
Perturbation Analysis: A

Framework for Data-Driven Control

and Optimization of Discrete Event

and Hybrid Systems

Y. Wardi ∗ C.G. Cassandras ∗∗ X.R. Cao ∗∗∗

∗ School of Electrical and Computer Engineering, Georgia Institute of
Technology, 777 Atlantic Drive, Atlanta, GA 30332, USA.

e-mail: ywardi@ece.gatech.edu.
∗∗Division of Systems Engineering, and Department of Electrical and

Computer Engineering, Boston University, 8 St. Mary’s Street,
Boston, MA 02215.
e-mail: cgc@bu.edu.

∗∗∗Antai College of Economics and Management and School of
Electronic, Information and Electrical Engineering, Shanghai Jiao

Tong University, 1954 Huashan Road, Shanghai, 200030, China PRC.
e-mail: eecao@ust.hk.

Abstract: The history of Perturbation Analysis (PA) is intimately related to that of Discrete
Event Dynamic Systems (DEDS), starting with a solution of a long-standing problem in the
late 1970s and continuing today with the control and optimization of Hybrid Systems and the
emergence of event-driven control methods. We review the origins of the PA theory and how
it became part of a broader framework for models, control and optimization of DEDS. We
then discuss the theoretical underpinnings of Infinitesimal Perturbation Analysis (IPA) as a
data-driven stochastic gradient estimation method and how it has been applied over the past
few decades. We explain how IPA offers a basis for general-purpose stochastic optimization of
Markov systems through the notion of the performance potential and how it has evolved beyond
DEDS and now provides a framework for control and optimization of Hybrid Systems and, more
generally, event-driven methodologies.

1. THE ORIGIN OF PERTURBATION ANALYSIS

In pioneering the field of Discrete Event Systems (DES)
in the early 1980s, Y.C. Ho and his research group at
Harvard University discovered that event-driven dynamics
give rise to state trajectories (sample paths) from which
one can very efficiently and nonintrusively extract sensi-
tivities of state variables (therefore, various performance
metrics as well) with respect to at least certain types of
design or control parameters. This eventually led to the
development of a theory for Perturbation Analysis (PA)
in DES (Cassandras and Lafortune (2008), Ho and Cao
(1991), Glasserman (1991)), the most successful branch
of which is Infinitesimal Perturbation Analysis (IPA) due
to its simplicity and ease of implementation. In fact, by
the early 2000s, IPA was shown to apply to all virtually
arbitrary Hybrid Systems (HS) and continues to be today
one of the most attractive tools for data-driven control and
optimization, especially in stochastic environments where
modeling random aspects of a process is prohibitively hard.

? Wardi’s work is supported in part by NSF under Grant Number
CNS-1239225. Cassandras’s work is supported in part by NSF under
grants CNS-1239021, ECCS-1509084, and IIP-1430145, by AFOSR
under grant FA9550-15-1-0471, and by a grant from the MathWorks.

The origin of the key concepts that form the cornerstones
of the PA theory are found in a long-standing problem in
operations research and industrial engineering known as
the buffer allocation problem. In its industrial engineering
version, it was presented to Ho’s research group by the
FIAT automobile company in the late 1970s as follows.
A typical serial tranfer line consists of N workstations in
tandem, each with different characteristics in terms of its
production rate, failure rate and repair time when failing.
In order to accommodate this inhomogeneous behavior, a
buffer is placed before the ith workstation, i = 1, . . . , N ,
with Bi discrete slots where production parts can be
queued. Since the space within which this transfer line
operates is limited, there is an upper bound B to the
total number of buffer slots that can be allocated over
the N workstations so that

∑N
i=1Bi = B. The problem is

to allocate these B buffer slots, i.e., determine a vector
[B1 . . . BN], so as to maximize the throughput of the
transfer line while also maintaining a low overall average
delay of the parts moving from an entry point before
the first workstation to an exit point following the Nth
workstation. Tackling this problem in a “brute force”
manner requires considering all possible buffer allocations,

a number given by

(
B +N − 1

B

)
. For a reasonably small

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

3083

problem such as B = 24 and N = 6, this gives 118,755
possible solutions. A direct trial-and-error approach where
one is allowed to test each allocation for about a week
would require about 2300 years. If one were to reduce the
initial solution space to only 1000 “good guesses” and use
early 1980s simulation technology requiring about 3 min
per trial to estimate the resulting performance, the overall
task would take about 250 days of CPU time.

The approach taken by Ho’s group and first reported
in Ho et al. (1979) was to study the serial transfer line
as a dynamic system whose state includes the integer-
valued buffer contents along with real-valued “clocks”
associated with each workstation as it processes a part.
The question then posed was: “what would happen if in
a given allocation a specific value Bi were changed to
Bi+1?” The “brute force” way to answer this question is to
first simulate the system under the nominal allocation with
the value Bi and estimate the system’s performance over
a (sufficiently long) time period T which may be denoted
by LT (Bi). Then, repeat the simulation under Bi + 1 to
obtain LT (Bi+1). The difference ∆LT (Bi) = LT (Bi+1)−
LT (Bi) provides an estimate of the system’s performance
sensitivity with respect to Bi. What the research team
realized, however, is that this is unnecessary: indeed, the
initial simulation alone yielding LT (Bi) and a simple
thought experiment can deliver the value of ∆LT (Bi).
Moreover, the same thought experiment can deliver the
enire vector [∆LT (B1), . . . ,∆LT (BN)] with minimal extra
effort.

The key observation that led to a formal procedure de-
scribing this thought experiment is the following. When Bi
is replaced by Bi + 1, no change in the state of the system
can take place unless one of two “events” is observed
at time t: (i) The ith buffer content, say xi(t), reaches
its upper limit, i.e., xi(t) = Bi and a part is ready to
leave the (i−1)th workstation. In this case, this upstream
workstation is “blocked” since there is no place for the
departing part to go. However, in a perturbed system with
Bi replaced by Bi + 1 that would not happen and one can
simply predict a buffer content perturbation ∆xi(t) = 1.
Moreover, one can record when this blocking occurs at
time t ≡ ti,B and the next time that a part departs
from the ith workstation, ti,D. Then, ti,D − ti,B is the
amount of time that would be gained (i.e., no blocking
would have occurred) in a perturbed system realization.
The important observation here is that ti,D, ti,B are di-
rectly observed along the nominal system realization. (ii)
The (i + 1)th buffer content reaches its lower limit, i.e.,
xi+1(t) = 0 and a part is ready to leave the ith worksta-
tion. In this case, if ∆xi(t) = 1, i.e., the ith workstation
has already gained a part from an earlier blocking event,
then this gain can now propagate downstream and we can
set ∆xi+1(t) = ∆xi(t) = 1.

This simple observation leads to the conclusion that es-
timating the effect of replacing Bi by Bi + 1 boils down
to observing just a few events along the nominal system
realization: blocking events (when xi(t) = Bi and a part
departure from i− 1 takes place) and idling events (when
xi(t) = 0 at any i = 1, . . . , N). This can be formalized into
an “estimator” for buffer perturbations ∆xi(t) and event
timing perturbations for all part departures at worksta-
tions. More generally, this estimator transforms a given

hypothetical perturbation ∆Bi(t) = 1 (or −1) into state
perturbations, which can ultimately be used to estimate
a performance perturbation ∆LT (Bi). Most importantly,
this is accomplished without ever having to implement the
perturbation ∆Bi(t), since the estimator depends only on
directly observable data from the nominal system realiza-
tion; in particular, it suffices to observe selected events and
associated event times and to perform extremely simple
calculations.

This initial procedure pertaining to a very specific type
of dynamic system and problem was given the name
Perturbation Analysis (PA). It soon became clear that it
could be extended to any system with a structure similar
to that of the serial transfer line and to a perturbation
in any system parameter. Thus, one could consider, for
instance, speeding up the operation of a workstation and
studying the effect of a perturbation ∆ri in the operation
rate ri of the ith workstation. The general procedure is
one where some parameter perturbation ∆θ generates a
state perturbation ∆xi(t) when a specific event occurs at
time t. Subsequently, the system dynamics dictate how
∆xi(t) propagates through the system by affecting ∆xi(t)
or ∆xj(t) for j 6= i. Depending on a performance metric
of interest, this ultimately yields ∆LT (∆θ), the change
in performance due to ∆θ. As for the system structure
amenable to this kind of efficient PA, it became obvious
that it fits the general class of queueing networks.

An obvious next question was: “Does PA hold for any value
of ∆θ or do we have to restrict it to “small” ∆θ when
θ is real-valued?” There was ample empirical evidence
collected over the early 1980s that ∆θ had to be small but
not necessarily “very small”. In other words, the values
of ∆LPAT (∆θ) obtained through PA were identical to
those obtained through the “brute force” finite difference
LT (θ + ∆θ) − LT (θ) for “sufficiently small” ∆θ. This led
to the term Infinitesimal Perturbation Analysis (IPA) to
capture the fact that the methodology was applicable to
perturbations which were “infinitesimally” small, although
a formal quantification characterizing limits for ∆θ was
lacking. Moreover, when ∆θ became larger, it was still
possible to satisfy ∆LPAT (∆θ) = LT (θ + ∆θ) − LT (θ) at
the expense of observing more “interesting events” and
performing a few more calculations. For instance, in the
case of the integer-valued buffer size parameter Bi, the
minimal feasible perturbation is obviously either +1 or −1.
To differentiate these cases, the term Finite Perturbation
Analysis (FPA) was introduced. FPA reverts to IPA when
parameters are real-valued and may be allowed to take
“sufficiently small” values ∆θ.

To illustrate the distinction between IPA and FPA, we
consider the case of a simple First-In-First-Out (FIFO)
queueing system with a single server preceded by a queue.
Let {Ak} be the sequence of (generally random) arrival
times, k = 1, 2, . . ., and {Dk} be the corresponding
sequence of departure times from the system. If Zk denotes
the service time of the kth entity (customer) processed,
then the Lindley equation

Dk = max(Ak, Dk−1) + Zk (1)

describes the departure time dynamics with k = 1, 2, . . .
Suppose that all (or just some selected subset) of the
service times are perturbed by ∆Zk, k = 1, 2, Let

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3084

Ik = Ak −Dk−1 and observe that when Ik > 0 it captures
an idle period (since the server must wait until Ak > Dk−1

to become busy again) and when Ik < 0 it captures the
waiting time Dk−1 − Ak of the kth arriving entity in
the system. It is easy to obtain from (1) the following
departure time perturbation equation:

∆Dk = ∆Zk +


∆Dk−1 if Ik ≤ 0, ∆Dk−1 ≥ Ik

0 if Ik > 0, ∆Dk−1 ≤ Ik
Ik if Ik ≤ 0, ∆Dk−1 ≤ Ik

∆Dk−1 − Ik if Ik > 0, ∆Dk−1 ≥ Ik
(2)

where ∆Dk can be obtained from the generated perturba-
tions ∆Zk and directly observed data in the form of Ik.
This is the FPA procedure for evaluating ∆Dk, k = 1, 2, . . .
Observe, however, that if we select ∆Zk > 0 to be suffi-
ciently small so that ∆Dk−1 > 0 can never exceed the
finite value of Ik > 0, then this reduces to

∆Dk = ∆Zk +

{
∆Dk−1 if Ik ≤ 0

0 otherwise
(3)

which is the much simpler IPA version, requiring only
the detection of an idling interval when Ik > 0, at
which time the departure time perturbation is reset to
∆Dk = ∆Zk. Naturally, the question is: “How small do
perturbations need to be before the IPA equation can be
used?” In a stochastic system, the answer to this question
is generally dependent on the specific realization based
on which ∆Dk is evaluated. Thus, it is logical to extend
the question of estimating ∆Dk(∆θ), k = 1, 2, . . ., the
departure time perturbations, to estimating the derivative
dDk
dθ by allowing ∆θ → 0. This became one of the two

important questions facing PA researchers in the early
1980s:

Q1. When can IPA be used instead of FPA and is it
possible to transition the remarkably efficient PA method-
ology from one limited to sensitivity analysis for finite
perturbations to one for gradient estimation of a large class
of dynamic systems?

Q2. What is the class of dynamic systems for which the
PA methodology applies?

To address Q2, it soon became clear that using tradi-
tional models for system dynamics of the general form
ẋ = f(x, u, t) was exteremely inefficient and ultimately
pointless for systems such as queueing networks. In such
systems, at least some state variables (i.e., queueing con-
tents) are discrete and almost always fixed, changing only
when specific events occur (i.e., an entity enters or leaves
the queue). This led to the realization that traditional dy-
namic systems described through ẋ = f(x, u, t) are time-
driven, whereas this different class of systems is event-
driven. The term Discrete Event Dynamic System (DEDS)
was coined in 1980 and first appeared in the literature
in Ho and Cassandras (1980) and Ho and Cassandras
(1983), while a first general IPA and FPA framework for
queueing networks appeared in Ho et al. (1983). However,
the event-driven nature of this class of systems was not
formalized until an “event domain formalism” was first
proposed in Cassandras and Ho (1985). Over the next
several years, it became clear that the class of DEDS
is much broader than queueing networks and that PA
techniques could be extended to all such systems (Ho
and Cao (1991), Glasserman (1991)). In parallel, a novel

control theory for such systems, with the broader term
Discrete Event System (DES) used, was being developed
by Ramadge and Wonham culminating with what has
become known as the supervisory control theory for DES
(Ramadge and Wonham (1980)). It took about a decade
before the supervisory control theory and PA were merged
into complementary approaches for studying DES and are
now viewed as a staple of any study of dynamic systems
(Cassandras (1993), Cassandras and Lafortune (2008)).

Returning to the first question Q1 above, IPA in the form
of (3) was successfully used in the early 1980s for many
applications that involved stochastic systems with event-
driven behaviors, including routing, scheduling and gen-
eral resource allocation problems in complex manufactur-
ing systems and computer and communication networks
(e.g., Cassandras et al. (1990)). The generalization of (3)
is to apply it to any performance metric J(θ) = E[L(θ)]
where L(θ) is a sample function dependent on θ. IPA is
an efficient way to obtain ∇L(θ) from observable data on
a nominal system realization. However, what is ultimately
of interest is ∇J(θ) = ∇E[L(θ)], and its estimation by
∇L(θ) can use in a large class of gradient-based optimiza-
tion problems. As IPA was applied to harder and harder
problems (i.e., systems with event-driven dynamics) much
more complex than Lindley equations such as (1), it be-
came clear that IPA estimates ∇L(θ) were not accurate
compared to ∇J(θ) when this could be evaluated through
analytical methods in some simple cases or accurately
approximated through exhaustive time-consuming simu-
lation methods. Indeed, one could have situations where
the signs of ∇J(θ) and ∇L(θ) were different, resulting in
heavily biased IPA gradient estimates. It took several years
and occasionally controversial debates to realize that the
key issue was one of testing the validity of unbiasedness
for IPA gradient estimation, i.e., formal conditions under
which

∇E[L(θ)] = E[∇L(θ)]
holds, or in simpler scalar form:

d

dθ
E[L(θ)] = E

[
dL(θ)

dθ

]
The way this key issue was addressed is discussed in the
next section.

2. INFINITESIMAL PERTURBATION ANALYSIS

By the mid 1980s, it was realized that IPA provided a gen-
eral framework for computing gradients of sample perfor-
mance functions defined on the state space of an extensive
class of DEDS beyond queueing networks. Furthermore,
it was shown to admit especially simple computations by
data gathered directly from the sample path of the system.
Consequently IPA became the focal point of research in
PA, with an eye on potential applications in performance
optimization by stochastic gradient-descent algorithms.

The basic thinking about IPA was shaped by the view
that it essentially compares two sample paths in slightly
changed parameters with a set of common random vari-
ables for both paths. A formal mathematical formulation
of the IPA framework appeared in Cao (1985). A sample
path of a stochastic system is denoted as a pair (θ, ξ) with
θ ∈ Rn denoting the parameter concerned, and ξ, a set of
random variables describing all the randomness involved in

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3085

the system. Let LT (θ, ξ) be a performance function of the
system in a given finite period [0, T]. IPA consists of the
sample gradient (derivative) ∇LT (θ, ξ) := ∂

∂θ (LT (θ, ξ)),
called the sample derivative, or sample gradient (Cao
(1985)). Due to the DEDS structure of the system, it was
convenient to think of this derivative as the limit of finite
differences with the common sample path, namely

∂LT (θ, ξ)

∂θ
= lim

∆θ→0

LT (θ + ∆θ, ξ)− LT (θ, ξ)

∆θ
.

However, one of the expressed objectives of IPA is to
estimate the derivative of the mean performance JT (θ) :=
E[LT (θ, ξ)]. 1 This naturally raises the question “is the
sample derivative given by IPA an unbiased estimate of
the derivative of the mean performance?” i.e.,

E

[
∂

∂θ
LT (θ)

]
=

∂

∂θ
E[LT (θ)]? (4)

The unbiasedness (4) explains why IPA gives accurate
derivative estimates for some systems but not others.
Roughly speaking, when the sample function LT (θ) has
a jump (discontinuity) at θ, the interchangeability of ex-
pectation and differentiation inherent in Eq. (4) would not
hold. Intuitive conditions for this interchangeability were
given in Cao (1985); essentially, if a parameter change at
θ may cause a change in the order of events in a DEDS,
the sample performance function may have a jump at θ,
and then the interchangeability in (4) may hold only if
the probability of such jumps in [θ, θ+ ∆θ] is of the order
o(∆θ). This intuition evolved from the consideration of
many engineering problems defined on DEDS. An alter-
native view of the issue of unbiasedness is through the
theory of multivariable calculus. After all, Eq. (4) amounts
to an interchangeability of differentiation with respect to θ
and integration with respect to ξ (expectation), and this is
roughly equivalent to the continuity of the function L(θ, ξ)
in θ with probability one (in ξ). The former view is based
on engineering intuition, whereas the latter one, founded
upon well-known results in mathematics, often provides a
practical way of discerning whether IPA is unbiased.

These realizations stimulated subsequent research in two
directions:

1. Identifying classes of systems and problems where IPA
is unbiased. Early works include Suri and Zazanis (1988),
which proves the unbiasedness for the GI/G/1 queue, and
Cao (1988), which proves it for closed Jackson networks.
Glasserman (1991) presents IPA in the framework of gen-
eralized semi-Markov processes, and extends the results
in Cao (1985) and Cao (1988) to a commuting condition
for the unbiasedness of the derivative estimates. For many
other applications in this direction, please see Cassandras
and Lafortune (2008).

2. The development of alternative perturbation-analytic
techniques that provide unbiased derivative estimates, or
reduce the bias, for problems for which IPA estimates
are biased. Several such techniques have appeared in the
literature; among them is Smoothed Perturbation Analysis
(SPA) (Gong and Ho (1987), Fu and Hu (1997)). The
main idea of this technique is to use the derivative of a

1 To simplify the presentation we will drop the explicit notational
dependence of the sample performance functions on ξ.

conditional mean of the sample function as the estimate
of the derivative of the mean performance. While a sample
function may have jumps and therefore its derivative is a
biased estimate, a conditional mean of the sample function
may be smooth enough to provide unbiased estimates.
More precisely, suppose that there is a random variable
(or vector) denoted as Z such that

E

[
∂

∂θ
E[LT (θ)|Z]

]
=

∂

∂θ
E
[
E[LT (θ)|Z]

]
=

∂

∂θ
E[LT (θ)], (5)

then we can use ∂
∂θE[LT (θ)|Z], i.e., the derivative of the

conditional-mean sample function, as an unbiased estimate
of the performance derivative ∂

∂θE[LT (θ). A potential
difficulty with this approach is that the conditional IPA
estimator may require a significantly higher computational
effort than the basic IPA to the point that it is rendered
impractical. In other words, precision and accuracy can be
obtained at the expense of high computational complexity.

Around the same time, various other techniques were
also developed based largely on so-called “cut-and-paste”
operations on the sample path in order to smooth out
discontinuities resulting from parameter perturbations.
Surveys thereof can be found in Ho and Cao (1991) and
Cassandras and Lafortune (2008).

The preceding discussion pertains to finite-horizon sam-
ple performance functions. Another important class of
functions concern long-run (infinite-horizon) averages. De-
noted by J(θ), they have the form

J(θ) = lim
T→∞

1

T
LT (θ),

where the system is assumed to be ergodic for the above
limit to exist and be independent of the sample path ξ
w.p.1. The time T can be either continuous or discrete. IPA
gives the sample derivative 1

T
∂
∂θLT (θ). The issue here is

the strong consistency of the IPA derivative, i.e., whether
the following limit is in force Cao (1985),

lim
T→∞

1

T

∂

∂θ
LT (θ) =

∂J(θ)

∂θ
; (6)

in other words, “are the operators of limit “limT→∞” and
derivative “ ∂

∂θ” interchangeable?”

The study of this issue led to an important concept, the
perturbation realization, later extended to the performance
potential, which has been applied to several research areas
like Markov decision processes and stochastic control. The
main idea is as follows. In queueing networks, the effect of
every single perturbation on the performance is finite and
can be precisely measured; the total effect of a parameter
change on the performance can be decomposed into the
sum of the effects of every single perturbation generated
(realized) by this parameter change. The performance
derivative with respect to this parameter can then be
calculated. To illustrate this concept, consider a closed
Jackson network consisting of M servers with service rates
µi, i = 1, 2, · · · ,M , and let

LT (θ) :=

∫ T

0

f [n(t)]dt,

where n(t) = (n1, n2, · · · , nM) is the system state at
time t with ni is the number of customers at server i,

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3086

and f [n(t)] is a performance function of the state. Now,
suppose at t = 0 with initial state n, server i is subjected
to a perturbation ∆, meaning, e.g., its completion time
is delayed by the amount of ∆. Define the perturbation
realization factor, (Ho and Cao (1993), Cao (1994)),

c(n, i) = lim
T→∞

lim
∆→0

E

{
1

∆

[∫ T

0

f(n′(t))dt−
∫ T

0

f(n(t))dt

]}
. (7)

The perturbed sample path n′(t) can be simply obtained
by the propagation rule on a single sample path. With
the help of the realization factors, we can prove that the
strong consistency (6) indeed holds, and we can further
derive (take θ = µi as the perturbed parameter)

lim
T→∞

[
µi

1

T

∂LT (µi)

∂µi

]
= µi

dJ(µi)

dµi

=
∑
all n

π(n)c(n, i), w.p.1, (8)

where π(n) is the steady-state probability of state n.
c(n, i) can be computed by a set of linear equations.

In this approach, the interchangeability of “limT→∞” and
“ ∂
∂θ” is buried in lim

T→∞
and lim

∆→0
in (7) because in a strongly

connected network, a perturbation can only affect a system
in a finite period, and the difference of the two terms
in (7) will be almost zero when T is large enough. The
interchangeability can be proved along these lines. Many
other examples with perturbation realization can be found
in Cao (1994).

The notions of perturbation realization and performance
potential continue to underscore subsequent applications
to large-scale systems. For non-Markovian queueing net-
works and other DEDS, the unbiasedness of IPA and
the computational complexity inherent in alternative PA
methods designed to circumvent it, led to a partial shift
of IPA research from DEDS to stochastic hybrid systems.
These developments, which have been taking place over
the past fifteen years, are the subject of the next section.

3. STOCHASTIC HYBRID SYSTEMS

In 2002 a new approach to IPA emerged, based on Stochas-
tic Flow Models (SFM) (Cassandras et al. (2002)). 2 Un-
like SPA it does not consist of alternative sample-path
representations of J(θ), but rather on an alternative mod-
elling framework that yields approximate estimates for
J(θ), and, more importantly, whose gradients are unbiased
and provide approximations to ∇J(θ). The SFM concept
formulated in Cassandras et al. (2002) grew out of the con-
cept of the fluid queue, and subsequently was extended to
flow networks and beyond to a general setting of Stochastic
Hybrid Systems (SHS); see Cassandras et al. (2010).

Consider Figure 1 for an illustration of the SHS concept.
The system in question is the DEDS shown in the figure,
and the control parameter assigned to it is θ ∈ Rn. The
system with the particular control variable θ generates a
sample path which is fed to two places: (i) an algorithm

2 To simplify the exposition in the forthcoming discussion, we omit
the notational dependence of the sample function LT (θ) and its mean
JT (θ) on T .

which computes L(θ) and its IPA gradient ∇L(θ), and (ii)
a continuous-flow modeling artifact, indicated by SHS in
the figure. An algorithm which is based on SHS computes
the value of another sample performance function, Ls(θ),
and its IPA gradient ∇Ls(θ). It is pointed out that the
same sample path, associated with the underlying DEDS
is used to compute the sample performance functions
associated with both the discrete system and the hybrid
system, as well as their respective IPA gradients.

Fig. 1. Relationship between a DEDS and its SHS approximation

Suppose that ∇L(θ) is a biased estimator of ∇J(θ), and
hence it does not provide a good approximation to it. The
SHS framework is useful as long as ∇Ls(θ) provides a close
approximation to ∇J(θ), which often is the case when the
IPA derivative ∇Ls(θ) is unbiased. It must be pointed
out that approximating J(θ) usually is a major concern
in performance evaluation or estimation, whereas approxi-
mations of ∇J(θ) is a concern in optimization and control.
Since our interest is in the latter but not the former, we
have no intrinsic interest in the quality of approximations
provided by Ls(θ) to J(θ). In fact, extensive testing by
simulation has shown that such approximations can be
inadequate for the purpose of performance evaluation,
whereas the approximation of ∇J(θ) provided by ∇Ls(θ)
suffice to achieve optimization and control objectives. Ex-
amples of this point can be found in Cassandras et al.
(2002), Cassandras et al. (2010).

The first example analyzed in this context concerns a
continuous-flow single-server queue with a finite buffer,
where fluid arriving at a full queue is being discarded as
a matter of overflow. The basic stochastic-flow modelling
construct, depicted in Figure 2, is defined as follows:
Given a time-horizon [0, T], let {α(t)} and {β(t)} be
the instantaneous fluid-arrival rate to the queue, and the
instantaneous fluid service rate at the queue, respectively.
These are assumed to be exogenous stochastic processes
defined on a common probability space (Ω,F , P). Let
b > 0 denote the size of the buffer. Denote by X(t) and
γ(t) the instantaneous buffer-contents (amount of fluid in
the buffer) and instantaneous spillover rate from the queue
due to overflow. Then the processes {X(t)} and {γ(t)} are
defined as follows (see Cassandras et al. (2002)):

dX(t)

dt+
=

{
0, if X(t) = 0, and α(t) ≤ β(t)
0, if X(t) = b and α(t) ≥ β(t),
α(t)− β(t), otherwise,

(9)
and

γ(t) =

{
α(t)− β(t), X(t) = b
0, if X(t) < b.

(10)

A typical control variable consists of a parameter of the
arrival-rate process, the service-rate process, or the buffer
size. For example, β(θ; t) = θβ(t), where θ represents
a controlled flow parameter and {β(t)} is an exogenous
process depending on time t but not on θ. This can arise
in communication networks where θ represents the total

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3087

transmission rate of a channel and β(t) is the fraction of
it which is allocated to a particular session. Observe the
notation β(θ; t), indicating that the instantaneous service
rate depends on θ. As a result, the buffer-occupancy
and spillover-rate processes depend on θ as well via (9)
and (10), and hence denoted by {X(θ; t)} and {γ(θ; t)}.
Ref. Cassandras et al. (2002) considered various sample
performance functions of such control variables. We next
present the first SFM analyzed from the standpoint of IPA,
which exhibits the salient features of an extensive suite of
fluid queueing networks.

Fig. 2. Elemental fluid-queue model

Consider the case where the control parameter is the buffer
capacity, and the performance function is the amount of
fluid which is discarded during a given horizon interval
[0, T]. Thus, θ = b, and the performance function, denoted
by Lγ(θ), is

Lγ(θ) :=

∫ T

0

γ(θ; t)dt. (11)

Note that Lγ(θ) is related to the fraction of discarded fluid
from the total arrival volume during the time t ∈ [0, T],

which is Lγ(θ)/
∫ T

0
α(t)dt.

Regarding the IPA derivative
dLγ(θ)
dθ , we note that it

is unbiased since the function Lγ(θ) is continuous. The
following formula for it was obtained in Cassandras et al.
(2002): Define NT as the number of lossy busy periods
in the horizon interval [0, T], namely the number of busy
periods during which the buffer becomes full at some time.
Then,

dLγ(θ)

dθ
= −NT . (12)

As an example, consider the realization of the state tra-
jectory {X(θ; t)} shown in Figure 3. It is evident that the
first and third busy periods are lossy while the second in

not, therefore
dLγ(θ)
dθ = −2.

Fig. 3. Typical state trajectory {X(θ; t)}

As another example, consider the cumulative workload
as a function of the buffer capacity. Thus, θ = b as in
the previous example, and let the performance function,
denoted by Lx(θ), be defined as

Lx(θ) =

∫ T

0

X(θ; t)dt. (13)

Note that the term Lx(θ)/
∫ T

0
α(t)dt serves to approximate

the average delay of fluid “molecules” by Little’s law. As
for the IPA derivative, fix θ > 0, and let Bm, m = 1, . . . ,M
denote the lossy busy periods in the interval [0, T] in

increasing order. For every m = 1, . . . ,M , let um ∈ Bm
denote the first time the buffer becomes full in Bm, and let

vm be the end-time of Bm. Then dLx(θ)
dθ has the following

form,

dLx(θ)

dθ
=

M∑
m=1

(vm − um). (14)

For example, in Figure 3, dLx(θ)
dθ =

∑2
m=1(vm − um).

We point out that Eqs. (12) and (14) were derived (in
Cassandras et al. (2002)) under minimal assumptions on
the system. In fact, the only assumption made is that
the processes {α(t)} and {β(t)} be piecewise continuous
and of bounded variation in t ∈ [0, T] w.p.1. Therefore,
for the purpose of computing Eqs. (12) and (14), these
processes can be generated not only from an SFM but
also from a DEDS. Such DEDS can be a modeling artifact
of the system or the system itself. Furthermore, the for-
mulas (12) and (14) do not depend on observations of the
detailed dynamics associated with arrivals or departures
of each customer at the queue, nor on the instantaneous
values of α(t) or β(t). Instead, they require only the
observations of macro events like the beginning and end
of busy periods and full-buffer periods. Thus, comparing
and contrasting these formulas with the analogous equa-
tions derived for IPA in the traditional, discrete-queueing
setting (e.g., Cassandras and Lafortune (2008)), we see
that the SFM-based formulas are unbiased, simpler, and
do not require any details of the probability laws under-
scoring the arrival and service processes. Due to the last
property we say that the IPA derivative is nonparametric.
Furthermore, as mentioned above, the IPA derivatives can
be computed from data generated from DEDS as well as
SFM. In fact, Cassandras et al. (2002) and subsequent
papers on IPA in the SFM setting (e.g., Zhang and Cas-
sandras (2002),Sun et al. (2004),Cassandras et al. (2010)
and references therein) report on successful solutions of
DEDS optimization problems where the IPA gradients are
computed from SFM-derived formulas. All of this suggests
that the SFM setting provides an alternative framework to
DEDS for the application of IPA, which holds out promise
of real-time optimization via closed-loop control.

As we mentioned earlier, following the basic formulation
of the SFM and derivation of the aforementioned IPA
gradients, there were several efforts to extend the model
and results to fluid queueing systems and other multiflow
networks. The main results concern the development of
IPA gradients for prototypical problems, and their im-
plementation in optimization environments. By and large
the simplicity and unbiasedness of the IPA gradients are
maintained. The nonparametric property and reliance only
on observations of macro events has been almost main-
tained, but held ground for close approximations where,
practically, the errors can be neglected. Moreover, the
key structure of perturbation propagation, which rendered
IPA attractive from its onset, is maintained in fluid-flow
networks. This is all summarized in Cassandras et al.
(2010) and formulated in a general framework of Stochastic
Hybrid Systems (SHS) based on a formal calculus (referred
to as the IPA Calculus) of event-driven propagations. We
close this section by mentioning that the SHS framework
can serve not only as an approximation of a DEDS but
also as a primary model of systems with discrete and

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3088

continuous dynamics that arise in various application areas
of current interest.

4. RECENT AND CURRENT TRENDS

This section presents some of the main research directions
in IPA which emerged during the past decade. In particular
we discuss applications to large-scale Markov processes
and stochastic hybrid systems, performance regulation of
systems, and the use of event-driven (as opposed to time-
driven) methods for control and optimization.

4.1 IPA of Markov Systems and Stochastic Optimization

Until the mid 1990s, IPA was largely limited to “infinites-
imal” perturbations, and could not be applied to pertur-
bations with finite size. Around this time, however, it was
realized that the perturbation realization principle applies
to finite jumps of states as well. This made it possible to
develop IPA algorithms for Markov processes.

Consider an irreducible and aperiodic Markov chain
X = {Xn : n ≥ 0} on a finite state space S =
{1, 2, · · · ,M} with transition probability matrix P =
[p(j|i)] ∈ [0, 1]M×M . Let π = (π1, . . . , πM) be the vec-
tor representing its steady-state probabilities, and f =
(f1, f2, · · · , fM)T be the performance vector, where “T”
represents its transpose. We have Pe = e, where e =
(1, 1, · · · , 1)T is an M -dimensional vector whose all com-
ponents equal 1, and π = πP . The performance measure
is the long term average defined as

η =

M∑
i=1

πifi = πf = lim
L→∞

1

L

L−1∑
l=0

f(Xl)

= lim
L→∞

FL
L
, w.p.1, (15)

where FL :=
∑L−1
l=0 f(Xl).

Let P ′ be another irreducible transition probability matrix
on the same state space. Suppose P changes to P (δ) = P+
δQ = δP ′+(1−δ)P , with δ > 0, Q = P ′−P = [q(j|i)], and
the reward function f keeps the same. We have Qe = 0.
The performance measure will change to η(δ) = η+∆η(δ).
The derivative of η in the direction of Q is defined as

dη(δ)

dδ
= lim
δ→0

∆η(δ)

δ
. (16)

In this system, a perturbation means that the system is
perturbed from one state i to another state j. Following
the same idea as in (7), we study two independent Markov
chains X = {Xn;n ≥ 0} and X′ = {X ′n;n ≥ 0} with
X0 = i and X ′0 = j; both of them have the same transition
matrix P . The realization factor is defined as Cao (2007):

d(i, j) = lim
L→∞

E

[
L−1∑
l=0

(f(X ′l)− f(Xl))

∣∣∣∣∣X0 = i, X ′0 = j

]
,

i, j = 1, . . . ,M . (17)

Thus, d(i, j) represents the average effect of a jump from i
to j on FL in (15). From (17), it is easy to see that d(i, j)
satisfies the conservation law as in physics:

g(i, k) = g(i, j) + g(j, k), i, j, k ∈ S,

Thus, we can define a vector g = (g(1), g(2), · · · , g(M))T ,
called performance potential, such that

d(i, j) = g(j)− g(i), i, j ∈ S,
and we can verify that it satisfies the Poisson equation

(I − P + eπ)g = f, (18)

where I is the M ×M identity matrix.

Multiplying both sides of the Poisson equation with π on
the left, we get

πg = πf = η. (19)

Multiplying both sides of the Poisson equation with π′ on
the left yields

π′Qg = π′(P ′ − P)g = π′(I − P)g = π′f − πg = π′f − η.
That is,

η′ − η = π′Qg. (20)

Setting P (δ) = P + δQ and η′ = η(δ) and letting δ → 0 in
(20), we get the desired performance derivative along the
direction Q:

dη(δ)

dδ
= πQg. (21)

The derivatives can be used in performance optimization
(Marbach and Tsitsiklis (2001)). Efficient algorithms can
be derived for estimating g and estimating the derivative
dη(δ)
dδ directly (Cao (2007)). Now, there is a new subarea in

reinforcement learning, called policy gradients, devoted to
developing algorithms for the performance derivative (21),
see e.g., Baxter and Bartlett (2001), Baxter et al. (2001),
etc.

If the reward function also changes from f to f ′, let
h := f ′ − f . It is easy to check that

η′ − η = π′(Qg + h) = π′{(P ′g + f ′)− (Pg + f)}. (22)

This is the Performance Difference Formula (PDF); it
initiates a new direction in performance optimization, the
direct-comparison based approach. In fact, it is observed
that the PDF contains all the information in comparing
the performance of any two policies, and an optimality con-
dition can be simply derived from this equation without
dynamic programming or discounting for long-run average
performance. For example, because π′ > 0, from (22), we
conclude

If P ′g + f ′ ≤ Pg + f, then η′ ≤ η. (23)

This leads to the optimality condition: a policy (P ∗, f∗)
with potential g∗ is optimal if and only if Pg∗+f ≤ P ∗g∗+
f∗ for all policies P . Policy iteration algorithms can also
be developed from (22).

The Direct-Comparison (DC) based approach is an alter-
native to dynamic programming (DP) to performance op-
timization of dynamic systems. As illustrated above, this
approach is very simple and intuitive for long-run average
performance; in fact, a complete theory based on nth bias
optimality for long-run average performance can be devel-
oped with no discounting (Cao (2007)). Next, the PDF
provides global information to performance comparison
in the entire period; while dynamic programming works
backwards in time at a particular time instant (continuous
or discrete), and hence it only provides local information.
Therefore, the DC-based approach opens a new horizon
for problems requiring global considerations.

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3089

For example, the approach naturally solves a long existing
issue in time non-homogenous Markov systems, the under
selectivity, which means that in performance optimization
of time non-homogenous systems, where the transition
probabilities and reward functions are different at different
time k = 1, 2, · · · , the long-run average performance, and
for that matter its optimal policy, does not depend the
actions (transition probabilities and rewards) in any finite
periods (Cao (2015)). The approach has also been applied
to stochastic control problems with diffusion processes
(continuous time and continuous states); it solves the
control problem with non-smooth value functions without
resorting to viscosity solutions (Cao (2017)).

Equations (21) and (22) provide a sensitivity-based view
to performance optimization. For problems where the
performance is not additive, (21) may be used. The DC-
based approach links both together naturally, Research
in this direction is ongoing and the influence of the
sensitivity-based view extends beyond the area of DEDS.

Last but not the least, combined with the aggregation
technique, the DC-based approach leads to the theory of
event-based optimization (control), in which control ac-
tions depend on events rather than the states. This may
dramatically reduce the computation since the number of
events (event space) is much smaller than that of states
(state space). Conditions have been derived under which
Hamilton-Jacobi-Bellman (HJB) type of optimality equa-
tion holds for event-based control; because the sequence of
events is not Markov and aggregation is used, approxima-
tion is usually involved, see Cao (2007); Xia et al. (2014);
other related topics will be discussed in Section 4.3.

4.2 Performance Regulation

Emerging applications of IPA concern the tracking of a
referencee input to a dynamical system by its output pro-
cess. An abstract, discrete-time single-input-single-output
system is depicted in Figure 4, where k denotes time, r ∈ R
is the reference input, yk is the system’s output, uk is the
control input to the plant, and ek := r − yk is the error
signal. The plant generally is a time-varying dynamical
system lacking an accurate model and subjected to unpre-
dictable variations.

Controller Plant

-
+

Fig. 4. Control System

As an example of interest, it is desirable to regulate
the instructions’ throughput of a computer processor by
adjusting its clock rate, or frequency. More specifically,
the time axis is divided into contiguous periods called
control cycles, during each of which the frequency is set
(fixed) and the average throughput is measured. At the
end of the control cycle the frequency is changed by the
controller according to the difference between the given
target-throughput (setpoint) and the average throughput.
In this setting the time counter k indicates the index of
the control cycle denoted henceforth by Ck, uk is the value
of the clock frequency during Ck, and yk is the average
instruction-throughput computed during Ck.

The plant in Figure 4 is the processor, and any model
thereof would describe the frequency-to-throughput rela-
tionship. Since we enact a real-time control, there is no
need for a model to close the loop since the output yk is
measured. However, we shall see that a model is needed in
order to implement the controller that we have in mind. An
established model of an out-of-order architecture is pro-
vided by a queueing system (see Hennessey and Patterson
(2012), or a simplified exposition in Wardi et al. (2016))
which defies analysis. We use it nonetheless in an effective
way, as described below.

Returning to the abstract system in Figure 4, the ob-
jective is to design a controller which can deliver the
desired tracking without a detailed knowledge of the plant-
model while facing wide-ranging variations in the system’s
input-output relationships. Moreover, the controller has to
achieve that in very short time-frames and hence by simple
computations. Tracking typically involves an integrator
in the loop, and to have the controller be as simple as
possible we first considered a standalone integrator. Now it
is well known that a standalone integrator may destabilize
the closed-loop system and otherwise have poor stability
margins. Furthermore, to be effective its gain may have
to be determined by data, gathered off line, concerning
the system’s response. However, we cannot obtain such
meaningful data due to the unpredictable variability in a
processor’s workload during program executions. There-
fore we adopted a variable-gain integrator, whose gain is
recomputed at the beginning of each control cycle as a part
of the control loop, hence based only on measurements, in
a way that extends the stability margins and provides the
desirable tracking. In fact, simulation testing showed that
this obviates the addition of a proportional element to the
controller.

The controller has the following form,

uk = uk−1 +Akek−1,

where uk is the control variable set at the start of Ck, Ak
is computed from measurements made during Ck−1 and
hence available at the start of Ck, ek−1 = r − yk−1, and
yk−1 is computed from measurements during Ck−1. When
the gain Ak is independent of k = 1, 2, . . . we recognize this
as an adder, a discrete-time equivalent of an integrator.
The gain Ak is computed by the following formula,

Ak = Ak−1 +
1

∂yk−1

∂uk−1
+ ηk−1

ek−1. (24)

The output yk−1 depends not only on uk−1 but possibly
also on noise and other exogenous processes as well as past
output like yk−2, etc. These variables are not factored in

the term ∂yk−1

∂uk−1
which hence literally stands for the partial

derivative.

The term ∂yk−1

∂uk−1
has to be estimated in real time during

Ck−1 as a part of the control loop. However, in the com-
puter application described above, and in other DEDS
and SHS, we were unable to compute it due to the ab-
sence of analytical models for the plant. Therefore, in
Equation (24), we allow for an additive error, ηk−1, in its
computation. Convergence results of the resulting tracking
algorithm, derived in Wardi et al. (2016), account for the
presence of such error terms. Simulation tests verify these
results with substantial relative erros, which can be 30%

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3090

or higher. In other words, the performance of the regu-
lation technique is robust with respect to computational
errors in the loop. Leveraging this robustness, we have

estimated ∂yk−1

∂uk−1
by IPA. But unlike unbiasedness and

exact computation, which have been principal concerns in
the use of IPA throughout much its development, we were
primarily concerned with fast computations while allowing
for substantial bias and computational errors.

Results of simulation experiments can be found in Wardi
et al. (2016) and references therein. These include queue-
ing networks, Petri nets, transportation models, and other
DEDS. Of a particular interest is the case where the
plant is a queueing system with biased IPA. For the orig-
inal problem of interest, namely instruction-throughput
regulation in computer processors, we used a detailed
system-level simulation platform for computer architec-
tures, called Manifold (Yalamancili et al. (2016)). IPA is
biased, and we also induced further errors deliberately
in order to simplify the computations of its derivative.
Lately we implemented the regulation technique on Intel’s
fourth-generation microarchitecture, Haswell, and tested
it on industry-benchmark programs (Hammarlund et al.
(2014)). In this implementation we actually adopted a

simpler computation of ∂yk−1

∂uk−1
than IPA can provide, one

that is based on linear approximation. Various results can
be found in (Chen et al. (2016)).

To summarize, the technique described in this subsection
extends the research area in IPA in two directions. First,
it explores applications to systems’ performance regulation
rather than optimization. Second, it does not pursue the
objectives of unbiased gradient estimates and their precise
computations, but rather seeks simple control laws with
fast computations in the loop.

4.3 Event-Driven Control and Optimization

The emergence of DEDS in the 1980s brought to the
forefront an alternative viewpoint to the traditional time-
driven paradigm in which time is an independent variable
and, as it evolves, so does the state of a dynamic system.
The event-driven paradigm offers an alternative, comple-
mentary look at modeling, control, communication, and
optimization (Miskowicz (2015), Cassandras (2014)). The
key idea is that a clock should not be assumed to dictate
actions simply because a time step is taken; rather, an ac-
tion should be triggered by an “event” specified as a well-
defined condition on the system state or as a consequence
of environmental uncertainties that result in random state
transitions. Observing that such an event could actually
be defined to be the occurrence of a “clock tick”, it follows
that this framework may in fact incorporate time-driven
methods as well. On the other hand, defining the proper
“events” requires more sophisticated techniques compared
to simply reacting to time steps. In the development of
DEDS, such events were seen as the natural means to drive
the dynamics of a large class of systems including com-
puter networks, manufacturing systems, and supply chains
among many. By the early 1990s, however, it became
evident that many interesting dynamic systems are in fact
“hybrid” in nature, i.e., at least some of their state transi-
tions are caused by (possibly controllable) events. This has
been reinforced by technological advances through which

sensing and actuating devices are embedded into systems
allowing physical processes to interface with such devices
which are inherently event-driven. More recently, the term
Cyber-Physical System (CPS) has emerged to describe
the hybrid structure of systems where some components
operate as physical processes modeled through time-driven
dynamics, while other components (mostly digital devices
empowered by software) operate in event-driven mode.

Moreover, many systems of interest are now networked
and spatially distributed. In such settings, especially when
energy-constrained wireless devices are involved, frequent
communication among system components can be ineffi-
cient, unnecessary, and sometimes infeasible. Thus, rather
than imposing a rigid time-driven communication mech-
anism, it is reasonable to seek instead to define specific
events which dictate when a particular node in a network
needs to exchange information with one or more other
nodes. When, in addition, the environment is stochastic,
significant changes in the operation of a system are the
result of random event occurrences, so that, once again,
understanding the implications of such events and reacting
to them is crucial. In distributed systems, event-driven
mechanisms have the advantage of significantly reduc-
ing communication among networked components without
affecting desired performance objectives. In multi-agent
systems where the goal is for networked components to
cooperatively maximize (or minimize) a given objective, it
is shown in Zhong and Cassandras (2010) that an event-
driven scheme can still achieve the optimization objective
while drastically reducing communication (hence, prolong
the lifetime of a wireless network), even when delays are
present (as long as they are bounded). Event-driven ap-
proaches are also attractive in receding horizon control,
where it is computationally inefficient to re-evaluate a
control value over small time increments as opposed to
event occurrences defining appropriate planning horizons
for the controller. Finally, as already pointed out in Section
4.1, the use of event-driven optimization methods has the
benefit of scaling with the size of the event-space and not
the (generally much larger) state space of a system.

In Section 3, we discussed how IPA is used in the control
and optimization of SHS based on the general-purpose
IPA Calculus (Cassandras et al. (2010)). However, even
when a hybrid system is studied in a deterministic setting,
IPA proves extremely useful in evaluating performance
gradients on line that can be used for the purpose of
optimizing the operation of complex multi-agent systems.
These are commonly modeled as hybrid systems with time-
driven dynamics describing the motion of the agents or
the evolution of physical processes in a given environment,
while event-driven behavior characterizes events that may
occur randomly (e.g., an agent failure) or in accordance
with control policies (e.g., an agent stopping to sense the
environment or to change directions). As such, a multi-
agent system can be studied in the context of the IPA
Calculus with parameterized controllers aiming to meet
certain specifications or to optimize a given performance
metric. In some cases, the solution of a multi-agent dy-
namic optimization problem is reduced to a policy which
is naturally parametric. Therefore, IPA may be used to
evaluate on line performance gradients through which one
can drive the system towards optimal (at least locally)

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3091

points; recent examples of this approach may be found in
Cassandras et al. (2013), Zhou et al. (2016).

REFERENCES

Baxter, J. and Bartlett, P.L. (2001). Infinite-horizon
policy-gradient estimation. Journal of Artificial Intel-
ligence Research, 15, 319–350.

Baxter, J., Bartlett, P.L., and Weaver, L. (2001). Experi-
ments with infinite-horizon, policy-gradient estimation.
Journal of Artificial Intelligence Research, 15, 351–381.

Cao, X.R. (1985). Convergence of parameter sensitivity es-
timates in a stochastic experiment. IEEE Transactions
on Automatic Control, 30(9), 845–853.

Cao, X.R. (1988). A sample performance function of closed
jackson queueing networks. Operations Research, 36(1),
128–136.

Cao, X.R. (1994). Realization Probabilities: The Dynamics
of Queueing Systems. Springer-Verlag, New York, NY.

Cao, X.R. (2007). Stochastic Learning and Optimization
– A Sensitivity-Based Approach. Springer, New York,
NY.

Cao, X.R. (2015). Optimization of average rewards of time
nonhomogeneous markov chains. IEEE Transactions on
Automatic Control, 60(7), 1841–1856.

Cao, X.R. (2017). Relative time and stochastic control
with non-smooth features. To appear, IEEE Transac-
tions on Automatic Control.

Cassandras, C.G. (1993). Discrete Event Systems: Model-
ing and Performance Analysis. Irwin Publ., Homewood,
IL.

Cassandras, C.G. (2014). The event-driven paradigm for
control, communication, and optimization. Journal of
Control and Decision, 1(1), 3–17.

Cassandras, C.G., Abidi, M.V., and Towsley, D. (1990).
Distributed routing with on-line marginal delay estima-
tion. IEEE Trans. on Communications, 38(3), 348–359.

Cassandras, C.G. and Ho, Y.C. (1985). An event do-
main formalism for sample path perturbation analysis
of discrete event dynamic systems. IEEE Trans. on
Automatic Control, 30(12), 1217–1221.

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to Discrete Event Systems, 2nd Edition. Springer.

Cassandras, C.G., Lin, X., and Ding, X.C. (2013). An
optimal control approach to the multi-agent persistent
monitoring problem. IEEE Transactions on Automatic
Control, 58(4), 947–961.

Cassandras, C.G., Wardi, Y., Melamed, B., Sun, G., and
Panayiotou, C.G. (2002). Perturbation analysis for on-
line control and optimization of stochastic fluid models.
IEEE Transactions on Automatic Control, 47(8), 1234–
1248.

Cassandras, C.G., Wardi, Y., Panayiotou, C.G., and Yao,
C. (2010). Perturbation analysis and optimization of
stochastic hybrid systems. European Journal of Control,
16(6), 642–664.

Chen, X., Wardi, Y., and Yalamanchili, S. (2016). Ipa in
the loop: Control design for throughput regulation in
computer processors. In 13th International Workshop
on Discrete Event Systems (WODES).

Fu, M.C. and Hu, J.Q. (1997). Conditional Monte Carlo:
Gradient Estimation and Optimization Applications.
Kluwer Academic Publishers, Boston, MA.

Glasserman, P. (1991). Gradient Estimation via Perturba-
tion Analysis. Kluwer Academic Pub.

Gong, W.B. and Ho, Y.C. (1987). Smoothed perturba-
tion analysis of discrete-event dynamic systems. IEEE
Transactions on Automatic Control, 32, 858–866.

Hammarlund, P., Martinez, A., Bajwa, A., Hill, D., Hall-
nor, E., Jiang, H., Dixon, M., Derr, M., Hunsaker,
M., Kumar, R., Osborne, R., Rajwar, R., Singhal, R.,
D’Sa, R., Chappell, R., Kaushik, S., Chennupaty, S.,
Jourdan, S., Gunther, S., Piazza, T., and Butron, T.
(2014). Haswell: The fourth-generation intel core pro-
cessor. IEEE Micro, 34(2), 6–20.

Hennessey, J. and Patterson, D. (2012). Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann.

Ho, Y.C. and Cao, X.R. (1991). Perturbation Analysis
of Discrete Event Dynamic Systems. Kluwer Academic
Pub.

Ho, Y.C. and Cao, X.R. (1993). Perturbation analysis
and optimization of queueing networks. Journal of
Optimization Theory and Applications, 40(4), 559–582.

Ho, Y.C., Cao, X.R., and Cassandras, C.G. (1983). In-
finitesimal and finite perturbation analysis for queueing
networks. Automatica, 19, 439–445.

Ho, Y.C. and Cassandras, C.G. (1980). Computing costate
variables for discrete event dynamic systems. In 19th
IEEE Conference on Decision and Control, 149–167.

Ho, Y.C. and Cassandras, C.G. (1983). A new approach
to the analysis of discrete event dynamic systems. Au-
tomatica, 19, 149–167.

Ho, Y.C., Eyler, A., and Chien, D.T. (1979). A gradient
technique for general buffer storage design in a serial
production line. International Journal of Production
Research, 17, 557–580.

Marbach, P. and Tsitsiklis, T.N. (2001). Simulation-
based optimization of markov reward processes. IEEE
Transactions on Automatic Control, 46(2), 191–209.

Miskowicz, M. (ed.) (2015). Event-based Control and
Signal Processing. CRC Press/Taylor and Francis.

Ramadge, P.J. and Wonham, W.M. (1980). The control of
discrete event systems. Proceedings of the IEEE, 77(1),
81–98.

Sun, G., Cassandras, C.G., and Panayiotou, C.G. (2004).
Perturbation analysis of multiclass stochastic fluid mod-
els. J. of Discrete Event Dynamic Systems, 14(3), 267–
307.

Suri, R. and Zazanis, M. (1988). Perturbation analy-
sis gives strong consistent sensitivity estimates for the
m/g/1 queue. Management Science, 34(1), 39–64.

Wardi, Y., Seatzu, C., Chen, X., and Yalamanchili, S.
(2016). Performance regulation of event-driven dynami-
cal systems using infinitesimal perturbation analysis. To
appear, Nonlinear Analysis: Hybrid Systems.

Xia, L., Xia, Q.S., and Cao, X. (2014). A tutorial
on event-based optimization — a new optimization
framework. Discrete Event Dynamic Systems: Theory
and Applications, 24, 103–132.

Yalamancili, S., Riley, G., and Conte, T. (2016). Manifold.
Http://manifold.gatech.edu.

Zhang, P. and Cassandras, C.G. (2002). An improved
forward algorithm for optimal control of a class of hybrid
systems. IEEE Transactions on Automatic Control,
47(10), 1735–1739.

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3092

Zhong, M. and Cassandras, C.G. (2010). Asynchronous
distributed optimization with event-driven communica-
tion. IEEE Transactions on Automatic Control, 55(12),
2735–2750.

Zhou, N., Yu, X., Andersson, S.B., and Cassandras, C.G.
(2016). Optimal event-driven multi-agent persistent
monitoring of a finite set of targets. Proc. of 55th IEEE
Conference on Decision and Control, 1814-1819.

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

3093

