijP

j2O.i/ x
k
ij

(28)

In (27), the energy values of different vehicle flows entering node i are aggregated, and the energy
corresponding to each portion exiting a node, Ekij , j 2 O.i/, is proportional to the corresponding
fraction of vehicle flows, as expressed in (28). Clearly, this aggregation of energy leads to an approx-
imation, because one specific vehicle flow may need to be recharged in order to reach the next node
in its path, whereas another might have enough energy without being recharged. This approximation
foregoes controlling recharging amounts at the individual vehicle level and leads to approximate
solutions of the original problem (17)–(22). Several numerically based comparisons are provided in
the next section showing little or no loss of optimality relative to the solution of (17).

Adopting this formulation with xkij 2 Œ0; 1� instead of xkij 2 ¹0; 1º, we obtain the following
simpler nonlinear programming problem (NLP):

min
xij;ri; i;j2N

nX
iD1

nX
jD1

NX
kD1

�ij .xij/x
k
ij

R

N
C

nX
iD1

NX
kD1

rki g

s:t: for each k 2 ¹1; : : : ; N º W

(29)

X
j2O.i/

xkij �
X
j2I.i/

xkji D bi ; for each i 2 N

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

(30)
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2
4 X
h2I.i/

�
Ekhi � e

k
hi .xij/

�
C rki

3
5 xkijP

h2I.i/ x
k
hi

D Ekij (31)

EkijP
j2O.i/E

k
ij

D
xkijP

j2O.i/ x
k
ij

(32)

Ekij > 0; (33)

0 6 xkij 6 1; rki > 0 (34)

As in our previous analysis, we are able to eliminate ri from the objective function in (29) as follows.

Lemma 5
For each subflow k D 1; : : : ; N ,

nX
iD1

rki D

nX
iD1

nX
jD1

ekij .xij/C
X
i2I.n/

Ekin �
X
i2O.1/

Ek1i

Proof
Summing (31) over all i D 1; : : : ; n gives

nX
iD1

rki D

nX
iD1

nX
jD1

ekij .xij/C

nX
iD1

X
j2O.i/

Ekij �

nX
iD1

X
h2I.i/

Ekhi

and using (30), (32), we obtain

nX
iD1

rki D

nX
iD1

nX
jD1

ekij .xij/C
X
i2I.n/

Ekin �
X
i2O.1/

Ek1i

which proves the lemma. �
Similar to Lemma 3, we can easily see that if

P
i r
k�
i > 0 under an optimal routing policy,

then
P
i2I.n/E

k�
in D 0. In addition,

P
i2O.1/E

k
1i D Ek1 , which is given. We can now transform

the objective function (29) into (35) and determine the optimal routes xk�ij by solving the following
NLP:

min
xij

i;j2N

NX
kD1

0
@ nX
iD1

nX
jD1

�
�ij .xij/x

k
ij

R

N
C ekij .xij/g

	
�Ek1

1
A

s:t: for each k 2 ¹1; : : : ; N º WX
j2O.i/

xkij �
X
j2I.i/

xkji D bi ; for each i 2 N

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

0 6 xkij 6 1

(35)

Note that in the aforementioned formulation, the nonlinearity appears in the objective function due

to the traffic congestion effect on traveling time and energy consumption. Thus, if �ij .xij/x
k
ij

R

N
and
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ekij .xij/ are convex functions, the NLP is a convex optimization problem, and the global optimum
can be found generally fast. Once we find the optimal routes, the values of rki , i D 1; : : : ; n, k D
1; : : : ; N , can be determined so as to satisfy the energy constraints (31)–(33), and they are obviously
not unique. We may then proceed with a second level optimization problem to determine optimal
values similar to Section 2.2.

3.3. Objective function selection

The selection of �ij .xij/ in either (26) or (35) is based on models originating in the traffic engineering
literature. For the rest of this paper, we use a commonly used relationship between speed and density
of a vehicle flow as in [19–21]

v.k.t// D vf

�
1 �

�
k.t/

kjam

�p�q
(36)

where vf is the reference speed on the road without traffic, k.t/ represents the density of vehicles
on the road at time t , and kjam is the saturated density for a traffic jam. Note that we can replace
k.t/=kjam in (36) with f .t/=fjam, where f .t/ is the vehicle flow on the road at time t and fjam
represents the maximum capacity of the road. The parameters p and q are empirically identified for
actual traffic flows. Given a network topology (i.e., a road map), the distances dij between nodes
and the capacity of links, f ijjam, are known. Let us assume that EVs enter the network at a rate of
R veh./min. We then evenly divide the EV inflow into N subflows, and the total flow entering link

.i; j / becomes fij D
P
k x

k
ij

R

N
. Then, the time a vehicle spends on link .i; j / becomes

�ij .xij/ D
dij

vf

�
1 �

�
fij

f
ij

jam

�p�q (37)

Note that in order to prevent the inflow entering each link from exceeding its capacity, we add the
following inequality constraint to the problem formulations (26) and (35)

X
k

xkij
R

N
6 f ijjam (38)

As for ekij .xij/, we assume that the energy consumption rates of subflows on link .i; j / are all
identical, proportional to the distance between nodes i and j , giving ekij .xij/ D edijR=N .

Therefore, we aim to solve the multi-vehicle routing problem using (26) which in this case
becomes

min
xk
ij

i;j2N

nX
iD1

nX
jD1

NX
kD1

0
BBB@

dijx
k
ij
R
N

vf

�
1 �

�
R=N

P
k x

k
ij

f
ij

jam

�p�q C egdij RN xkij
1
CCCA

s:t: for each k 2 ¹1; : : : ; N º WX
j2O.i/

xkij �
X
j2I.i/

xkji D bi ; for each i 2 N

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

X
k

xkij
R

N
6 f ijjam; 8.i; j / 2 A

xkij 2 ¹0; 1º

(39)
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3.4. Numerical examples

For simplicity, we let vf D 1 mile/min, R D 1 veh./min, p D 2; q D 2, eg D 1, and f ijjam D
1 veh./min 8.i; j / 2 A. The network topology used is that of Figure 1, where the distance of
each link is shown in Table I. To solve the nonlinear binary programming problem (39), we use the
optimization solver Opti (MATLAB toolbox for optimization). The results are shown in Table II for
different values of N D 1; : : : ; 30. It can be observed that vehicles are mainly distributed through
three routes, and the traffic congestion effect makes the flow distribution differ from following the
shortest path. The number of decision variables (hence, the solution search space) rapidly increases
with the number of subflows. However, looking at Figure 2, which gives the performance in terms
of our objective function in (39) as a function of the number of subflows, one can observe that the
optimal objective value quickly converges with no significant fluctuations beyond N D 10. Thus,
even though the best solution is found when N D 25, a near-optimal solution can be determined
under a small number of subflows. This suggests that one can rapidly approximate the asymptotic
solution of the multi-vehicle problem (dealing with individual vehicles routed so as to optimize a
system-wide objective) based on a relatively small value of N .

Table I. dij values for network of Figure 1 (miles).

d12 d14 d15 d23 d24 d46 d56 d37 d47 d67

5 6.2 7 3.5 5 3.6 4.3 6 6 4

Table II. Numerical results for sample problem.

N 1 2

Obj 1.22e9 37.077

Routes 1! 4! 7
1! 4! 7

1! 2! 3! 7

N 3 4

Obj 31.7148 32.8662

Routes
.1! 4! 7/
1! 2! 3! 7
1! 5! 6! 7

.1! 4! 7/ � 2
1! 2! 3! 7
1! 5! 6! 7

N 5 6

Obj 32.1921 31.7148

Routes
.1! 4! 7/ � 2

.1! 2! 3! 7/ � 2
1! 5! 6! 7

.1! 4! 7/ � 2
.1! 2! 3! 7/ � 2
.1! 5! 6! 7/ � 2

N 10 15

Obj 31.5279 31.4851

Routes
.1! 4! 7/ � 4

.1! 2! 3! 7/ � 3

.1! 5! 6! 7/ � 3

.1! 4! 7/ � 5
.1! 2! 3! 7/ � 5
.1! 5! 6! 7/ � 4
.1! 4! 6! 7/ � 1

N 25 30

Obj 31.4513 31.4768

Routes

.1! 4! 7/ � 9
.1! 2! 3! 7/ � 8
.1! 5! 6! 7/ � 7
.1! 4! 6! 7/ � 1

.1! 4! 7/ � 11
.1! 2! 3! 7/ � 10
.1! 5! 6! 7/ � 8

.1! 4! 6! 7/ � 1
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Figure 2. Performance as a function of N (no. of subflows).

Next, we obtain a solution to the same problem (39) using the alternative NLP formulation (35),
where 0 6 xkij 6 1. Because in this example all subflows are identical, solving the NLP relaxed
problem results in the same routing probabilities for all subflows, that is, x1ij D; : : : ;D x

N
ij . There-

fore, we can further combine all xkij over each link .i; j / and formulate the following N -subflow
relaxed problem, referred to as N -NLP, giving the total normalized flow on each link, xij ;8.i; j / 2
A, which is independent of N

min
xij ; i;j2N

nX
iD1

nX
jD1

 
dijxijR

vf .1 � .Rxij =f
ij
jam/

p/q
C egdijRxij

!

s:t:
X
j2O.i/

xij �
X
j2I.i/

xj i D bi ; for each i 2 N

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

xijR 6 f ijjam
0 6 xij 6 1

(40)

This is a relatively easy to solve NLP problem. It can be readily shown that the objective function

is convex. In particular,
dijxijR

vf .1 � .xij /p/q/
is convex over 0 6 xij 6 1, and egdijRxij is a linear

function; therefore, their positive weighted sum is a convex function, and (40) is a convex optimiza-
tion problem whose solution is a global optimum. Using the same parameter settings as before, we
obtain the objective value of 31.45 min, and the optimal routes are as follows:

35:88% of vehicle flow: .1! 4! 7/

31:74% of vehicle flow: .1! 2! 3! 7/

27:98% of vehicle flow: .1! 5! 6! 7/

4:44% of vehicle flow: .1! 4! 6! 7/

Compared with the best solution (N D 25) in Table II and Figure 2, the difference in objective val-
ues between the integer and flow-based solutions is less than 0.1%. This supports the effectiveness
of a solution based on a limited number of subflows in the MINLP problem.
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3.4.1. Performance improvement over uncontrolled traffic systems. Next, we address the extent to
which this optimization approach offers improvements over an uncontrolled traffic network. We
simulate the vehicle routing problem on the discrete event simulator SimEvents, where the vehicle
arrivals to the source are randomly generated with a random initial energy. As a simple example, we
model the routing for each vehicle at each node to be round-robin, while the recharging amount of
the vehicle is just adequate to reach the next node. The total traveling time under this uncontrolled
routing for the network shown in Figure 1 is 38.52 min compared with our optimal policy with the
objective value of 31.45 min, showing an improvement of 18.36%.

3.4.2. Larger networks. We have also considered a more topologically complex network with 13
nodes and 20 links as shown in Figure 3. The number on each link indicates the distance between
adjacent nodes. We assume all other numerical values to be similar to the previous example. Figure 2
shows the performance in terms of the objective function in (39) versus the number of subflows for
this network. We can see that the optimal objective value converges around N D 10.

Now, let us solve the N -subflow relaxed problem (40) for this network with the same parameter
settings as those in Section 3.4 to check for its accuracy. We obtain the optimal objective function
value as 57.63 min, which is almost equal to the optimal traveling time of 57.65 min obtained for
N D 35 in the MINLP formulation. The optimal routing probabilities are as follows:

34:77% of vehicle flow: .1! 2! 3! 4! 5! 13/

27:52% of vehicle flow: .1! 9! 10! 11! 12! 13/

24:89% of vehicle flow: .1! 6! 10! 7! 8! 13/

10:81% of vehicle flow: .1! 6! 3! 8! 13/

1:71% of vehicle flow: .1! 9! 10! 7! 8! 13/

0:31% of vehicle flow: .1! 6! 3! 4! 5! 13/

3.4.3. CPU time comparison. Based on our simulation results, we conclude that the flow con-
trol formulation is a good approximation of the original MINLP problem. Table III compares the

Figure 3. A 13-node network example for routing with recharging nodes.

Table III. CPU time for sample problems.

Figure 1 net. MINLP MINLP NLP approx.

N 2 10 (near opt) —
Obj 37.08 31.53 31.45
CPU time (s) 312 9705 0.07

Figure 3 net. MINLP MINLP NLP approx.

N 2 15 (near opt) —
Obj 68.05 57.76 57.63
CPU time (s) 820 10037 0.2

MINLP, Mixed-Integer Nonlinear Programming; NLP,
nonlinear programming problem.
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computational effort in terms of CPU time for both formulations to find optimal routes for the
two sample networks we have considered. Our results show that the flow control formulation results
in a reduction of about five orders of magnitude in CPU time with virtually identical objective func-
tion values (the difference between objective values of NLP and MINLP with near-optimalN is less
than 1%).

3.4.4. Effect of recharging speed on optimal routes. Once we determine the optimal routes, we can
also ascertain the total time spent traveling and recharging, respectively, that is, the first and second
terms in (40). Obviously, the value of eg, which captures the recharging speed, determines the
proportion of traveling and recharging amount as well as the route selection. As shown in Table IV,
the larger the product eg is, the slower the recharging speed, therefore, the more weighted the
recharging time in the objective function becomes. In this case, flows tend to select the shortest paths
in terms of energy consumption. Conversely, if the recharging speed is fast, the routes are selected
to prioritize the traveling time on paths.

3.4.5. Price of anarchy. In order to compare system performance under a user-optimal (single-
vehicle routing problem) policy and a system-optimal (multiple-vehicle routing problem) policy,
we investigate the price of anarchy for this problem. To make this comparison, we consider two
different scenarios.

1. A single driver acts selfishly. We control all vehicles to follow system-optimal paths and assume
that a single driver acts selfishly. We then investigate this driver’s total traveling time and the
possible gain resulting from this deviation.

Let us consider the numerical example in Section 3.4 for the network shown in Figure 1.
The system-optimal flows are obtained by solving the NLP problem (40). Under these flows,
let us calculate the traveling time, �cij , of all links .i; j / 2 A with positive flows using (37) as
shown in Table V. Assuming that the energy consumption on each link is equal to the distance
of that link, the total traveling time experienced by an individual EV, TEV , depends on the
system-optimal path assigned to its subflow, P

TEV D
X

.i;j /2P

.�cij C eijg/

Total traveling time for a single EV in flow .1! 4! 7/ W 28:94 min
Total traveling time for a single EV in flow .1! 2! 3! 7/ W 32:43 min
Total traveling time for a single EV in flow .1! 5! 6! 7/ W 33:59 min
Total traveling time for a single EV in flow .1! 4! 6! 7/ W 31:24 min

Table IV. Numerical results for different values of eg for network of Figure 1.

eg 0.1 1 10

Total time 18.94 31.45 154.48
Time on paths 17.55 17.58 19.45
Time at stations 1.39 13.87 135.03

Optimal routes

31:53% W .1! 2! 3! 7/
32:97% W .1! 4! 7/
28:58% W .1! 5! 6! 7/
5:78% W .1! 4! 6! 7/
1:14% W .1! 2! 4! 7/

31:74% W .1! 2! 3! 7/
35:88% W .1! 4! 7/
27:98% W .1! 5! 6! 7/
4:40% W .1! 4! 6! 7/

32:35% W .1! 2! 3! 7/
49:63% W .1! 4! 7/
18:02% W .1! 5! 6! 7/

Table V. Traveling time on each link for the network shown in Figure 1
under system-optimal flows.

�c12 �c14 �c15 �c23 �c24 �c46 �c56 �c37 �c47 �c67

6.18 8.83 8.24 4.33 5 3.61 5.06 7.42 7.90 4.99
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Table VI. Normalized Nash-equilibrium flows.

xe12 xe14 xe15 xe23 xe24 xe46 xe56 xe37 xe47 xe67

30.7 47.9 21.4 30.7 0 1.5 21.4 30.7 46.4 22.9

Now, if we solve the single-vehicle routing problem for a lone EV in the network, the user-
optimal path is (1! 4! 7) with a traveling time of 28.94 min. Thus, in the system-optimal
problem, vehicles assigned to the subflows following this path experience the same traveling
time as if they act selfishly and follow the user-optimal path. However, vehicles assigned to
other subflows will experience longer traveling times in order to reduce the total elapsed time
for the whole inflow. For instance, a single EV can gain 13.86% in its traveling time by acting
selfishly and deviating from the subflow assigned to path (1! 5! 6! 7) and joining path
(1! 4! 7).

2. All drivers act selfishly. In this case, the flow will be in a Nash equilibrium where no single
user can incur a gain by changing its own strategy [22]. Based on Wardrop’s principle, the
equilibrium occurs at flows that minimize the potential function [23]

�.f / D
X

.i;j /2A

Z fij

0

�ij .x/dx (41)

where �ij .x/ is the travel time incurred by traffic that traverses link .i; j / as a function of the
link congestion (Rxij in (40)). The price of anarchy is defined as the ratio of the total system
cost (the total elapsed time) under Nash equilibrium to the total cost under the social-optimal
flows. Table VI shows the normalized Nash-equilibrium flow, xeij , on each link .i; j / of the
network shown in Figure 1 resulting in the following selfish routing:

46:4% of vehicle flow: .1! 4! 7/

30:7% of vehicle flow: .1! 2! 3! 7/

21:4% of vehicle flow: .1! 5! 6! 7/

1:5% of vehicle flow: .1! 4! 6! 7/

Applying Nash-equilibrium flows into the system-wide objective function (40), the total trav-
eling time is 32.27 min, which is higher than the optimal cost of 31.45 obtained under the
social-optimal policy, and the price of anarchy is PoA D 1:038.

4. SELECTION OF THE NUMBER OF SUBFLOWS

We begin with the observation that the objective function as well as the constraints of the flow
control formulation (NLP) (35) are the same as those of the MINLP formulation (26), except for the
relaxed binary constraints, that is, 0 6 xkij 6 1. Thus, in general, the optimal objective value of the
NLP problem will be equal or lower than that of the MINLP problem. We seek the best value of N
to render the problem computationally manageable.

Similar to the numerical examples in Section 3.4, we focus on the case where we divide the total
vehicle inflow, R, into N sublows each with a rate of R=N . In this case, solving the NLP problem
results in the same routing probabilities for all subflows, that is, x1ij D; : : : ;D xNij . Therefore, we
can combine them and reformulate the problem as an N -subflow relaxed problem, referred to as
‘N -NLP’, giving the total normalized flow on each link, xij ; .i; j / 2 A (40).

In Section 3.4, the numerical results show that the optimal objective value quickly converges
for a small value of N . Thus, even though the best solution may be found for a larger N , a near-
optimal solution can be determined under a small number of subflows. This suggests that we can
approximate the asymptotic solution of the multi-vehicle problem based on a relatively small value
of N . Our goal is to find a lower bound, N �, for the number of subflows, such that by selecting any
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N > N �, we can guarantee that theN -NLP solution will be in a given neighborhood of the MINLP
solution. To do so, first, we proceed as follows.

Let � be the number of different paths from the origin node to the destination node in a given
graph, and let xp denote the normalized amount of flow through path p; p D 1; : : : ; � determined
using the solution of the N -NLP problem (35). Based on that, we define active paths to be those
with non-zero flow, that is, paths with xp > 0. Let us assume that there are q 6 � active paths;
then, let Qxp denote the normalized flow on active path p, p D 1; : : : ; q.

Next, we define Np.N / to be the number of subflows assigned to active path p obtained by the
MINLP solution withN subflows. We writeNp.N / to emphasize that the MINLP solution depends

on the choice ofN . Then,
Np.N /

N
is the normalized flow on path p obtained by solving the MINLP

problem with N subflows. Noting that N is an integer, the best N is the one that minimizes the
deviation from the normalized flows obtained by solving the NLP problem (lower bounds to the
MINLP solutions), that is,

min
N>1

ˇ̌̌
ˇNp.N /N

� xp

ˇ̌̌
ˇ ; p D 1; : : : ; �

Because the computational complexity of the MINLP problem increases with N , the selection of
N is a trade-off between a near-optimal solution and the computational effort required to solve the
problem. To address this trade-off, let us define the average deviation between the optimal routing
probabilities of the active paths obtained by solving theN -NLP problem, Qxp; p D 1; : : : ; q, and the
normalized flows obtained by solving the MINLP problem, Np.N /=N , as a near-optimality metric,

that is,
1

q

Pq
pD1 j

Np.N /

N
� Qxpj. Then, we define a ‘desired accuracy’, ı, as the upper bound for this

metric and seek to determine values of N that satisfy

1

q

qX
pD1

ˇ̌̌
ˇNp.N /N

� Qxp

ˇ̌̌
ˇ 6 ı (42)

Based on (42), we seek the critical N � such that by selecting N > N �, the average deviation
between the N -NLP and MINLP solutions does not exceed ı, that is,

N >
Pq
pD1 jNp.N / �N Qxpj

qı
(43)

We define

N � D

2
666

maxN>1
�Pq

pD1 jNp.N / �N Qxpj
�

qı

3
777 (44)

Because the numerator of N � is an upper bound for the numerator in the right-hand side of (43)
and noting that ı and q are constants, choosing N > N � guarantees that the average deviation
between the NLP and MINLP solutions never exceeds our desired accuracy, ı. However, because
Np.N / is a function ofN , finding a closed-form expression for maxN>1

�Pq
pD1 jNp.N / �N Qxpj

�
in the numerator of (44) is not easy. To address this issue, we propose a method that effi-
ciently and accurately estimates the MINLP solution. Then, using these estimates, to be referred
as ONp.N /; p D 1; : : : ; � , for a large range of the number of subflows, N , we can find

maxN>1
�Pq

pD1 j
ONp.N / �N Qxpj and select the proper N � using (44).

As described in Algorithm 1, first, we solve the N -NLP problem and find the optimal objective
value and optimal normalized flow on each link .i; j /, xij . Next, we determine the active paths and
their corresponding optimal normalized flow, Qxp; p D 1; : : : ; q. Because the objective functions of
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Algorithm 1 MINLP solution estimation algorithm
Input: N
Output: estimation for MINLP solution, ONp , p D 1; ::; �
Initialization: Set ONp D 0; p D 1; ::; � .

1: Solve N -NLP problem and identify active paths and corresponding Qxp , p D 1; ::; q
2: Form the set of all possible combinations for assigning N subflows to q active paths, SN , for

each i 2 SN , N i
p is the number of subflows allocated to path p for the i th such assignment.

3: Find the best assignment, i�, so that
i� D arg mini2SN

�Pq
pD1 jN

i
p=N � Qxpj

�
=q

4: Set ONp D N i�

p for active paths.
End

the MINLP and NLP problems are the same, the MINLP solution for each N assigns the subflows
to the active paths such that the deviation between the corresponding normalized flows, Np.N /=N ,
and the N -NLP solution, Qxp; p D 1; : : : ; q, is minimized. Therefore, to estimate the MINLP solu-
tion, ONp , for each value ofN , we consider all possible combinations of assigningN subflows to the

q active paths and form a set SN . There are

�
N C q � 1

N

�
different such assignments (cardinality

of set SN ). Let N i
p denote the number of subflows allocated to path p; p D 1; : : : ; q in the i th such

assignment, i 2 SN . For each assignment i , the equivalent normalized flows on active paths become
ŒN i
1=N; : : : ; N

i
q=N �, where

Pq
pD1N

i
p D N . For each value of N , i� is the ‘best assignment’ if it

results in the minimum average deviation from the N -NLP solution among all i 2 SN , that is,

i� D arg min
i2SN

1

q

qX
pD1

ˇ̌̌
ˇ̌N i

p

N
� Qxp

ˇ̌̌
ˇ̌ (45)

For each value of N , we set the i� assignment as the estimate of the optimal routing of subflows
(MINLP solution), ONp D N i�

p ; p D 1; : : : ; q, and ONp D 0 for non-active paths. Finally, for a given
graph, one can create a lookup table of the estimates of the MINLP solution for a range of N and
find maxN>1

�Pq
pD1 j

ONp.N / �N Qxpj
�

to calculate N � for a desired ı using (44).

Remark 1
A simple way of intuitively determining the critical N is as follows: Defining Ox D minp Qxp , Ox is
the least fraction of inflow obtained by the N -NLP problem to flow through an individual path. If

we choose N D



1

Ox

�
, the MINLP solution will have a chance to send at least one subflow through

the same path, and the normalized flows obtained by the MINLP will be close to the NLP solution.
Obviously, it may not be the bestN and there is no guarantee for suchN to satisfy the bound defined
in (42). However, our simulation results show that it is a good ‘rule of thumb’ for selecting N .

4.1. Numerical example

Consider the seven-node graph shown in Figure 1 with the same parameter values as in Section 3.4.
The N -NLP solution is shown in Table VII.

Table VII. Optimal normalized flow on each link
(xij ) obtained by solving N -NLP problem.

x12 x14 x15 x23 x24

31.73% 40.28% 27.98% 31.73 % 0

x46 x56 x37 x47 x67

4.40% 27.98% 31.73% 35.88% 32.39%
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Using the optimal xij s, we determine each active path and corresponding Qxp

Qx1 D 31:73% Path1 W .1! 2! 3! 7/

Qx2 D 4:40% Path2 W .1! 4! 6! 7/

Qx3 D 35:88% Path3 W .1! 4! 7/

Qx4 D 27:98% Path4 W .1! 5! 6! 7/

In this example, there are four active paths. Figure 4 shows the average deviation between
the NLP solution and the normalized flows obtained by the estimated MINLP solutions for
N D 1; : : : ; 72. Table VIII shows the best assignments (estimates of the MINLP solutions) in
the form Œ ON1 ON2 ON3 ON4� (corresponds to ŒPath1 Path2 Path3 Path4�) for different values of N . In
Figure 4, we observe that the minimum average deviation occurs for N D 25 with the closest
objective value to the NLP problem and the following normalized flows:

N1=N D 8=25 D 32% Path1 W .1! 2! 3! 7/

N2=N D 1=25 D 4% Path2 W .1! 4! 6! 7/

N3=N D 9=25 D 36% Path3 W .1! 4! 7/

N4=N D 7=25 D 28% Path4 W .1! 5! 6! 7/

which are almost identical to the NLP solution, Qxp; p D 1; : : : ; 4. In this particular example,
Ox D minpD1;:::;4 Qxp D 0:044, which suggests the same number of subflows based on the simple
‘rule of thumb’ in Remark 1.

Finally, we investigate the correctness of the bound defined in (43) for different values of ı. It can
be seen in Figure 4 that by selecting N > N �, calculated for different values of ı in Table IX, the
average deviation never exceeds our desired accuracy, ı, which shows the validity of the proposed
criterion in (44). Increasing the upper bound of the average deviation allows us to select smaller
N , and consequently, the problem size and associated computational complexity decrease. This
demonstrates the trade-off between proximity to optimality and computational effort required to
solve the problem.

Our numerical results show that the optimal routing obtained by solving the MINLP problem
is exactly the same as our estimate, that is, the best assignment corresponding to the minimum
average deviation with the NLP solution for each N . This can be verified by comparing the results
in Tables II and VIII for different values of N .

Figure 4. Average deviation between the solution of the NLP and estimated solution of the MINLP problem
for different values of N .

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2015)
DOI: 10.1002/rnc



ROUTING AND CHARGING OF ENERGY-LIMITED VEHICLES

Table VIII. Estimates for the MINLP solution for different
values of N .

Estimated N Estimated N Estimated
N ON1; : : : ; ON4 ON1; : : : ; ON4 ON1; : : : ; ON4

1 0 0 1 0 25 8 1 9 7 49 15 2 18 14
2 1 0 1 0 26 8 1 10 7 50 16 2 18 14
3 1 0 1 1 27 9 1 10 7 51 16 2 19 14
4 1 0 2 1 28 9 1 10 8 52 16 2 19 15
5 2 0 2 1 29 9 1 11 8 53 17 2 19 15
6 2 0 2 2 30 10 1 11 8 54 17 3 19 15
7 2 0 3 2 31 10 1 11 9 55 18 2 20 15
8 3 0 3 2 32 10 1 12 9 56 18 2 20 16
9 3 0 3 3 33 11 1 12 9 57 18 3 20 16
10 3 0 4 3 34 11 1 12 10 58 18 3 21 16
11 4 0 4 3 35 11 1 13 10 59 19 3 21 16
12 4 1 4 3 36 11 2 13 10 60 19 3 21 17
13 4 0 5 4 37 12 2 13 10 61 19 3 22 17
14 4 1 5 4 38 12 2 13 11 62 20 3 22 17
15 5 1 5 4 39 12 2 14 11 63 20 3 22 18
16 5 1 6 4 40 13 2 14 11 64 20 3 23 18
17 5 1 6 5 41 13 2 15 11 65 21 3 23 18
18 6 1 6 5 42 13 2 15 12 66 21 3 24 18
19 6 1 7 5 43 14 2 15 12 67 21 3 24 19
20 6 1 7 6 44 14 2 16 12 68 22 3 24 19
21 7 1 7 6 45 14 2 16 13 69 22 3 25 19
22 7 1 8 6 46 15 2 16 13 70 22 3 25 20
23 7 1 8 7 47 15 2 17 13 71 23 3 25 20
24 8 1 8 7 48 15 2 17 14 72 23 3 26 20

MINLP, Mixed-Integer Nonlinear Programming.

Table IX. Critical number of subflows,
N�, for different values of ı.

ı D 0:01 N � D 33
ı D 0:02 N � D 17
ı D 0:03 N � D 11

5. MULTIPLE-VEHICLE ROUTING PROBLEM IN THE PRESENCE OF NON-ELECTRIC
VEHICLE FLOWS

In this section, we extend our approach by involving both EV and NEV flows. Let all vehicles
enter the network at node 1, and let R denote the rate of vehicles arriving at this node. Assuming a
fraction P of NEVs in the inflow, NEVs and EVs enter the network with flow rates given by RP
and R.1� P /, respectively. We propose two different ways to incorporate the effect of NEV flows.
In the first method, we assume that the flow of NEVs on each link .i; j /, f NEVij , is known (e.g.,
Nash equilibrium flows or socially optimal flows are determined), and we can calculate the residual
capacity for each link accordingly, that is, f ijjam�f

NEV
ij . Thus, the problem is reduced to the multi-

vehicle routing problem with all arriving vehicles as EVs with the residual capacity for links, which
have already been discussed.

Our second method is to reformulate an optimization problem in order to control both EV and
NEV flows. Similar to our approach in Section 3, we group EVs as well as NEVs into subflows. In
particular, we divide the inflow of NEVs into a fixed number of subflows, M , (e.g., the number of
distinct paths from the origin to the destination node) and the inflow of EVs into N subflows. Our
objective is to determine optimal routes for NEV subflows and optimal routes, as well as energy
recharging amounts, for each EV subflow so as to minimize the total elapsed time of these subflows
from the origin to the destination. Note that for NEVs, we do not consider the refueling process as
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part of this optimization problem. The decision variables consist of (i) xkij 2 ¹0; 1º; k D 1; : : : ;M
and ylij 2 ¹0; 1º; l D 1; : : : ; N , corresponding to the selection of link .i; j / by NEV and EV
subflows, respectively; and (ii) charging amounts r li for EV subflows for all nodes i D 1; : : : ; n� 1
and subflows l D 1; : : : ; N . Given traffic congestion effects, the time and energy consumption on
each link depends on the values of xkij , ylij and the fraction of the total flow rate R associated with
the kth NEV subflow or the l th EV subflow. As in Section 3, the simplest such flow allocation
is to assign each subflow the same rate, that is, every NEV subflow k D 1; : : : ;M is assigned
a rate RP=M and every EV subflow l D 1; : : : ; N is assigned a rate R.1 � P /=N . Let xij D

.x1ij ; : : : ; x
M
ij ; y

1
ij ; : : : ; y

N
ij /

T and ri D .r
1
i ; : : : ; r

N
i /

T , where r li is the amount of charge selected by
the l th EV subflow at node i . Similar to Section 3, we denote the traveling time (delay) a vehicle
will experience through link .i; j / by some nonlinear function �ij .xij/. The corresponding energy
consumption for the l th subflow of EVs through .i; j / is a nonlinear function denoted by elij .xij/.
Finally, Eli represents the residual energy of subflow l of EVs at node i given by the aggregated
residual energy of all EVs in the subflow. The optimization problem is formulated as follows:

min
xij;ri; i;j2N

2
4 nX
iD1

nX
jD1

MX
kD1

�ij .xij/x
k
ij

RP

M
C

nX
iD1

nX
jD1

NX
lD1

�
�ij .xij/y

l
ij

R.1 � P /

N
C r li gy

l
ij

�35
s:t: for each k 2 ¹1; : : : ;M º W

(46)

X
j2O.i/

xkij �
X
j2I.i/

xkji D bi ; for each i 2 N (47)

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n

for each l 2 ¹1; : : : ; N º W
(48)

X
j2O.i/

ylij �
X
j2I.i/

ylj i D bi ; for each i 2 N (49)

b1 D 1; bn D �1; bi D 0; for i ¤ 1; n (50)

Elj D
X
i2I.j /

�
Eli C r

l
i � e

l
ij .xij/

�
ylij ; j D 2; : : : ; n (51)

El1 is given; Eli > 0; for each i 2 N (52)

xkij 2 ¹0; 1º; ylij 2 ¹0; 1º; r li > 0 (53)

In the aforementioned formulation, (46) is the objective function which for NEVs is the first sum
representing the overall traveling time from the origin to the destination by adding the link travel-
ing times �ij .xij/ when xkij D 1. For EVs, the second sum includes the charging times r li g when
ylij D 1, and an EV subflow selects node l for charging. The constraints (47)–(48) and (49)–(50) rep-
resent flow conservation for NEV and EV subflows, respectively, while (51)–(52) show the energy
dynamics for each EV subflow. This is an MINLP with .M CN/mC 2.n� 1/N variables. Similar
to our discussion in Section 3.1, one can exploit some properties of the optimal solution and energy
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dynamics in order to decompose this problem into route selection and recharging amount determina-
tion and reduce the problem dimensionality. We omit numerical results, which lead to observations
similar to those presented in Section 3.4, including a behavior of performance as a function of the
number of subflows similar to that of Figure 2.

6. CONCLUSIONS AND FUTURE WORK

We have introduced energy constraints into vehicle routing in traffic networks and studied the
problem of minimizing the total elapsed time for vehicles to reach their destinations by determining
routes, as well as recharging amounts, when there is no adequate energy for the entire journey. For
a single vehicle, we have shown how to decompose this problem into two simpler problems. For a
multi-vehicle problem, we solved the problem by aggregating vehicles into subflows and seeking
optimal routing decisions for each such subflow. One critical factor in this problem is the selec-
tion of the number of subflows. Our numerical results showed that a small number of subflows are
adequate to obtain convergence to near-optimal solutions. Thus, we defined a critical number of
subflows, which guarantee near optimality. In particular, we show that by selecting the number of
subflows to be equal to or larger than a critical number N �, that is, N > N �, the average devia-
tion never exceeds the predefined upper bound. Therefore, by selecting a desired accuracy, one can
choose between proximity to optimality and computational complexity needed to solve the problem.
We also reformulated the multi-vehicle routing problem in order to incorporate the effect of NEVs
on traffic congestion.

Our ongoing work focuses on the case of inhomogeneous charging nodes with different charging
rate characteristics and possibly queuing capacities. In this case, we can show that a similar decom-
position still holds, although we can no longer obtain an LP problem. Thus, we must now seek
alternative methods to reduce the computational complexity of obtaining solutions, possibly at
the expense of optimality guarantees. We also believe that extensions to multiple vehicle origins
and destinations are straightforward, as is the case where only a subset of nodes has recharging
resources, or not all vehicles in the network are BPVs. Finally, we are exploring extensions into
stochastic vehicle flows, which can incorporate various random effects.

In the multi-vehicle case, an important issue is that of implementing an optimal routing and
recharging policy. This is a challenging problem for two reasons. First, individual drivers need
to be provided explicit guidance by the central controller who determines this policy. Second, a
driver needs to have the proper incentives to follow this policy. While the first difficulty may be
handled through communication capabilities that are increasingly being made available to vehicles,
the second one is more fundamental, because it concerns the behavior of drivers who are generally
‘selfish’ and concerned with their own individual optimal policy (i.e., the one we determined in our
single-vehicle analysis). This is a topic of an ongoing research, which has recently been fostered by
the emerging trend towards connected vehicles: If vehicles can exchange state information in real
time, this creates a new environment promoting cooperation among drivers and, ultimately, a traffic
system consisting entirely of autonomous vehicles, which can automatically implement a centrally
derived system-wide optimal policy.
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