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ABSTRACT The event-driven paradigm offers an
alternative complementary approach to the time-driven
paradigm for modeling, sampling, estimation, control,
and optimization. This is largely a consequence of sys-
tems being increasingly networked, wireless, and con-
sisting of distributed communicating components. The
key idea is that control actions need not be dictated by
time steps taken by a “clock”; rather, an action should be
triggered by an “event,” which may be a well-defined
condition on the system state, including the possibil-
ity of a simple time step, or a random state transition.
In this chapter, the event-driven paradigm is applied
to control and optimization problems encountered in
the general setting of hybrid systems where controllers
are parameterized and the parameters are adaptively
tuned online based on observable data. We present a
general approach for evaluating (or estimating in the
case of a stochastic system) gradients of performance
metrics with respect to various parameters based on the
infinitesimal perturbation analysis (IPA) theory origi-
nally developed for discrete event systems (DESs) and
now adapted to hybrid systems. This results in an “IPA
calculus,” which amounts to a set of simple, event-
driven iterative equations. The event-driven nature of
this approach implies its scalability in the size of an
event set, as opposed to the system state space. We
also show how the event-based IPA calculus may be
used in multi-agent systems for determining optimal

agent trajectories without any detailed knowledge of
environmental randomness.

2.1 Introduction

The history of modeling and analysis of dynamic sys-
tems is founded on the time-driven paradigm provided
by a theoretical framework based on differential (or
difference) equations. In this paradigm, time is an inde-
pendent variable, and as it evolves, so does the state
of the system. Conceptually, we postulate the exis-
tence of an underlying “clock,” and with every “clock
tick” a state update is performed, including the case
where no change in the state occurs. The methodolo-
gies developed for sampling, estimation, communica-
tion, control, and optimization of dynamic systems have
also evolved based on the same time-driven principle.
Advances in digital technologies that occurred in the
1970s and beyond have facilitated the implementation
of this paradigm with digital clocks embedded in hard-
ware and used to drive processes for data collection
or for the actuation of devices employed for control
purposes.

As systems have become increasingly networked,
wireless, and distributed, the universal value of this
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point of view has understandably come to question.
While it is always possible to postulate an underlying
clock with time steps dictating state transitions, it may
not be feasible to guarantee the synchronization of all
components of a distributed system to such a clock, and
it is not efficient to trigger actions with every time step
when such actions may be unnecessary. The event-driven
paradigm offers an alternative, complementary look at
modeling, control, communication, and optimization.
The key idea is that a clock should not be assumed
to dictate actions simply because a time step is taken;
rather, an action should be triggered by an “event” spec-
ified as a well-defined condition on the system state or
as a consequence of environmental uncertainties that
result in random state transitions. Observing that such
an event could actually be defined to be the occurrence
of a “clock tick,” it follows that this framework may in
fact incorporate time-driven methods as well. On the
other hand, defining the proper “events” requires more
sophisticated techniques compared to simply reacting to
time steps.

The motivation for this alternative event-driven view
is multifaceted. For starters, there are many natural
DESs where the only changes in their state are dictated
by event occurrences. The Internet is a prime exam-
ple, where “events” are defined by packet transmis-
sions and receptions at various nodes, causing changes
in the contents of various queues. For such systems,
a time-driven modeling approach may not only be inef-
ficient, but also potentially erroneous, as it cannot deal
with events designed to occur concurrently in time.
The development of a rigorous theory for the study
of DES in the 1980s (see, e.g., [1–5]) paved the way
for event-based models of certain classes of dynamic
systems and spurred new concepts and techniques for
control and optimization. By the early 1990s, it became
evident that many interesting dynamic systems are in
fact “hybrid” in nature, i.e., at least some of their
state transitions are caused by (possibly controllable)
events [6–12]. This has been reinforced by technological
advances through which sensing and actuating devices
are embedded into systems allowing physical processes
to interface with such devices which are inherently
event driven. A good example is the modern automo-
bile where an event induced by a device that senses
slippery road conditions may trigger the operation of
an antilock braking system, thus changing the operating
dynamics of the actual vehicle. More recently, the term
“cyber–physical system” [13] has emerged to describe
the hybrid structure of systems where some compo-
nents operate as physical processes modeled through
time-driven dynamics, while other components (mostly
digital devices empowered by software) operate in
event-driven mode.

Moreover, many systems of interest are now net-
worked and spatially distributed. In such settings, espe-
cially when energy-constrained wireless devices are
involved, frequent communication among system com-
ponents can be inefficient, unnecessary, and sometimes
infeasible. Thus, rather than imposing a rigid time-
driven communication mechanism, it is reasonable to
seek instead to define specific events that dictate when
a particular node in a network needs to exchange infor-
mation with one or more other nodes. In other words, we
seek to complement synchronous operating mechanisms
with asynchronous ones, which can dramatically reduce
communication overhead without sacrificing adherence
to design specifications and desired performance objec-
tives. When, in addition, the environment is stochastic,
significant changes in the operation of a system are the
result of random event occurrences, so that, once again,
understanding the implications of such events and react-
ing to them is crucial. Besides their modeling potential,
it is also important to note that event-driven approaches
to fundamental processes such as sampling, estima-
tion, and control possess important properties related
to variance reduction and robustness of control poli-
cies to modeling uncertainties. These properties render
them particularly attractive, compared to time-driven
alternatives.

While the importance of event-driven behavior in
dynamic systems was recognized as part of the devel-
opment of DES and then hybrid systems, more recently
there have been significant advances in applying event-
driven methods (also referred to as “event-based” and
“event-triggered”) to classical feedback control systems;
see [14–18] and references therein. For example, in [15]
a controller for a linear system is designed to update
control values only when a specific error measure (e.g.,
for tracking or stabilization purposes) exceeds a given
threshold, while refraining from any updates otherwise.
It is also shown how such controllers may be tuned
and how bounds may be computed in conjunction with
known techniques from linear system theory. Trade-offs
between interevent times and controller performance are
further studied in [19]. As another example, in [18] an
event-driven approach termed “self-triggered control”
determines instants when the state should be sampled
and control actions taken for some classes of nonlinear
control systems. Benefits of event-driven mechanisms
for estimation purposes are considered in [20,21]. In
[20], for instance, an event-based sampling mechanism is
studied where a signal is sampled only when measure-
ments exceed a certain threshold, and it is shown that
this approach outperforms a classical periodic sampling
process at least in the case of some simple systems.

In distributed systems, event-driven mecha-
nisms have the advantage of significantly reducing
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communication among networked components without
affecting desired performance objectives (see [22–27]).
For instance, Trimpe and D’Andrea [25] consider the
problem of estimating the state of a linear system
based on information communicated from spatially dis-
tributed sensors. In this case, each sensor computes the
measurement prediction variance, and the event-driven
process of transmitting information is defined by events
such that this variance exceeds a given threshold. A sce-
nario where sensors may be subject to malicious attacks
is considered in [28], where event-driven methods are
shown to lead to computationally advantageous state
reconstruction techniques. It should be noted that in
all such problems, one can combine event-driven and
time-driven methods, as in [24] where a control scheme
combining periodic (time-driven) and event-driven
control is used for linear systems to update and commu-
nicate sensor and actuation data only when necessary
in the sense of maintaining a satisfactory closed-loop
performance. It is shown that this goal is attainable
with a substantial reduction in communication over the
underlying network. Along the same lines, combining
event-driven and time-driven sensor information it is
shown in [29] that stability can be guaranteed where the
former methods alone may fail to do so.

In multi-agent systems, on the other hand, the goal is
for networked components to cooperatively maximize
(or minimize) a given objective; it is shown in [23] that
an event-driven scheme can still achieve the optimiza-
tion objective while drastically reducing communication
(hence, prolonging the lifetime of a wireless network),
even when delays are present (as long as they are
bounded). Event-driven approaches are also attractive
in receding horizon control, where it is computationally
inefficient to reevaluate a control value over small time
increments as opposed to event occurrences defining
appropriate planning horizons for the controller (e.g.,
see [30]).

In the remainder of this chapter, we limit ourselves
to discussing how the event-driven paradigm is applied
to control and optimization problems encountered in
the general setting of hybrid systems. In particular,
we consider a general-purpose control and optimiza-
tion framework where controllers are parameterized
and the parameters are adaptively tuned online based
on observable data. One way to systematically carry
out this process is through gradient information per-
taining to given performance measures with respect to
these parameters, so as to iteratively adjust their values.
When the environment is stochastic, this entails gener-
ating gradient estimates with desirable properties such
as unbiasedness. This gradient evaluation/estimation
approach is based on the IPA theory [1,31] originally
developed for DES and now adapted to hybrid system

where it results in an “IPA calculus” [32], which amounts
to a set of simple, event-driven iterative equations. In
this approach, the gradient evaluation/estimation pro-
cedure is based on directly observable data, and it is
entirely event driven. This makes it computationally effi-
cient, since it reduces a potentially complex process to
a finite number of actions. More importantly perhaps,
this approach has two key benefits that address the
need for scalable methods in large-scale systems and
the difficulty of obtaining accurate models especially in
stochastic settings. First, being event driven, it is scalable
in the size of the event space and not the state space of
the system model. As a rule, the former is much smaller
than the latter. Second, it can be shown that the gradient
information is often independent of model parameters,
which may be unknown or hard to estimate. In stochas-
tic environments, this implies that complex control and
optimization problems can be solved with little or no
knowledge of the noise or random processes affecting
the underlying system dynamics.

This chapter is organized as follows. A general online
control and optimization framework for hybrid sys-
tems is presented in Section 2.2, whose centerpiece is a
methodology used for evaluating (or estimating in the
stochastic case) a gradient of an objective function with
respect to controllable parameters. This event-driven
methodology, based on IPA, is described in Section 2.3.
In Section 2.4, three key properties of IPA are presented
and illustrated through examples. In Section 2.4, an
application to multi-agent systems is given. In particu-
lar, we consider cooperating agents that carry out a per-
sistent monitoring mission in simple one-dimensional
environments and formulate this mission as an optimal
control problem. Its solution results in agents operat-
ing as hybrid systems with parameterized trajectories.
Thus, using the event-based IPA calculus, we describe
how optimal trajectories can be obtained online without
any detailed knowledge of environmental randomness.

2.2 A Control and Optimization Framework for
Hybrid Systems

A hybrid system consists of both time-driven and event-
driven components [33]. The modeling, control, and
optimization of these systems is quite challenging. In
particular, the performance of a stochastic hybrid sys-
tem (SHS) is generally hard to estimate because of the
absence of closed-form expressions capturing the depen-
dence of interesting performance metrics on various
design or control parameters. Most approaches rely on
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approximations and/or using computationally taxing
methods, often involving dynamic programming tech-
niques. The inherent computational complexity of these
approaches, however, makes them unsuitable for online
control and optimization. Yet, in some cases, the struc-
ture of a dynamic optimization problem solution can
be shown to be of parametric form, thus reducing it
to a parametric optimization problem. As an example,
in a linear quadratic Gaussian setting, optimal feed-
back policies simply depend on gain parameters to be
selected subject to certain constraints. Even when this
is not provably the case, one can still define paramet-
ric families of solutions which can be optimized and
yield near-optimal or at least vastly improved solutions
relative to ad hoc policies often adopted. For instance,
it is common in solutions based on dynamic program-
ming [34] to approximate cost-to-go functions through
parameterized function families and then iterate over
the parameters involved seeking near-optimal solutions
for otherwise intractable problems.

With this motivation in mind, we consider a general-
purpose framework as shown in Figure 2.1. The starting
point is to assume that we can observe state trajectories
of a given hybrid system and measure a performance
(or cost) metric denoted by L(θ), where θ is a parameter
vector. This vector characterizes a controller (as shown
in Figure 2.1) but may also include design or model
parameters. The premise here is that the system is too
complex for a closed-form expression of L(θ) to be avail-
able, but that it is possible to measure it over a given
time window. In the case of a stochastic environment, the
observable state trajectory is a sample path of a SHS, so
that L(θ) is a sample function, and performance is mea-
sured through E[L(θ)] with the expectation defined in
the context of a suitable probability space. In addition
to L(θ), we assume that all or part of the system state is
observed, with possible noisy measurements. Thus, ran-
domness may enter through the system process or the
measurement process or both.

The next step in Figure 2.1 is the evaluation of the
gradient ∇L(θ). In the stochastic case, ∇L(θ) is a ran-
dom variable that serves as an estimate (obtained over a

given time window) of ∇E[L(θ)]. Note that we require
∇L(θ) to be evaluated based on available data observed
from a single state trajectory (or sample path) of the
hybrid system. This is in contrast to standard derivative
approximation or estimation methods for dL(θ)

dθ based on

finite differences of the form L(θ+Δθ)−L(θ)
Δθ . Such meth-

ods require two state trajectories under θ and θ + Δθ,
respectively, and are vulnerable to numerical problems
when Δθ is selected to be small so as to increase the
accuracy of the derivative approximation.

The final step then is to make use of ∇L(θ) in a
gradient-based adaptation mechanism of the general
form θn+1 = θn +ηn∇L(θ), where n = 1, 2, . . . counts the
iterations over which this process evolves, and {ηn}
is a step size sequence which is appropriately selected
to ensure convergence of the controllable parameter
sequence {θn} under proper stationarity assumptions.
After each iteration, the controller is adjusted, which
obviously affects the behavior of the system, and the
process repeats. Clearly, in a stochastic setting there is
no guarantee of stationarity conditions, and this frame-
work is simply one where the controller is perpetually
seeking to improve system performance.

The cornerstone of this online framework is the eval-
uation of ∇L(θ) based only on data obtained from the
observed state trajectory. The theory of IPA [32,35] pro-
vides the foundations for this to be possible. Moreover,
in the stochastic case where ∇L(θ) becomes an esti-
mate of ∇E[L(θ)], it is important that this estimate pos-
sess desirable properties such as unbiasedness, without
which the ultimate goal of achieving optimality cannot
be provably attained. As we see in the next section, it
is possible to evaluate∇L(θ) for virtually arbitrary SHS
through a simple systematic event-driven procedure we
refer to as the “IPA calculus.” In addition, this gradient
is characterized by several attractive properties under
mild technical conditions.

In order to formally apply IPA and subsequent con-
trol and optimization methods to hybrid systems, we
need to establish a general modeling framework. We
use a standard definition of a hybrid automaton [33].

Controller
(parameterized by θ)

θn + 1 = θn + ηn   L(θn )
L(θ)State

Noise

Δ
ΔL(θ)

Hybrid
system

Performance
E[L(θ)]

Gradient
evaluation

FIGURE 2.1

Online control and optimization framework for hybrid systems.
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Thus, let q ∈ Q (a countable set) denote the discrete
state (or mode) and x ∈ X ⊆ Rn denote the continuous
state of the hybrid system. Let υ ∈ Υ (a countable set)
denote a discrete control input and u ∈ U ⊆ Rm a con-
tinuous control input. Similarly, let δ ∈ Δ (a countable
set) denote a discrete disturbance input and d ∈ D ⊆ Rp

a continuous disturbance input. The state evolution is
determined by means of

• A vector field f : Q× X×U × D→ X

• An invariant (or domain) set Inv : Q × Υ ×
Δ→ 2X

• A guard set Guard : Q×Q×Υ ×Δ→ 2X

• A reset function r : Q×Q× X×Υ ×Δ→ X

A trajectory or sample path of such a system consists
of a sequence of intervals of continuous evolution fol-
lowed by a discrete transition. The system remains at a
discrete state q as long as the continuous (time-driven)
state x does not leave the set Inv(q,υ, δ). If, before reach-
ing Inv(q,υ, δ), x reaches a set Guard(q, q′,υ, δ) for some
q′ ∈ Q, a discrete transition is allowed to take place. If
this transition does take place, the state instantaneously
resets to (q′, x′), where x′ is determined by the reset
map r(q, q′, x,υ, δ). Changes in the discrete controls υ

and disturbances δ are discrete events that either enable
a transition from q to q′ when x ∈ Guard(q, q′,υ, δ) or
force a transition out of q by making sure x /∈ Inv(q,υ, δ).
We also use E to denote the set of all events that cause
discrete state transitions and will classify events in a
manner that suits the purposes of perturbation analy-
sis. In what follows, we provide an overview of the “IPA
calculus” and refer the reader to [32] and [36] for more
details.

2.3 IPA: Event-Driven IPA Calculus

In this section, we describe the general framework for
IPA as presented in [37] and generalized in [32] and [36].
Let θ ∈ Θ ⊂ Rl be a global variable, henceforth called
the control parameter, where Θ is a given compact, con-
vex set. This may include system design parameters,
parameters of an input process, or parameters that char-
acterize a policy used in controlling this system. The
disturbance input d ∈ D encompasses various random
processes that affect the evolution of the state (q, x)
so that, in general, we can deal with a SHS. We will
assume that all such processes are defined over a com-
mon probability space, (Ω,F , P). Let us fix a particular
value of the parameter θ ∈ Θ and study a resulting sam-
ple path of the SHS. Over such a sample path, let τk(θ),

k = 1, 2, . . . , denote the occurrence times of the discrete
events in increasing order, and define τ0(θ) = 0 for con-
venience. We will use the notation τk instead of τk(θ)
when no confusion arises. The continuous state is also
generally a function of θ, as well as of t, and is thus
denoted by x(θ, t). Over an interval [τk(θ), τk+1(θ)), the
system is at some mode during which the time-driven
state satisfies:

ẋ = fk(x, θ, t), (2.1)

where ẋ denotes ∂x
∂t . Note that we suppress the depen-

dence of fk on the inputs u ∈ U and d ∈ D and stress
instead its dependence on the parameter θ which may
generally affect either u or d or both. The purpose of per-
turbation analysis is to study how changes in θ influence
the state x(θ, t) and the event times τk(θ) and, ultimately,
how they influence interesting performance metrics that
are generally expressed in terms of these variables. The
following assumption guarantees that (2.1) has a unique
solution w.p.1 for a given initial boundary condition
x(θ, τk) at time τk(θ).

ASSUMPTION 2.1 W.p.1, there exists a finite set of
points tj ∈ [τk(θ), τk+1(θ)), j = 1, 2, . . . , which are inde-
pendent of θ, such that the function fk is continuously
differentiable on Rn×Θ× ([τk(θ), τk+1(θ)) \ {t1, t2 . . .}).
Moreover, there exists a random number K > 0 such that
E[K] < ∞ and the norm of the first derivative of fk on
Rn×Θ× ([τk(θ), τk+1(θ)) \ {t1, t2 . . .}) is bounded from
above by K.

An event occurring at time τk+1(θ) triggers a change
in the mode of the system, which may also result in
new dynamics represented by fk+1, although this may
not always be the case; for example, two modes may
be distinct because the state x(θ, t) enters a new region
where the system’s performance is measured differently
without altering its time-driven dynamics (i.e., fk+1 =
fk). The event times {τk(θ)} play an important role in
defining the interactions between the time-driven and
event-driven dynamics of the system.

We now classify events that define the set E as follows:

• Exogenous: An event is exogenous if it causes a dis-
crete state transition at time τk independent of the
controllable vector θ and satisfies dτk

dθ = 0. Exoge-
nous events typically correspond to uncontrolled
random changes in input processes.

• Endogenous: An event occurring at time τk is
endogenous if there exists a continuously differen-
tiable function gk : Rn ×Θ→ R such that

τk = min{t > τk−1 : gk(x(θ, t), θ) = 0}. (2.2)
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The function gk is normally associated with an
invariant or a guard condition in a hybrid automa-
ton model.

• Induced: An event at time τk is induced if it is
triggered by the occurrence of another event at
time τm ≤ τk. The triggering event may be exoge-
nous, endogenous, or itself an induced event. The
events that trigger induced events are identified by
a subset of the event set, EI ⊆ E .

Although this event classification is sufficiently gen-
eral, recent work has shown that in some cases, it is
convenient to introduce further event distinctions [38].
Moreover, it has been shown in [36] that an explicit
event classification is in fact unnecessary if one is will-
ing to appropriately extend the definition of the hybrid
automaton described earlier. However, for the rest of this
chapter, we only make use of the above classification.

Next, consider a performance function of the control
parameter θ:

J(θ; x(θ, 0), T) = E[L(θ; x(θ, 0), T)],

where L(θ; x(θ, 0), T) is a sample function of interest
evaluated in the interval [0, T] with initial conditions
x(θ, 0). For simplicity, we write J(θ) and L(θ). Suppose
that there are N events, with occurrence times gener-
ally dependent on θ, during the time interval [0, T] and
define τ0 = 0 and τN+1 = T. Let Lk : Rn ×Θ×R+ → R

be a function satisfying Assumption 2.1 and define
L(θ) by

L(θ) =
N

∑
k=0

∫ τk+1

τk

Lk(x, θ, t)dt, (2.3)

where we reiterate that x = x(θ, t) is a function of θ and
t. We also point out that the restriction of the definition
of J(θ) to a finite horizon T which is independent of θ is
made merely for the sake of simplicity.

Returning to Figure 2.1 and considering (for the
sake of generality) the stochastic setting, the ultimate
goal of the iterative process shown is to maximize
Eω[L(θ,ω)], where we use ω to emphasize dependence
on a sample path ω of a SHS (clearly, this is reduced
to L(θ) in the deterministic case). Achieving such opti-
mality is possible under standard ergodicity conditions
imposed on the underlying stochastic processes, as well
as the assumption that a single global optimum exists;
otherwise, the gradient-based approach is simply con-
tinuously attempting to improve the observed perfor-
mance L(θ,ω). Thus, we are interested in estimating the
gradient

dJ(θ)
dθ

=
dEω[L(θ,ω)]

dθ
,

by evaluating dL(θ,ω)
dθ based on directly observed data. We

obtain θ∗ (under the conditions mentioned above) by
optimizing J(θ) through an iterative scheme of the form

θn+1 = θn − ηnHn(θn; x(θ, 0), T,ωn), n = 0, 1, . . . ,
(2.4)

where {ηn} is a step size sequence and
Hn(θn; x(θ, 0), T,ωn) is the estimate of dJ(θ)

dθ at θ = θn. In
using IPA, Hn(θn; x(θ, 0), T,ωn) is the sample derivative
dL(θ,ω)

dθ , which is an unbiased estimate of dJ(θ)
dθ if the

condition (dropping the symbol ω for simplicity)

E
[

dL(θ)
dθ

]
=

d
dθ

E[L(θ)] =
dJ(θ)

dθ
, (2.5)

is satisfied, which turns out to be the case under mild
technical conditions to be discussed later. The condi-
tions under which algorithms of the form (2.4) converge
are well-known (e.g., see [39]). Moreover, in addition
to being unbiased, it can be shown that such gradi-
ent estimates are independent of the probability laws of
the stochastic processes involved and require minimal
information from the observed sample path.

The process through which IPA evaluates dL(θ)
dθ is

based on analyzing how changes in θ influence the state
x(θ, t) and the event times τk(θ). In turn, this provides
information on how L(θ) is affected, because it is gen-
erally expressed in terms of these variables. Given θ =
[θ1, . . . , θl ]

T, we use the Jacobian matrix notation:

x′(θ, t) ≡ ∂x(θ, t)
∂θ

, τ′k ≡
∂τk(θ)

∂θ
, k = 1, . . . , K,

for all state and event time derivatives. For simplicity of
notation, we omit θ from the arguments of the functions
above unless it is essential to stress this dependence. It is
shown in [32] that x′(t) satisfies

d
dt

x′(t) = ∂ fk(t)
∂x

x′(t) + ∂ fk(t)
∂θ

, (2.6)

for t ∈ [τk(θ), τk+1(θ)) with boundary condition

x′(τ+k ) = x′(τ−k ) + [ fk−1(τ
−
k )− fk(τ

+
k )]τ

′
k, (2.7)

for k = 0, . . . , K. We note that whereas x(t) is often con-
tinuous in t, x′(t) may be discontinuous in t at the event
times τk; hence, the left and right limits above are gener-
ally different. If x(t) is not continuous in t at t = τk(θ),
the value of x(τ+k ) is determined by the reset function
r(q, q′, x,υ, δ) discussed earlier and

x′(τ+k ) =
dr(q, q′, x,υ, δ)

dθ
. (2.8)

Furthermore, once the initial condition x′(τ+k ) is given,
the linearized state trajectory {x′(t)} can be computed
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in the interval t ∈ [τk(θ), τk+1(θ)) by solving (2.6) to
obtain

x′(t) = e
∫ t
τk

∂ fk(u)
∂x du

[∫ t

τk

∂ fk(v)
∂θ

e
− ∫ t

τk

∂ fk(u)
∂x du

dv + ξk

]
,

(2.9)

with the constant ξk determined from x′(τ+k ) in either
(2.7) or (2.8).

In order to complete the evaluation of x′(τ+k ) in (2.7),
we need to also determine τ′k. Based on the event classi-
fication above, τ′k = 0 if the event at τk(θ) is exogenous
and

τ′k = −
[

∂gk

∂x
fk(τ

−
k )

]−1 (
∂gk

∂θ
+

∂gk

∂x
x′(τ−k )

)
, (2.10)

if the event at τk(θ) is endogenous, that is,
gk(x(θ, τk), θ) = 0, defined as long as ∂gk

∂x fk(τ
−
k ) �= 0.

(Details may be found in [32].) Finally, if an induced
event occurs at t = τk and is triggered by an event
at τm ≤ τk, the value of τ′k depends on the derivative
τ′m. The event induced at τm will occur at some time
τm + w(τm), where w(τm) is a (generally random) vari-
able which is dependent on the continuous and discrete
states x(τm) and q(τm), respectively. This implies the
need for additional state variables, denoted by ym(θ, t),
m = 1, 2, . . . , associated with events occurring at times
τm, m = 1, 2 . . . . The role of each such a state variable is
to provide a “timer” activated when a triggering event
occurs. Triggering events are identified as belonging to
a set EI ⊆ E and letting ek denote the event occurring at
τk. Then, define �k = {m : em ∈ EI , m ≤ k} to be the set
of all indices with corresponding triggering events up
to τk. Omitting the dependence on θ for simplicity, the
dynamics of ym(t) are then given by

ẏm(t) =
{ −C(t) τm ≤ t < τm + w(τm), m ∈ �m

0 otherwise ,

(2.11)

ym(τ
+
m) =

{
y0 ym(τ−m) = 0, m ∈ �m
0 otherwise ,

where y0 is an initial value for the timer ym(t), which
decreases at a “clock rate” C(t) > 0 until ym(τm +
w(τm)) = 0 and the associated induced event takes
place. Clearly, these state variables are only used for
induced events, so that ym(t) = 0 unless m ∈ �m. The
value of y0 may depend on θ or on the continuous and
discrete states x(τm) and q(τm), while the clock rate
C(t) may depend on x(t) and q(t) in general, and pos-
sibly θ. However, in most simple cases where we are
interested in modeling an induced event to occur at time
τm + w(τm), we have y0 = w(τm) and C(t) = 1—that
is, the timer simply counts down for a total of w(τm)

time units until the induced event takes place. Hence-
forth, we will consider ym(t), m = 1, 2, . . . , as part of the
continuous state of the SHS, and we set

y′m(t) ≡
∂ym(t)

∂θ
, m = 1, . . . , N. (2.12)

For the common case where y0 is independent of θ and
C(t) is a constant c > 0 in (2.11), Lemma 2.1 facilitates
the computation of τ′k for an induced event occurring at
τk. Its proof is given in [32].

Lemma 2.1

If in (2.11), y0 is independent of θ and C(t) = c > 0
(constant), then τ′k = τ′m.

With the inclusion of the state variables ym(t), m =
1, . . . , N, the derivatives x′(t), τ′k, and y′m(t) can be evalu-
ated through (2.6)–(2.11) and this set of equations is what
we refer to as the “IPA calculus.” In general, this evalu-
ation is recursive over the event (mode switching) index
k = 0, 1, . . . . In other words, the IPA estimation process is
entirely event driven. For a large class of problems, the
SHS of interest does not involve induced events, and the
state does not experience discontinuities when a mode-
switching event occurs. In this case, the IPA calculus
reduces to the application of three equations:

1. Equation 2.9:

x′(t) = e
∫ t
τk

∂ fk(u)
∂x du

[∫ t

τk

∂ fk(v)
∂θ

e
− ∫ t

τk

∂ fk(u)
∂x du

dv + ξk

]
,

which describes how the state derivative x′(t)
evolves over [τk(θ), τk+1(θ)).

2. Equation 2.7:

x′(τ+k ) = x′(τ−k ) + [ fk−1(τ
−
k )− fk(τ

+
k )]τ

′
k,

which specifies the initial condition ξk in (2.9).

3. Either τ′k = 0 or Equation 2.10:

τ′k = −
[

∂gk

∂x
fk(τ

−
k )

]−1 (
∂gk

∂θ
+

∂gk

∂x
x′(τ−k )

)
,

depending on the event type at τk(θ), which
specifies the event time derivative present
in (2.7).

From a computational standpoint, the IPA derivative
evaluation process takes place iteratively at each event
defining a mode transition at some time instant τk(θ). At
this point in time, we have at our disposal the value of
x′(τ+k−1) from the previous iteration, which specifies ξk−1
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in (2.9) applied for all t ∈ [τk−1(θ), τk(θ)). Therefore, set-
ting t = τk(θ) in (2.9) we also have at our disposal the
value of x′(τ−k ). Next, depending on whether the event
is exogenous or endogenous, the value of τ′k can be
obtained: it is either τ′k = 0 or given by (2.10) since x′(τ−k )
is known. Finally, we obtain x′(τ+k ) using (2.7). At this
point, one can wait until the next event occurs at τk+1(θ)
and repeat the process which can, therefore, be seen to
be entirely event driven.

The last step in the IPA process involves using the IPA
calculus in order to evaluate the IPA derivative dL/dθ.
This is accomplished by taking derivatives in (2.3) with
respect to θ:

dL(θ)
dθ

=
N

∑
k=0

d
dθ

∫ τk+1

τk

Lk(x, θ, t)dt. (2.13)

Applying the Leibnitz rule, we obtain, for every k =
0, . . . , N,

d
dθ

∫ τk+1

τk

Lk(x, θ, t)dt

=
∫ τk+1

τk

[
∂Lk

∂x
(x, θ, t)x′(t) + ∂Lk

∂θ
(x, θ, t)

]
dt

+ Lk(x(τk+1), θ, τk+1)τ
′
k+1 − Lk(x(τk), θ, τk)τ

′
k,

(2.14)

where x′(t) and τ′k are determined through (2.6)–(2.10).
What makes IPA appealing is the simple form the right-
hand-side in Equation 2.14 often assumes. As we will
see, under certain commonly encountered conditions,
this expression is further simplified by eliminating the
integral term.

2.4 IPA Properties

In this section, we identify three key properties of IPA.
The first one is important in ensuring that when IPA
involves estimates of gradients, these estimates are unbi-
ased under mild conditions. The second is a robustness
property of IPA derivatives in the sense that they do not
depend on specific probabilistic characterizations of any
stochastic processes involved in the hybrid automaton
model of a SHS. This property holds under certain suffi-
cient conditions which are easy to check. Finally, under
conditions pertaining to the switching function gk(x, θ),
which we have used to define endogenous events, the
event-driven IPA derivative evaluation or estimation
process includes some events that have the property
of allowing us to decompose an observed state trajec-
tory into cycles, thus greatly simplifying the overall
computational effort.

2.4.1 Unbiasedness

We begin by returning to the issue of unbiasedness of
the sample derivatives dL(θ)

dθ derived using the IPA cal-
culus described in the last section. In particular, the IPA
derivative dL(θ)

dθ is an unbiased estimate of the perfor-

mance (or cost) derivative dJ(θ)
dθ if the condition (2.5)

holds. In a pure DES, the IPA derivative satisfies this
condition for a relatively limited class of systems (see
[1,31]). This has motivated the development of more
sophisticated perturbation analysis methods that can
still guarantee unbiasedness at the expense of additional
information to be collected from the observed sample
path or additional assumptions regarding the statistical
properties of some of the random processes involved.
However, in a SHS, the technical conditions required
to guarantee the validity of (2.5) are almost always
applicable.

The following result has been established in [40]
regarding the unbiasedness of IPA:

Theorem 2.1

Suppose that the following conditions are in force:
(1) For every θ ∈ Θ, the derivative dL(θ)

dθ exists w.p.1.
(2) W.p.1, the function L(θ) is Lipschitz continuous onΘ,
and the Lipschitz constant has a finite first moment.
Then, for a fixed θ ∈ Θ, the derivative dJ(θ)

dθ exists, and

the IPA derivative dL(θ)
dθ is unbiased.

The crucial assumption for Theorem 2.1 is the conti-
nuity of the sample function L(θ), which in many SHSs
is guaranteed in a straightforward manner. Differentia-
bility w.p.1 at a given θ ∈ Θ often follows from mild
technical assumptions on the probability law underly-
ing the system, such as the exclusion of co-occurrence of
multiple events (see [41]). Lipschitz continuity of L(θ)

generally follows from upper boundedness of | dL(θ)
dθ |

by an absolutely integrable random variable, generally
a weak assumption. In light of these observations, the
proofs of unbiasedness of IPA have become standard-
ized, and the assumptions in Theorem 2.1 can be verified
fairly easily from the context of a particular problem.

2.4.2 Robustness to Stochastic Model Uncertainties

Next, we turn our attention to properties of the esti-
mators obtained through the IPA calculus which ren-
der them, under certain conditions, particularly simple
and efficient to implement with minimal information
required about the underlying SHS dynamics.
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The first question we address is related to dL(θ)
dθ in

(2.13), which, as seen in (2.14), generally depends on
information accumulated over all t ∈ [τk, τk+1). It is,
however, often the case that it depends only on infor-
mation related to the event times τk, τk+1, resulting in
an IPA estimator that is simple to implement. Using the
notation L′k(x, t, θ) ≡ dLk(x,t,θ)

dθ , we can rewrite dL(θ)
dθ in

(2.13) as

dL(θ)
dθ

= ∑
k

[
τ′k+1 · Lk(τ

+
k+1)− τ′k · Lk(τ

+
k )

+
∫ τk+1

τk

L′k(x, t, θ)dt
]

. (2.15)

The following theorem provides two sufficient con-
ditions under which dL(θ)

dθ involves only the event
time derivatives τ′k, τ′k+1 and the “local” performance
Lk(τ

+
k+1), Lk(τ

+
k ), which is obviously easy to observe.

The proof of this result is given in [42].

Theorem 2.2

If condition (C1) or (C2) below holds, then dL(θ)
dθ

depends only on information available at event times
{τk}, k = 0, 1, . . . .
(C1) Lk(x, t, θ) is independent of t over [τk, τk+1) for

all k = 0, 1, . . . .
(C2) Lk(x, t, θ) is only a function of x, and the follow-

ing condition holds for all t ∈ [τk, τk+1), k = 0, 1, . . .:

d
dt

∂Lk

∂x
=

d
dt

∂ fk

∂x
=

d
dt

∂ fk

∂θ
= 0. (2.16)

The implication of Theorem 2.2 is that (2.15), under
either (C1) or (C2), reduces to

dL(θ)
dθ

= ∑
k
[τ′k+1 · Lk(τ

+
k+1)− τ′k · Lk(τ

+
k )],

and involves only directly observable performance sam-
ple values at event times along with event time deriva-
tives which are either zero (for exogenous events) or
given by (2.10). The conditions in Theorem 2.2 are
surprisingly easy to satisfy as the following example
illustrates.

EXAMPLE 2.1 Consider a SHS whose time-driven
dynamics at all modes are linear and of the form

ẋ = akx(t) + bkuk(θ, t) + wk(t), t ∈ [τk−1(θ), τk(θ)),

where uk(θ, t) is a control used in the system mode over
[τk(θ), τk+1(θ)), which depends on a parameter θ and
wk(t) is some random process for which no further infor-
mation is provided. Writing fk = akx(t) + bkuk(θ, t) +

wk(t), we can immediately see that ∂ fk
∂x = ak and ∂ fk

∂θ =
∂uk(θ,t)

∂θ ; hence, the second of the three parts of (C2) is

satisfied—that is, d
dt

∂ fk
∂x = 0. Further, suppose that the

dependence of uk(θ, t) on t is such that ∂uk(θ,t)
∂θ is also

independent of t; this is true, for instance, if uk(θ, t) =
uk(θ), that is, the control is fixed at that mode, or if
uk(θ, t) = γ(θ)t, in which case d

dt
∂ fk
∂θ = 0, and the last part

of (C2) is also satisfied. Finally, consider a performance
metric of the form

J(θ) = E

[
N

∑
k=0

∫ τk+1

τk

Lk(x, θ, t)dt

]
= E

[
N

∑
k=0

∫ τk+1

τk

x(t)dt

]
,

where we have ∂Lk
∂x = 1, thus satisfying also the first

part of (C2). It is worthwhile pointing out that the IPA
calculus here provides unbiased estimates of dJ(θ)

dθ with-
out any information regarding the noise process wk(t).
Although this seems surprising at first, the fact is that
the effect of the noise is captured through the values
of the observable event times τk(θ) and the observed
performance values Lk(τ

+
k ) at these event times only:

modeling information about wk(t) is traded against
observations made online at event times only. In other
words, while the noise information is crucial if one is
interested in the actual performance

∫ τk+1
τk

Lk(x, θ, t)dt
over an interval [τk−1(θ), τk(θ)), such information is
not always required to estimate the sensitivity of the
performance

∫ τk+1
τk

Lk(x, θ, t)dt with respect to θ.

We refer to the property reflected by Theorem 2.2 as
“robustness” of IPA derivative estimators with respect
to any noise process affecting the time-driven dynamics
of the system. Clearly, that would not be the case if, for
instance, the performance metric involved x2(t) instead
of x(t); then, ∂Lk

∂x = 2x(t) and the integral term in (2.15)

would have to be included in the evaluation of dL(θ)
dθ .

Although this increases the computational burden of the
IPA evaluation procedure and requires the collection of
sample data for wk(t), note that it still requires no prior
modeling information regarding this random process.

Thus, one need not have a detailed model (captured
by fk−1) to describe the state behavior through ẋ =
fk−1(x, θ, t), t ∈ [τk−1, τk) in order to estimate the effect
of θ on this behavior. This explains why simple abstrac-
tions of a complex stochastic system are often adequate
to perform sensitivity analysis and optimization, as long
as the event times corresponding to discrete state tran-
sitions are accurately observed and the local system
behavior at these event times, for example, x′(τ+k ) in
(2.7), can also be measured or calculated.
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2.4.3 State Trajectory Decomposition

The final IPA property we discuss is related to the dis-
continuity in x′(t) at event times, described in (2.7).
This happens when endogenous events occur, since for
exogenous events we have τ′k = 0. The next theorem
identifies a simple condition under which x′(τ+k ) is inde-
pendent of the dynamics f before the event at τk. This
implies that we can evaluate the sensitivity of the state
with respect to θ without any knowledge of the state
trajectory in the interval [τk−1, τk) prior to this event.
Moreover, under an additional condition, we obtain
x′(τ+k ) = 0, implying that the effect of θ is “forgotten,”
and one can reset the perturbation process. This allows
us to decompose an observed state trajectory (or sam-
ple path) into “reset cycles,” greatly simplifying the IPA
process. The proof of the next result is also given in [42].

Theorem 2.3

Suppose an endogenous event occurs at τk(θ) with a
switching function g(x, θ). If fk(τ

+
k ) = 0, then x′(τ+k )

is independent of fk−1. If, in addition, ∂g
∂θ = 0, then

x′(τ+k ) = 0.

The condition fk(τ
+
k ) = 0 typically indicates a satura-

tion effect or the state reaching a boundary that cannot
be crossed, for example, when the state is constrained
to be nonnegative. This often arises in stochastic flow
systems used to model how parts are processed in man-
ufacturing systems or how packets are transmitted and
received through a communication network [43,44]. In
such cases, the conditions of both Theorems 2.1 and 2.2
are frequently satisfied since (1) common performance
metrics such as workload or overflow rates satisfy (2.16)
and (2) flow systems involve nonnegative continuous
states and are constrained by capacities that give rise to
dynamics of the form ẋ = 0. This class of SHS is also
referred to as stochastic flow models, and the simplic-
ity of the IPA derivatives in this case has been thor-
oughly analyzed, for example, see [35,45]. We present an
illustrative example below.

EXAMPLE 2.2 Consider the fluid single-queue sys-
tem shown in Figure 2.2, where the arrival-rate process
{α(t)} and the service-rate process {β(t)} are random
processes (possibly correlated) defined on a common
probability space. The queue has a finite buffer, {x(t)}
denotes the buffer workload (amount of fluid in the
buffer), and {γ(t)} denotes the overflow of excess fluid
when the buffer is full. Let the controllable parameter θ
be the buffer size, and consider the sample performance
function to be the loss volume during a given horizon
interval [0, T], namely,

α(τ)

x(t)γ(τ)

θ
β(τ)

FIGURE 2.2

A simple fluid queue system for Example 2.2.

θ

τk – 1
τk + 1τk

FIGURE 2.3

A typical sample path of the system in Figure 2.2.

L(θ) =
∫ T

0
γ(θ, t)dt. (2.17)

We assume that α(t) and β(t) are independent of θ,
and note that the buffer workload and overflow pro-
cesses certainly depend upon θ; hence, they are denoted
by {x(θ, t)} and {γ(θ, t)}, respectively. The only other
assumptions we make on the arrival process and ser-
vice process are that, w.p.1, α(t) and β(t) are piecewise
continuously differentiable in t (but need not be contin-
uous), and the terms

∫ T
0 α(t)dt and

∫ T
0 β(t)dt have finite

first moments. In addition, to satisfy the first condition
of Theorem 2.1, we assume that w.p.1 no two events can
occur at the same time (unless one induces the other),
thus ensuring the existence of dL(θ)

dθ .

The time-driven dynamics in this SHS are given by

ẋ(θ, t) =

⎧⎨⎩
0
0
α(t)− β(t)

if x(θ, t) = 0, α(t) ≤ β(t)
if x(θ, t) = θ, α(t) ≥ β(t)
otherwise

.

(2.18)

A typical sample path of the process {x(θ, t)} is shown
in Figure 2.3. Observe that there are two endogenous
events in this system: the first is when x(θ, t) increases
and reaches the value x(θ, t) = θ (as happens at time τk
in Figure 2.3) and the second is when x(θ, t) decreases
and reaches the value x(θ, t) = 0. Thus, we see that the
sample path is partitioned into intervals over which
x(θ, t) = 0, termed empty periods (EPs) since the fluid
queue in Figure 2.2 is empty, and intervals over which
x(θ, t) > 0, termed nonempty periods (NEPs).

We can immediately see that Theorem 2.3 applies here
for endogenous events with g(x, θ) = x, which occur
when an EP starts at some event time τk. Since ∂g

∂θ = 0
and fk(τ

+
k ) = 0 from (2.18), it follows that x′(τ+k ) = 0
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and remains at this value throughout every EP. There-
fore, the effect of the parameter θ in this case need only
be analyzed over NEPs.

Next, observe that γ(θ, t) > 0 only when x(θ, t) = θ.
We refer to any such interval as a full period (FP) since
the fluid queue in Figure 2.2 is full, and note that we can
write L(θ) in (2.17) as

L(θ) = ∑
k∈ΨT

∫ τk+1

τk

[α(t)− β(t)]dt,

whereΨT = {k : x(θ, t) = θ for all t ∈ [τk(θ), τk+1(θ))} is
the set of all FPs in the observed sample path over [0, T].
It follows that

dL(θ)
dθ

= ∑
k∈ΨT

[α(τ−k+1)− β(τ−k+1)]τ
′
k+1

− ∑
k∈ΨT

[α(τ+k )− β(τ+k )]τ
′
k, (2.19)

and this is a case where condition (C2) of Theorem 2.2
holds: d

dt
∂Lk
∂x = d

dt [α(t)− β(t)] = 0 and d
dt

∂ fk
∂x = d

dt
∂ fk
∂θ = 0

since fk = α(t) − β(t) from (2.18). Thus, the evaluation
of dL(θ)

dθ reduces to the evaluation of τ
′
k+1 and τ

′
k at the

end and start, respectively, of every FP. Observing that
τ
′
k+1 = 0 since the end of a FP is an exogenous event

depending only on a change in sign of [α(t)− β(t)] from
nonnegative to strictly negative, it only remains to use
the IPA calculus to evaluate τ

′
k for every endogenous

event such that g(x(θ, τk), θ) = x − θ. Applying (2.10)
gives:

τ
′
k =

1− x′(τ−k )
α(τ−k )− β(τ−k )

.

The value of x′(τ−k ) is obtained using (2.9) over the
interval [τk−1(θ), τk(θ)):

x′(τ−k ) = e
∫ τ−k
τk−1

∂ fk(u)
∂x du

×
[∫ τ−k

τk−1

∂ fk(v)
∂θ

e−
∫ τ−k
τk−1

∂ fk(u)
∂x dudv + x′(τ+k−1)

]
,

where ∂ fk(u)
∂x =

∂ fk(u)
∂x = 0 and ∂ fk(v)

∂θ = 0. Moreover,
using (2.7) at t = τk−1, we have x′(τ+k−1) = x′(τ−k−1) +

[ fk−1(τ
−
k−1)− fk(τ

+
k−1)]τ

′
k−1 = 0, since the start of a NEP

is an exogenous event so that τ′k−1 = 0 and x′(τ−k−1) = 0
as explained earlier. Thus, x′(τ−k ) = 0, yielding

τ
′
k =

1
α(τ−k )− β(τ−k )

.

Recalling our assumption that w.p.1 no two events can
occur at the same time, α(t) and β(t) can experience

no discontinuities (exogenous events) at t = τk when
the endogenous event x(θ, t) = θ takes place, that is,
α(τ−k ) − β(τ−k ) = α(τ+k ) − β(τ+k ) = α(τk) − β(τk). Then,
returning to (2.19) we get

dL(θ)
dθ

= − ∑
k∈ΨT

α(t)− β(t)
α(t)− β(t) = −|ΨT |,

where |ΨT| is simply the number of observed NEPs
that include a “lossy” interval over which x(θ, t) = θ.
Observe that this expression for dL(θ)

dθ does not depend
in any functional way on the details of the arrival or ser-
vice rate processes. Furthermore, it is simple to compute,
and in fact amounts to a simple counting process.

2.5 Event-Driven Optimization in Multi-Agent
Systems

Multi-agent systems are commonly modeled as hybrid
systems with time-driven dynamics describing the
motion of the agents or the evolution of physical
processes in a given environment, while event-driven
behavior characterizes events that may occur randomly
(e.g., an agent failure) or in accordance to control poli-
cies (e.g., an agent stopping to sense the environment
or to change directions). As such, a multi-agent sys-
tem can be studied in the context of Figure 2.1 with
parameterized controllers aiming to meet certain spec-
ifications or to optimize a given performance metric. In
some cases, the solution of a multi-agent dynamic opti-
mization problem is reduced to a policy that is naturally
parametric. Therefore, the adaptive scheme in Figure 2.1
provides a solution that is (at least locally) optimal. In
this section, we present a problem known as “persis-
tent monitoring,” which commonly arises in multi-agent
systems and where the event-driven approach we have
described can be used.

Persistent monitoring tasks arise when agents must
monitor a dynamically changing environment that can-
not be fully covered by a stationary team of available
agents. Thus, all areas of a given mission space must be
visited infinitely often. The main challenge in designing
control strategies in this case is in balancing the pres-
ence of agents in the changing environment so that it
is covered over time optimally (in some well-defined
sense) while still satisfying sensing and motion con-
straints. Examples of persistent monitoring missions
include surveillance, patrol missions with unmanned
vehicles, and environmental applications where routine
sampling of an area is involved. Control and motion
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planning for this problem have been studied in the lit-
erature, for example, see [46–49]. We limit ourselves
here to reviewing the optimal control formulation in [49]
for a simple one-dimensional mission space taken to be
an interval [0, L] ⊂ R. Assuming N mobile agents, let
their positions at time t be sn(t) ∈ [0, L], n = 1, . . . , N,
following the dynamics

ṡn(t) = gn(sn) + bnun(t), (2.20)

where un(t) is the controllable agent speed constrained
by |un(t)| ≤ 1, n = 1, . . . , N, that is, we assume that the
agent can control its direction and speed. Without loss
of generality, after some rescaling with the size of the
mission space L, we further assume that the speed is
constrained by |un(t)| ≤ 1, n = 1, . . . , N. For the sake of
generality, we include the additional constraint,

a ≤ s(t) ≤ b, a ≥ 0, b ≤ L, (2.21)

over all t to allow for mission spaces where the agents
may not reach the endpoints of [0, L], possibly due to
the presence of obstacles. We associate with every point
x ∈ [0, L] a function pn(x, sn) that measures the proba-
bility that an event at location x is detected by agent
n. We also assume that pn(x, sn) = 1 if x = sn, and that
pn(x, sn) is monotonically nonincreasing in the distance
|x − sn| between x and sn, thus capturing the reduced
effectiveness of a sensor over its range which we con-
sider to be finite and denoted by rn. Therefore, we set
pn(x, sn) = 0 when |x− sn| > rn.

Next, consider a partition of [0, L] into M intervals
whose center points are αi =

(2i−1)L
2M , i = 1, . . . , M. We

associate a time-varying measure of uncertainty with
each point αi, which we denote by Ri(t). Without loss
of generality, we assume 0 ≤ α1 ≤ · · · ≤ αM ≤ L and, to
simplify notation, we set pn(x, sn(t)) = pn,i(sn(t)) for all
x ∈ [αi − L

2M , αi +
L

2M ]. Therefore, the joint probability
of detecting an event at location x ∈ [αi − L

2M , αi +
L

2M ]
by all the N agents simultaneously (assuming detection
independence) is

Pi(s(t)) = 1−
N

∏
n=1

[1− pn,i(sn(t))], (2.22)

where we set s(t) = [s1(t), . . . , sN(t)]T. We define uncer-
tainty functions Ri(t) associated with the intervals [αi −

L
2M , αi +

L
2M ], i = 1, . . . , M, so that they have the follow-

ing properties: (1) Ri(t) increases with a prespecified
rate Ai if Pi(s(t)) = 0, (2) Ri(t) decreases with a fixed
rate B if Pi(s(t)) = 1, and (3) Ri(t) ≥ 0 for all t. It is then
natural to model uncertainty so that its decrease is pro-
portional to the probability of detection. In particular,

we model the dynamics of Ri(t), i = 1, . . . , M, as follows:

Ṙi(t) =
{

0 if Ri(t) = 0, Ai ≤ BPi(s(t))
Ai − BPi(s(t)) otherwise ,

(2.23)

where we assume that initial conditions Ri(0), i =
1, . . . , M, are given and that B > Ai > 0 (thus, the uncer-
tainty strictly decreases when there is perfect sensing
Pi(s(t)) = 1.) Note that Ai represents the rate at which
uncertainty increases at αi which may be random. We
will start with the assumption that the value of Ai is
known and will see how the robustness property of the
IPA calculus (Theorem 2.2) allows us to easily general-
ize the analysis to random processes {Ai(t)} describ-
ing uncertainty levels at different points in the mission
space.

The goal of the optimal persistent monitoring prob-
lem is to control the movement of the N agents through
un(t) in (2.20) so that the cumulative uncertainty over all
sensing points {αi}, i = 1, . . . , M, is minimized
over a fixed time horizon T. Thus, setting u(t) =
[u1(t), . . . , uN(t)], we aim to solve the following optimal
control problem:

min
u(t)

J =
1
T

∫ T

0

M

∑
i=1

Ri(t)dt, (2.24)

subject to the agent dynamics (2.20), uncertainty dynam-
ics (2.23), control constraint |un(t)| ≤ 1, t ∈ [0, T], and
state constraints (2.21), t ∈ [0, T].

Using a standard calculus of variations analysis, it
is shown in [49] that the optimal trajectory of each
agent n is to move at full speed, that is, un(t), until it
reaches some switching point, dwell on the switching
point for some time (possibly zero), and then switch
directions. Consequently, each agent’s optimal trajectory
is fully described by a vector of switching points θn =
[θn,1, . . . , θn,Γn ]

T and wn = [wn,1 . . . , wn,Γn ]
T, where θn,ξ is

the ξth control switching point and wn,ξ is the waiting
time for this agent at the ξth switching point. Note that
Γn is generally not known a priori and depends on the
time horizon T. It follows that the behavior of the agents
operating under optimal control is fully described by
hybrid dynamics, and the problem is reduced to a para-
metric optimization one, where θn and wn need to be
optimized for all n = 1, . . . , N. This enables the use of the
IPA calculus and, in particular, the use of the three equa-
tions, (2.9), (2.7), and (2.10), which ultimately leads to an
evaluation of the gradient∇J(θ, w) with J(θ, w) in (2.24)
now viewed as a function of the parameter vectors θ, w.

In order to apply IPA to this hybrid system, we begin
by identifying the events that cause discrete state tran-
sitions from one operating mode of an agent to another.
Looking at the uncertainty dynamics (2.23), we define an
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event at time τk such that Ṙi(t) switches from Ṙi(t) = 0
to Ṙi(t) = Ai − BPi(s(t)) or an event such that Ṙi(t)
switches from Ṙi(t) = Ai − BPi(s(t)) to Ṙi(t) = 0. In
addition, since an optimal agent trajectory experiences
switches of its control un(t) from ±1 to 0 (the agent
comes to rest before changing direction) or from 0 to ±1,
we define events associated with each such action that
affects the dynamics in (2.20). Denoting by τk(θ, w) the
occurrence time of any of these events, it is easy to obtain
from (2.24):

∇J(θ, w) =
1
T

M

∑
i=1

K

∑
k=0

∫ τk+1(θ,w)

τk(θ,w)
∇Ri(t)dt,

which depends entirely on ∇Ri(t). Let us define the
function

Gn,i(t) = B∏
d �=n

(1− pi(sd(t)))
(

∂pi(sn)

∂sn

)
(t− τk),

(2.25)
for all t ∈ [τk(θ, w), τk+1(θ, w)) and observe that it
depends only on the sensing model pi(sn(t)) and the
uncertainty model parameter B. Applying the IPA cal-
culus (details are provided in [49]), we can then obtain

∂Ri

∂θn,ξ
(t) =

∂Ri(τ
+
k )

∂θn,ξ

−
{

0 if Ri(t) = 0, Ai < BPi(s(t))

Gn,i(t)
∂sn(τ

+
k )

∂θn,ξ
otherwise

,

(2.26)

and

∂Ri

∂wn,ξ
(t) =

∂Ri(τ
+
k )

∂wn,ξ

−
{

0 if Ri(t) = 0, Ai < BPi(s(t))

Gn,i(t)
∂sn(τ

+
k )

∂wn,ξ
otherwise

,

(2.27)

for all n = 1, . . . , N and ξ = 1, . . . ,Γn. It remains to

derive event-driven iterative expressions for
∂Ri(τ

+
k )

∂θn,ξ
,

∂Ri(τ
+
k )

∂wn,ξ
and

∂sn(τ
+
k )

∂wn,ξ
,

∂sn(τ
+
k )

∂θn,ξ
above. These are given as

follows (see [49] for details):

1. If an event at time τk is such that Ṙi(t)
switches from Ṙi(t) = 0 to Ṙi(t) =
Ai − BPi(s(t)), then ∇sn(τ

+
k ) = ∇sn(τ

−
k )

and ∇Ri(τ
+
k ) = ∇Ri(τ

−
k ) for all n = 1, . . . , N.

2. If an event at time τk is such that Ṙi(t)
switches from Ṙi(t) = Ai − BPi(s(t)) to
Ṙi(t) = 0 (i.e., Ri(τk) becomes zero), then
∇sn(τ

+
k ) = ∇sn(τ

−
k ) and∇Ri(τ

+
k ) = 0.

3. If an event at time τk is such that un(t)
switches from ±1 to 0, or from 0 to ±1, we
need the components of∇sn(τ

+
k ) in (2.26) and

(2.27) which are obtained as follows. First, for
∂sn(τ

+
k )

∂θn,ξ
, if an event at time τk is such that un(t)

switches from ±1 to 0, then ∂sn
∂θn,ξ

(τ+k ) = 1 and

∂sn(τ
+
k )

∂θn,j
=

{
0, if j �= ξ

1, if j = ξ
, j < ξ.

If on the other hand, un(t) switches from 0 to
±1, then ∂τk

∂θn,ξ
= −sgn(u(τ+k )) and

∂sn(τ
+
k )

∂θn,j

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂sn

∂θn,j
(τ−k ) + 2, if un(τ

+
k ) = 1, j even,

or un(τ
+
k ) = −1, j odd

∂sn
∂θn,j

(τ−k )− 2, if un(τ
+
k ) = 1, j odd,

or un(τ
+
k ) = −1, j even

,

j < ξ,

Finally, for
∂sn(τ

+
k )

∂wn,ξ
, we have

∂sn(τ
+
k )

∂wn,j

=

{
0, if un(τ

−
k ) = ±1, un(τ

+
k ) = 0

∓1, if un(τ
−
k ) = 0, un(τ

+
k ) = ±1

.

In summary, this provides an event-driven
procedure for evaluating ∇J(θ, w) and pro-
ceeding with a gradient-based algorithm as
shown in Figure 2.1 to determine optimal
agent trajectories online or at least improve on
current ones.

Furthermore, let us return to the case of stochastic
environmental uncertainties manifested through ran-
dom processes {Ai(t)} in (2.23). Observe that the eval-
uation of ∇Ri(t), hence ∇J(θ, w), is independent of Ai,
i = 1, . . . , M; in particular, note that Ai does not appear
in the function Gn,i(t) in (2.25) or in any of the expres-

sions for
∂sn(τ

+
k )

∂θn,j
,

∂sn(τ
+
k )

∂wn,j
. In fact, the dependence of

∇Ri(t) on Ai manifests itself through the event times
τk, k = 1, . . . , K, that do affect this evaluation, but they,
unlike Ai which may be unknown, are directly observ-
able during the gradient evaluation process. This, once
again is an example of the IPA robustness property
discussed in Section 4.2. Extensive numerical examples
of how agent trajectories are adjusted online for the
persistent monitoring problem may be found in [49].
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Extending this analysis from one-dimensional to two-
dimensional mission spaces no longer yields optimal
trajectories which are parametric in nature, as shown
in [50]. However, one can represent an agent trajectory in
terms of general function families characterized by a set
of parameters that may be optimized based on an objec-
tive function such as (2.24) extended to two-dimensional
environments. In particular, we may view each agent’s
trajectory as represented by parametric equations

sx
n(t) = f (Υn, ρn(t)), sy

n(t) = g(Υn, ρn(t)), (2.28)

for all agents n = 1, . . . , N. Here, Υn = [Υ1
n , Υ2

n , . . . , ΥΓ
n ]

T

is the vector of parameters through which we control the
shapes and locations of the nth agent trajectory, and Γ is
this vector’s dimension. The agent position over time is
controlled by a function ρn(t) dependent on the agent
dynamics. We can then formulate a problem such as

min
Υn, n=1,...,N

J =
∫ T

0

M

∑
i=1

Ri(Υ1, . . . ,ΥN , t)dt,

which involves optimization over the controllable
parameter vectors Υn, n = 1, . . . , N, characterizing each
agent trajectory and placing once again the problem in
the general framework of Figure 2.1.

2.6 Conclusions

Glancing into the future of systems and control the-
ory, the main challenges one sees involve larger and
ever more distributed wirelessly networked structures
in application areas spanning cooperative multi-agent
systems, energy allocation and management, and trans-
portation, among many others. Barring any unexpected
dramatic developments in battery technology, limited
energy resources in wireless settings will have to largely
dictate how control strategies are designed and imple-
mented so as to carefully optimize this limitation. Taking
this point of view, the event-driven paradigm offers an
alternative to the time-driven paradigm for modeling,
sampling, estimation, control, and optimization, not to
supplant it but rather complement it. In hybrid systems,
this approach is consistent with the event-driven nature
of IPA which offers a general-purpose process for eval-
uating or estimating (in the case of stochastic systems)
gradients of performance metrics. Such information can
then be used on line so as to maintain a desirable sys-
tem performance and, under appropriate conditions,
lead to the solution of optimization problems in appli-
cations ranging from multi-agent systems to resource
allocation in manufacturing, computer networks, and
transportation systems.
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