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We present a general framework for carrying out per-
turbation analysis in Stochastic Hybrid Systems (SHS) of
arbitrary structure. In particular, Infinitesimal Perturba-
tion Analysis (IPA) is used to provide unbiased gradient
estimates of performance metrics with respect to var-
ious controllable parameters. These can be combined

with standard gradient-based algorithms for optimization .

purposes and implemented on line with little or no distri-

butional information regarding the stochastic processes

involved. We generalize an earlier concept of “induced
events” for this framework to include system features

such as delays in control signals or modeling multiple

user classes sharing a resource. We apply this general-

ized IPA to two SHS with different characteristics.. First,

we develop a gradient estimator for the performance of
. a linear switched system with control signal delays and
. a sdfety constraint and show that it is independent of the
random delay’s distributional characteristics. Second, we
derive closed-form unbiased IPA estimators for a Stochas-
tic Flow Model (SFM) of systems executing tasks subject
to either hard or soft real-time constraints. These esti-
mators are incorporated. in a gradient-based algorithm
to optimize performance by controlling a task admission
threshold parameter. Simulation results are mcluded fo
illustrate this optzmzzatzon approach.
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1. Introduction

The study of hybrid systems is based on a combination
of modeling frameworks originating in both time-driven
and event-driven dynamic systems and resulting in hybrid
automata. In a hybrid automaton, discrete events (either
controlled or uncontrolled) cause transitions from one
discrete state (or “mode”) to another. While operating
at a particular mode, the Systexh’s behavior is described
by differential equations. In a stochastic setting, such
frameworks are augmented with models for random pro-

~ cesses that affect either the time-driven dynamics or the
- events causing discrete state transitions or both. A general-

purpose stochastic hybrid automaton model may be found
in [5] along with various classes of Stochastic Hybrid
Systems (SHS) which exhibit different properties or suit
different types. of applications. The motivation for SHS.
models sometimes comeés from time-driven systems whose

~ behavior changes as aresult.of switching events and some-

times from the perspective of a Discrete Event System
(DES) where the time between events may depend on
one or more time-driven components. In some cases,
DES become prohibitively complex and one resoits to

.SHS models through which the system dynamics are
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- abstracted to an appropriate level that retains essen-
tial features enabling effective and accurate control and
optimization. -

The performance of an SHS is generally hard to esti-
mate because of the absence of closed-form expressions
capturing the dependence of interesting performance met-

rics on design or control parameters. Consequently, we

lack the ability to systematically adjust such parameters
for the purpose of improving — let alone optimizing —
performance. In the domain of DES, it was discov-
ered in the early 1980s that event-driven dynamics give
rise to state trajectories (sample paths) from ‘which one
can very efficiently and nonintrusively extract sensi-
tivities of various performance metrics with respect to
- at least certain types of design or control parameters.
‘This has led to the development of a theory for pertur-
. bation analysis in DES [4,9, 12], the most successful
branch of which is Infinitesimal Perturbation Analysis
(IPA) due to its simplicity and ease of implementation.
Using IPA, one obtains unbiased gradient estimates of
performance metrics that can be incorporated into stan-
dard gradient-based algorithms for optimization purposes.

However, IPA estimates become biased (hence unieli-
able for control purposes) when dealing with various

aspects of DES that cause significant discontinuities in
sample functions of interest. Such discontinuities nor-

_ mally arise when a parameter perturbation causes the
order in which events occur to be affected and this event-
order change may.violate a basic “commuting condition”
[9]. When this happens, one must resort to significantly
more complicated methods for deriving unblased gradient
estimates [4].

In recent years, it was shown that IPA can also be
applied to at least some classes of SHS and yield sim-
ple unbiased gradient estimators that can be used for
optimization purposes. In particular, Stochastic Flow
Models (SFMs), as introduced in [6], are a class of
SHS where the time-driven component captures general-

- purpose flow dynamics and the event-driven component
describes switches, controlled or uncontrolled, that alter
the flow dynamics. Flow or fluid models are an exam-
ple of an abstraction process applied to a large class
of DES and" especially useful in analyzing communi-
cation networks with large traffic volumes. Introduced
-in [1], fluid medels have been shown to be very use-
ful in-simulating various kinds of high speed networks
[16], manufacturing systems [7] and, more generally,
settings where users compete over different sharable
resources. It should be stressed that fluid models may

_not always-provide accurate representations for the pur-
pose of analyzing the performance of the underlying
DES. What we are interested in, however, is control and

optimization, in which case the value of a fluid model

Hes in capturing only those systém features needed to
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design an effective controller that can potentially opti-
mize performance without any attempt at estimating the
corresponding optimal performance value with accuracy.
While in most traditional fluid models the flow rates
involved are treated as fixed parameters, an SFM has
the extra feature of treating flow rates as stochastic pro-
cesses. With virtually no limitations- imposed on the
properties of such processes, the use of IPA has been’ _

- shown to provide simple gradlent estimators for stochastic

resource contention systems that include. blocking phe-

. nomena and a variety. of -feedback control mechanisms
- [10,11,22,23,27-29].

Thus far, the use of IPA has been limited to the class
of SFMs and normally exploits the special structure of
specific systems investigated. Recently, a unified frame-
work was introduced in [23]; which provides the basis
for a general theory of perturbation analysis for SHS.

- In this framework, the types of events causing discrete

state transitions are classified as exogenous or endoge- -
nous. This, however, excludes interesting system features
such as delays in control signals or modeling multiple
user classes sharing a resource. The inclusion of such
features requires a new class of “induced events” which
can result in a (potentially infinite) event chain, a new
phenomenon in the study of perturbation analysis. In
[24], induced events were added to the original frame-
work, albeit under some restrictive conditions. In this
paper, we extend the framework in [24] to allow induced
events of arbitrary generality, augmenting the continu-
ous state with appropriate “timer” variables. Furthermore;

~ the framework we present is placed in the more gen-

eral context of stochastic hybrid automata with. arbitrary
structure. .
- In Section 2, we present the general framework for IPA

in the séftting of stochastic hybrid automata. We then apply

IPA to two SHS. The first (Section 3), primarily used to
illustrate the theory, is a linear switched system with a
control signal issued at a specific system mode signaling

. achange in dynamics. The interesting feature is a random

delay incurred before this control signal can take effect.
The performance of the system is defined to represent a
highly simplified tracking problem with a safety constraint
and we derive an IPA estimator for an appropriate cost

function. We will show that this estimator is in fact inde-

pendent of the random delay distributional characteristics.
The second SHS (Section 4) falls in the class of SFMs
and addresses a crucial problem in time-critical systems. -
We consider a setting where tasks are executed subject to

~ real-time ‘constraints, i.e.; tasks must not exceed a given

“déadline” or must minimize the amount of time by which
they exceed it. We derive IPA estimators in closed form

for both types of objectives and also incorporate them into-

a gradient-based optimization algorlthm to demonstrate
their use. ,
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2. A General Framework for
Perturbation Analysis of Stochastic
Hybrid Systems

We consider an SHS and adopt a standard hybrid automa-
ton formalism to model its operation [5]. Thus, letg € @
(a countable set) denote the discrete state (or mode) and
x € X' C R" denote the continuous state. Let v € T
(a countable set) denote a discrete control input and
u € U € R™ a continuous control input. Similarly, let
& € A (a countable set) denote a discrete disturbance
input and d € D C R? a continuous disturbance input.
The state evolution is determined by means of (i) a vec-
torfield f : @ x X x U x D — X, (i) an invariant (or
domain) set Inv : @ x T x A — 2%, (iii) a guard set
Guard : Q x O x T x A — 2%, and (iv) a reset function
FiOXxOxXXTxA->X.

A sample path of such a system consists of a sequence

of intervals -of continuous evolution followed by a dis-
crete transition. The system remains at a discrete state g as
long as the continuous (time-driven) state x does not leave
the set Inv(g, v,8). If x reaches a set Guard(q,q',v,8)
for some ¢’ € Q, a discrete transition can take place. If
this transition does take place, the state instantaneously
resets to (q',x’) where x' is determined by the reset map
r(g,q,x,v,8). Changes in v and § are discrete events
that either enable a transition from g to ¢’ by making sure
x € Guard(q,q',v;8) or force a transition out of g by
making sure x ¢ Inv(g, v,8). We will also use £ to denote
the set of all events that cause discrete state transitions and
will classify events in a-manner that suits the purposes of
perturbation.analysis.
In what follows, we describe the general framework for
- TPA presented in [24], casting it in the setting of stochas-
tic hybrid automata, and enhance it by generalizing the
definition of induced events used in [24]. Let 6 € Rl be
a global variable, henceforth called the control parame-
ter, and suppose that € © for a given compact, convex
set ® C R!. This may represent a system design param-
eter, a parameter of an input process, or a parameter that
characterizes a policy used in controlling this system. The
disturbance input d € D encompasses various random
processes that affect the evolution of the state (¢, x). We
will assume that all such processes are defined over a
_common probability space, (2, F; P). Let us fix a par-
ticular value of the parameter # € © and study a resulting
sample path of the SHS. Over such a sample path, let
7w(®), k = 1,2,..., denote the occurrence times of the
discrete events in increasing order, and define 7(¢) = 0
for convenience. We will use the notation 7 instead of
7;(@) -when no confusion arises.. The continuous state is
also generally a function of 6, as well as of ¢, and is thus

denoted by x(8, £). Over an interval [1%(8), Tx+1(6)), the
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system is at some mode dufing'which the time-driven state
satisfies:

X = filx,6,0) )
where % denotes the time derivative %% Note that we
suppress the dependence of f; on the inputs ¥ € U and
d € D and stress instead its dependence on the parame-
ter @ which may generally affect either u or d or both. The

purpose of perturbation analysis is to study how changes in
8 influence the state x(8, r) and the event times 1;(6) and,

ultimately, how they influence interesting performance

metrics which are generally expressed in terms of these
variables.

The following assumption guarantees that (1) has a
unique solution w.p.1 for a given initial boundary con-

-dition x(6, 1) at time 13(0):

Assumption:. W.p.1, there exists a finite non-empty set
of points ¢ € [t(8), w10}, j = 1,2,..., which are

* independent of 0, such that, the function fi is continuously

differentiable on R” x © x ([t (), et 1 DI\ {£1, 22 . ..}
Moreover, there exists a random variable K > 0 such that

" E[K] < oo and the norm of the first derivative of fi on

R” x © x ([t4(0), Te+-1(O)] \ {t1, 22 . . .}) is bounded from
above by K.

An event occurring at time 7..1(0) triggers a change in the
mode of the system. A change in mode may also result in
new dynamics represented by fi..1, althoughithis may not
always be the case; for example, two modes may be dis-

 tinct because the state x(0, £) enters a new region where

the system’s performance is measured differently with-
out altering its time-driven dynamics (i.e., fit1 = fi)-
The identity of fi+1 depends on the kind of event that
occurs at time ¢ = Tt41(9), and the associated event
times. play an 1mportant role in defining the interactions
between the time-driven and event-driven dynamics of the
system. In particular, the linearized system (defined below

. in detail) will be shown to depend on the derivatives.of the

event times with respect to the control parameters, ie., the

dy,
terms 0 -

We now cla331fy events that define the set 8 as
follows:

1. Exogenous events An event is exogenous if it causes
- a discrete state transition at-time 7y 1ndependent of the
controllable vector 6 and satisfies ‘fig‘ = 0. Exogenous
events typlcally correspond ‘to uncontrolled randorn

* changes in input processes.

2. Endogenous events. An event occurnng at time Ty, is
- endogenous if there exists a continuously differentiable-

~ function g : R” x ® — R such that -

Ge=min{t> %1 g 0.0,0) =01 @)

x
x
;
<
‘
x
r
)
\
i
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The function gr normally corresponds to a guard
condition in a hybrid automaton model. -

3. Induced events. An event at time i is induced if
it is triggered by the occurrence of another event at
time T, < 1. The triggering event may be exogenous,
endogenous, or itself an induced event. The events that
trigger induced events are identified by a subset of the

‘event set, & C &.

. We point out that the event times are generally not con-

_tinuous in 6 for all @ € O, since variations in 6 may alter

the sequence of events. However, we shall see that, under
mild assumptions, for a given 6 € ©, the derivatives’ ‘fig‘
exist w.p.1. :

Consider a performance function of the control param—

eter 9:
J0:%0,0),T) = E [L‘(e;x(e,o), )

where L(0;x(8,0),T) is a sample function of interest
evaluated in the interval-[0,T] with initial conditions
%(6, 0). For simplicity, we write J (9) and £L(¢) and assume
that £(6) has the form of a cost functional over the inter-
val [0; T]. Suppose that there are N events (independent
of 0) occurring during the time interval [0, T] and define
p=0and tyy1 =T.LetL; : R* x ® x R* — Rbea

-function satisfying Assumption 1, henceforth labeled the
cost function, and define £(9) by

i N L T+1 . » '
LO) =) / - Li(x,0,t)dt 3)
C k=0vT% : o .

where we reiterate that x = x(8,¢) is a function of @ and ¢.
We point out that the restriction of the definition of J(8) to.
-afinite horizon T is made merely for the sake of simplicity
of exposition. .
~ Given that we do not wish to impose any limitations
(other than mild technical conditions) on the random
processes that characterize the discrete or continuous dis-

turbance inputs in our hybrid automaton model, it is -
infeasible to obtain closed-form expressions for J(0).

Therefore, for the purpose of optimization, we resort to

iterative methods such as stochastic approximation algo- .

‘rithms (e.g., [15]) which are driven by estimates of the cost
function gradient with respect to the parameter vector of
interest. Thus, we are interested in estimating 3J /36 based
on sample path data, where a sample path of the system
may be directly observed or it may be obtained through

“simulation. We then seek to obtain 6* minimizing J(0)
through an iterative scheme of the form

) gn—j—l : 0)1 - nan(en;x(69 0)7 T9 (Dn)’ n = 0, 1, - .
R “)
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where H,,(6,;x(0), T, wy,) is an estimate of dJ/d# evalu-

- ated at @ and based on information obtained from a sample
. path denoted by w, and {n,} is an appropriately selected

step size sequence. In order to execute an algorithm such

~ as (4), we need the estimate H,(6,) of dJ/d6. The IPA

approach is based on using the sample derivative d.L/d0

as an estimate of dJ/df. The strength of the approach is.

that d£/d6 can be obtained from observable sample path
data alone and, usually, in a very simple manner thatcan be

readily implemented on line. Moreover, it is often the case

that d£/d6 is an unbiased estimate of dJ/d@, a property

that allows us to use (4) in obtaining 6*. We will return to
- this issue later, and concentrate first on deriving the TPA

estimates d.L/d6.
The computation of the IPA derivative d.£/d6 can be

obtained by taking formal derivatives with respect to 6 in

(1 )—(3) as shown in [23]. We will review these results
next and extend them by including the class of induced

events as defined earlier. We point out that in the case
of SFMs (mentioned in the introduction) flow dynamics -

render the computation of d£/d6 very simple, enabling
the derivation of results reported in the literature as in

[6,22,27,29]. We will also adhere to the convention that
F

for a function F' : R" — R™, the derivative %; isanmxn

matrix. In the particular case where m = 1, % is arow,
" n-dimensional vector.

2.1. Infinitesimal Perturbation Analysis-

Let us fix § € ©, consider a particular-sample path, and
assume for the time being that all derivatives mentioned
in the sequel do exist. To.simplify notation, we define the
following for all state and event time sample derivatives:

3x(0,7) ] '
x(g@')’ =% k=0,...N 5

@) = E7h

In addition, we will write f;(¢) instead of fk (x,0,0 when— '

ever no ambiguity arises. By taking derivatives with
respect to @ in (1).on the interval [t (), Tr1.1(8)) we get

ix/(t) afk(t) ‘0 + 2 3fk(t)

dt ©

The boundary (initial) condition of this linear equation is
specified at time ¢ = 7, and by writing (1) in an integral
form and taking derivatives with respect to & when x(0, 1)

is continuous in tatt = 1i, we obtain for k =1,...,N:

x(rk)—~x(rk)+[fk 1) —f@H]g O

We note that whereas x(6, f) is continuous int, x’'(f) may be
discontinuous in ¢ atithe event times 7, hence the left limit

-and right limit above are generally different. In addition,

if x(6, ) is not continuous in ¢ att = 7 and the value of
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x(r,j’ ) is determined by the reset function r(q, q,x,v, 8).

discussed earlier, then

dr(g.q’,x,v,8)
deo

Furthermore, once the initial condition x’ (t,j') is given,
the linearized state trajectory {x'(¢)} can be computed in
the interval ¢ € [t(6), t;+1(8)) by solving (6) to obtain:

xl(t) ___efttkgg(i [/ 3fk(V) — ' gfg(idud +";:k:| (9)
57

K(gh) = ®

with the constant & determined from ¥'(z;") which is
obtained from (7) since x’(rk ) is thé final-time bound-
ary condition of the linearized system in the interval
[tr—1(8), ©(9)); alternatively, it is obtained from (8).
Clearly, to complete the description of the trajectory
of the linearized system (6)—(7), we have to specify the
derivative 7] which appears in (7). Since %, k = 1,2, .. o
are the mode-switching times, these derivatives explicitly
‘depend on the interaction between the time-driven dynam-
ics and the event—driven dynamics, and specifically on
the type of event occurring at time 7. Using the event
classification given earlier, we have the following.

1. Exogenous events. By definition, such events are-

- independent of 6, therefore 7, = 0. :
2, Endogenous events. In this case, (2) holds and takmg
" derivatives with respect to 6 we get:

a8k

98k [*' (7)) + fe1(t)) ] + 20

ox

" which can be rewritten as

, J NN
%= _'[Bgfﬁ‘“l(tk)] (5%5+ﬁ % ))

11

=0 (10

“with 2 (77) # 0.
3. Induced events. If an induced event occurs at { = 1,
. the value of 7; depends on the derivative 7,, where 1, <
73, is the time when the associated triggering event takes

* place. The event induced at 7, will occur at some time

" Ty + 0(Ty), where w(ty,) is a random variable which
is generally dependent on the continuous and discrete
states x(tn) and q(t,) respectively. This implies the
need for additional state variables, denoted by y,,(6;¢),

‘m=1,2,.. ., associated with events occurring at times
Tm, m = 1,2 ... The role of each such state variable is
to provide a “timer” activated when a triggering event

" “occurs. Recalling that triggering events are identified

~ as belonging to aset & C &, let ¢ denote the event
occurring at 7 and define t

Fr={m:ep€&,m<k}. ... '(12)
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to be the set of all indices with corresponding trigger-
ing events up to 7. Omitting the dependence on 6 for
simplicity, the dynamics of y;,(f) are then given by

. ~C(t) Tn<t<Tn+®(m), MEFp
Im(t) = .
0 otherwise
' ‘ 13)

0 Im(zD) =0, me Frm
Im(@) = {f) ImCm ™

where yg is an initial value for the timer yy,,(f) which
decreases at a “clock rate” C(t) > 0 until y, (7, +
w(ty)) = 0 and the associated induced event takes
place. Clearly, these state variables are only used for
induced events, so that y,(f) = O unless m € F,.
The value of yo may depend on 6 or on the continuous
and discrete states x(t) and q(ty), while the clock
rate C(r) may depend on x(¢) and g(r) in general, and
possibly 6. However, in most simple cases where we are
interested in modeling an induced event to occut at time
Tm + ©(Tym), We have yo = w(zy) and C@) = 1, ie.,
the timer simply counts down for a total of w(z;,;) time
units until the induced event takes place. An example
where yg in fact depends on the state x(ty,) and the clock
rate C(¢) is not necessarily constant arises in the case
of multiclass resource contention systems as recently
described in [25].

Henceforth, we will consider y, (t), m=12,..., as
part of the continuous state of the SHS and snmlar to (5)
we set

otherwise

a)’m (t)

=1,...,N. ~ 14
a0 : (4

" For the common case where yp is independent of 6 and

C (t) isa constant ¢ > 0in (13), the following lemma facil-
itates the computation.of z; for an induced event occurring
at T%. '

Lemma 2.1: If in (13 ) Yo is mdependent of 6 and
C(t) = ¢ > 0 (constant), then 7, = 1,

Proof: If an event occurs at ¢ = 1 induced by some event

‘at T, < T, then (2) holds with the switching function ‘

Ym = 0. Using (11) with x —ym,fk 1(7, ) = —¢, we get

’Kk - ym(fk )/ C. l .

At the triggering event time t,,,, we have ym(t ) = yg.

leferentlatmg with respect to 0 gives .
ym(f+) + ( )T =0

and since aat = —c, it follows that T, = yu(th)/c
Since, from (13), no event in the interval [1,, T¢] has any

effect on y}, (f), we conclude that 7} = 17;,. - N
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We point out that in {24] 7, = 7, was used as the defin-
ing condition for induced events, thus limiting them to
the special case satisfying the conditions of Lemma 2.1.
The use of yn(f), m = 1,...,N, allows us to general-
ize the class of induced events, imposing no limits on the
ultimate relationship between t; and z;,. -
With the inclusion of the state variables y,,(f), m =
., N, the derivatives x'(z), 7;, and y,,(r) can be eval-
uated through (6)—(11). In general, this evaluation is

- recursive over the event (mode switching) index k =

0,1,.... In some cases, however, it-can be reduced to

sunple expressions, as seen in the analysis of many SFMs,'

e.g., [6].

Now the IPA derivative d£/df can be obtained by

taking denvatlves in (3) with respect to 6:

dﬁ(g) Z = / Lx0,0d, (15

and applying the Leibnitz rule we obtain, for every k =

©0,...,N,

d fk‘+1L' 0 i '
) ,fatr .
0 ftk £, 0,0dt

- f - [fﬁ"-(x 6.0x (1) + %(x,e,t)] dt

k

+ L (x(Th11), 05 T 1) Ty — Li(e(m), 0, ) 7
) , . (16)

where x'(¢) and ©/ are determined through (6)—(11). What -
. makes IPA appealing, especially in the SFM setting, is the

simple form the right-hand-side above often assumes. -
We close this section with. a comment on the unbiased-
ness Of the IPA derivative dL/d@. The IPA derivative of

a sample function L(8) is statistically unbiased [4, 12] if,
. forevery 6 € O, : _ .

ac®)] d 0

E [W] = G ELE) = —

Obviously, without unbiasedness the use of IPA would
come under question, and the main motivation for studying
IPA in the SHS setting is that it yields unbiased deriva-
tives for a large class of systems and performance metrics
compared to the traditional DES setting [4]. The follow-
ing conditions have been established in [21] (Lemma A2,
page 70) as sufficient for the unbiasedness of IPA:

Proposition 1: Suppose that the follbwing conditions are

in Jorce: (i) For every 6 € O, the derivative. d d(e) exists

wp. 1. (i) W.p.1, the function L(0) is Lipschitz continuous.
on ©, and the Lipschitz constant has a finite Jfirst moment.

Fix 6 € ©. Then, the dertvatzve dg) -exists, and the IPA
dﬁ(e) - .

. s unbiased.

a7y

647

The crucial assumption for Proposition 1 is the continu-

* ity of the sample performance function £(8); in fact, it is

when discontinuities in £(6) arise that IPA becomes biased
in many DES. In contrast, in many SHS (and SFMs in par-
ticular), such continuity is guaranteed in a straightforward
mannet. Differentiability w.p. 1 at a given 6 € © often

follows from mild technical assumptions on the proba- -

bility law underlying the system, such as the exclusion
of co-occurrence of multiple events. Lipschitz continu-
ity of £(8) generally follows from upper boundedness
of Idc @), by an absolutely integrable random variable,

‘ generally a weak assumption. In light of these observa-

ti‘ons,v_, the proofs of unbiasedness of IPA have become
standardized-and the assumptions in Proposition 1 can

be verified falrly easily from the context of a partlcular

problem.
In the next two sections, ‘we apply the general IPA

Setting for SHS, and (6)—(11) in particular, to two prob-

lems. The first is a simple switched linear system with

. a parameterized controller to trigger one of the mode
switches. The interesting feature is the presence of a .

random delay before this actual switch can take effect.
Therefore, we are interested in controlling a parameter to
ensure that some performance metric is minimized taking
into account the statistical effects of this delay. As we will
see, this involves the presence of induced events. We will
also see that the resulting IPA estimator is independent

. of any distributional ‘information regarding the random

delays.

The second problem applies to an SFM for resource
~ contention systems. where time-critical tasks are executed

and the objective is to minimize either the fraction of
tasks that violate a given deadline constraint or the average
“tardmess” resulting from such violations. This is a dif-
ficult problem that has attracted considerable attention in

- the fields of computer science, communication networks,

and manufacturing, e.g., [2,3, 8,13, 14,1720, 261.

We will omit a discussion of unbiasedness of the IPA
estimator derived for the first problem above. However, to
demonstrate the use of Proposition 1, we shall explicitly
study unbiasedness in the second problem (which is of

. considerable practical interest) by identifying the techni-

cal conditions required in that case and providing explicit
proofs. :

3. A Switched System with Control
Actlon Delays

Con51der a simple scalar linear system operating. in two

- modes. In the first mode, the continuous state x(¢) evolves
. according to the dynamics : :

Fea®+rA0 - a8
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where a is a given constant and A(f) is an input pro-
cess, either known or some random process (noise) with
unknown characteristics. In the second mode, the system
"dynamics become

i =—u+ A (19)

where u > 0 is fixed and- A(¢) is the same process as
before. The switch from the first to the second mode is
intended to occur when the state first reaches from below
a given value b > 0. However, because of a random delay
following the switch command, the controller issues this
command when x(¢) first reaches from below some 6 such
that 0-< 6 < b. When this event occurs at time ¢ = 1,
the associated delay is denoted by w(13).

The objective of the system.is to maintain x(¢) as
close as possible to some target value ¢ > b; however,
there is a cost incurred whenever x(¢) ‘is too close to ¢
in the sense that x(f) > b. This is expressed as a cost
" function

J©®) = E[L©®)]

T
=E [ / [(c —x(6,0) + C - 1[x(6,1) > b]] dt]
- LJO
’ 20

where C > 0is a given cost parameter and 1[-] is the usual
indicator function. Note that we have explicitly written
x(8,¢) to stress the dependence of the continuous state on
the controllable parameter 6. Lastly, the system operates
so that a switch from (19) to (18) takes place whenever
x(6,¢) reaches 0 from above. We will assume that the
initial condition is given as x(6,0) = 0. i.e., the system
* starts in the first mode. We point out that this is a highly
simplified version of a tracking problem (if c is replaced
by a target trajectory c(f)) with a “safety requirement” to
* maintain a distance from the target trajectory which in this
simple case is captured by penalizing the system whenever
x(6,1) = b. We can think of a particle that repeatedly tries
to get close to a point ¢ while maintaining a safe distance
from it and then returns to a rest position at x = 0 before
repeating the process. : :
Figure 1 shows a hybrid automaton model for thls 8ys-
tem, consisting of four discrete states (modes). Invariant
sets for each mode are 1ndlcated by conditions in brackets.
" The guard conditions causing discrete state transitions are
shown on the transition arrows and w is used to represent

the event occurring after some random delay following the’

condition x = 6. Note that the time-driven dynamics sat-
isfy (18) in modes 1,2,3; the distinctio_n is used to identify
mode 3 when [x > b], during which a cost is incurred as

shown in (20), and also to identify- mode 2 in which thete

is a pending control action which has yet to take effect
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x = ax(t) + A)
C[xEbl

Fig. 1. Hybrid automaton for SHS with random control delays.

while [@ < x < b]. Due to the possibly random process
A(r), the w event might take place before or after [x > b]

- becomes true. If it happens after [x > b] is true, then it

is also possible that the guard condition x < b is satisfied
before w occurs. The controller is designed so that if the
transition due to the guard condition x < b occurs prior to
w, then the w event is disabled. This implies that no w event
is feasible in mode 4, in which the time-driven dynamics
(19) are in effect. However, it is still possible that, while
in mode 4, x(8,t) > b due to A(f), which would incur
some additional cost. For simplicity, we assume that A(f)
is bounded (w.p. 1 if it is random) and that u is selected so.
that —u -+ A(f) < 0, thus ensuring that no transition from
4 to 3 is feasible. Along the same lines, it is also possible

~ that a transition from mode 2 to mode 1 takes place so.

that the w event would occur in that mode; however, the -
controller is designed to dxsable the o event 1f that were

" to happen.

Recalling the event classification of the previous
section, we first ‘observe -that there are no exogenous
events. On - the other hand, there are three endogenous
everts: (I) The event corresponding to the guard condition
x = 0 being satisfied, (if) The event corresponding to the
guard condition x = b being satisfied, and (ii{) The event
corresponding to the guard condition x = O being satisfied.
Finally, we observe that an o event is induced by the first
of these three endogenous events.-Therefore, we need to
introduce additional state vatiables y,, (f) (strictly speak-
ing, ym(6,1) as in (13) with C(#) =1 and yp = w (7).
The complete hybrid automaton model is then shown in
Fig. 2, where the label w is replaced by the guard condi-
tion y,, = 0 indicating that y,, = 0 for some m = 1,2,...
which was previously such that y,, > 0. Note, however,
that when the transition from mode 3 to mode 4 occurs
due to the condition x < b, the state variable y,,(¢) is reset
from a positive value to 0. Similarly, if a transition from
mode 2 to mode 1 occurs due to the condition x =0, the .
state variable y,, () is reset from a positive value to 0. This
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= ax(f) + A(F)
y.=0 form=12,...

x=ax(t)+ A(f)
Yu=—L p=0, kzm )y
[<x<by, >0

[x>0,y, =0]

x=ax(t)+AQ)
Y=L .""k:-.‘.o: k#m)3
[x= 3]

‘Fig.2. Modified hybrid automaton for SHS with random control
delays. . .

means that in this case (13) must be modified to include - .

the reset function

(.9, ym(%))

0 g=3, q’=4orq='2, qg =1
’ : (2D

() otherwise

The reset condition is not explicitly shown in Fig. 2, but is
implicitin the invariant condition y,, = Oactive in modes 4
and1. ' -

Despite the operational simplicity of this system, we
can see that the actual hybrid automaton that describes
it is quite elaborate. We will see next, however, that the
- evaluation.of the IPA derivatives x'(t), y,, (¢) and 7, for the

state variables and events times as defined i in (5)and (14)

" is relatively simple.
3.1. Infinitesimal Perturbation Analysis

‘We begin with the observation that a sample path of this
SHS consists of a sequence of “cycles™: each cycle starts
at mode .1 and consists of one of three possible mode
sequences 1,2), (1,2,4) or (1, 2,3, 4) before return-
ing to'mode 1. Consider a typical cycle and let 73, 12,
3, 74 denote the times when modes 1, .. ., 4 respectively
are entered (with the understanding that modes 3,4 may
- not be entered at all in a cycle). The initial condition
s Jc(t1 ) the state when the cycle starts; note that if

= 0, then x(z;") = 0 and x'(z;") = 0. The cycle
Will complete at some time 7y when a transition from

‘mode 4 to 1 takes place, at whlch pomt the next cycle will -

start.
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While in mode 1, (6) holds over the interval [t1,12) and
we have

Lx0 = alw) )
whicn implies that

() =X (@He W, t e 1y, 1) @23)
and, in particular, |
| () =+ (r1+ )eT—T) o (24)

Let us now consider all ensuing state transitions in the
cycle. '

1. At time 72 a transition from mode 1 to mode 2
takes place. This is due to an endogenous event with
82(x(6,72),8) = x(12) — 6 = 0. Applying (11) we get

= 1 -x'(13) _ 1—x(z))
ax(ty ) +A(ry) . af + A1)
and using (24):
1 = () eamT)
e 0 25)

ab + A(zy)

Since fhe x(¢) dynamics remaln unchanged in this transi- -
 tion, using (7) we have x/ (12 ) =x'(1] ) and from (24):

x(rz)—x(z+)e“(fz-f1> L (26)

On the other hand, using (13) we have yz(rk ) = w(-cz)

" and dlfferentlatmg with respect to 0 gives

}"g(f{“)+ ( )Tz =0

where %%2-‘(‘[;- )= —1 and we get yz(1:2 )= 12 Comblmng
this with (25) results in

e ) 1—x(zf )e“(fé"f’) "(27.)>
2iF ad + Mzy)

Fmally, (22) again holds over the 1nterval [tz, 1:3] and we

get, 51m11ar to (24) _
x (1'3‘ )=x (171+ yeE ) - (28)
In addition, applying (6) to y,(t) over [z, 1:3), we have .

@) = () = L-X(@he@ 29)
b)) 3 = yy(%; 9'+)~(T2'). :

|
|
|
i
|
|
;
i
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2. At time 73 a transition from mode 2 to mode 3 takes
place. If this transition occurs, it is due to an endogenous
. event with g3 (x (6, 13),8) = x(13) — b = 0. Applying

(11) we get
o = —-x (7:3 ) _ "x,(":::,— )
7 ax(r) + M) T ab+M5y)
and using (28):

!

_x'(-cl'")ea(fs-tl)
f3 = —_—

ab+ M) GO

Since both the x(¢) and y, (¢) dyriamics remain unchanged
.in this transition, using (7) we have x (1:3 y=x (r3 )and
yz(t )= y2(1:3 ) and using (28) and (29):

¥ () = ¥/ (z] ) B): , (31

1— ¥ (r]h)ed®m™)
-af + A7)

2(T3 )=
‘ Finally, (22) again holds over the interval [13, 1:4)Vand we
get '
. x’(t4—) — xl(z_ii-)ea(‘m—tl) (32)
and |
_ x/(.r;-)ea(rz—rl)
o ab + Axy)

}’2(7—'4 ) —}’2( )

3. Attime 74 a transition into mode 4 takes place. This can
happen in one of two ways, as described next.

_ First, a transition from mode 3 to mode 4 may take place
due to the guard condition x < b. This is an endogenous
- event with g4 (x (8, 14),0) = x(1:4) b= 0, so, Justas in
the previous case, applying (11) we get: '

= —Xx (t4 ) __—x (14)
P ax@) M) ab+ M)
“and using (32):
Ve (Y pa(Ta—T1)
T, = _i(_lc_l__)‘z— (33)

" ab+A(ty)
In this case, using (7) bwe get:
x (14 ) =X (7)) + [ax(zy) + A(t4 )+ u~— )»(T:_)] 7
=x(14_)+[ab+)&(t4‘)+u—)»(rj)]1:4
Combining this with (32) and (33) we get - - |

X )—M’( RLA N €

ab+Mry)
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In addition, due to the reset condition (21), we get
y2(tf) = 0 and y,(z;}) = 0. Finally, while in mode 4,
applying (6) over the interval [74, 7r) we have x (r4 )=
x (z;) and using (34):

u+()

\ +y ,a(ta—71) 35
ab ¥ e 2 (1) (35)

o

X (rf )=
On the other hand, suppose the transition into mode 4 takes
place due to the guard condition y;(74) = 0 from either
mode 2 or mode 3. This is an induced event which satisfies
84 (¥4(74),0) = y2(1x) = 0. Lemma 1 applies in this case

. and we immediately get

1= X (z]h)emm)
ad + A(z;)

u=n=

(36).

In this casé using (7') we get:
Haf) =2t + [ax(t4 ) + AMry)+u— x(zj)]
=x'(1y) + [ax(r) + Mzy) +u— M| 7

where the value of x(t4) is not specified by the guard con-
dition as in previous cases. Using (32) and (36) and setting
AMTa) =Mz, ) — A(r } (=0 when A(r) is contmuous),
we get

2@ =5 (e ™ o [ax(wa) + u+ A(w)]
1- x’(z;)ea“z__—m '
ald + A(zy)

_ [ax(m) +u+ Ar(w)]
ad + )»(1:2 )

+ ( +)ea(1:2—1:1)

x [ea(u-f.ﬂ Sl M(m]] | (37)

ab + A(zy)

Iﬁ addition, yz(rk ) = 0and y2(1:,C ) = 0 still apply as
before and x’ (1:4 Y=x (r ) which gives :

lax(t4) + u + AA(74)]
ab + A(zy)

X (ea(u—rz) —_

5. At time 77 a transition into mode 1 takes place and
the cycle is complete. This is an endogenous event: with
g (x(0,7).6) = x(z) = 0 that can occur in elther :

+ x'(tl"')ea(rzfrl), :

x (z) =

[ax(za) +u + fx(rm) "(35)
al + A(zy)

-mode 4 or mode 2. Applymg (11) we get

T/—___v_x(‘[f) o (39)
T —uaay) - gt
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If the transition is from mode 2 to mode 1, then clearly
4 (T+) =x(y)=x '(;h)e® %) and, recallmg (26),

X (rf ) =X ('L'_-) =x (r+)e“(tf"’1) - (40)

-Ifthe transmon is frorn mode 4to mode 1, then (7) 1mphes'

that ,

X =¥ @)+ [u 2@ - a6 - A |
= xi(rf_) - [u + )\.(Tf+) - A(tf_)] 7

which, in view of (39), gives

f(ﬁ)——ﬁ)——— ( *)’ ' | 41)
) = —u-l—)»(tf“)x T - (

where the value of x’ (tf') depends on the actual mode
sequence in the cycle and is given by either (35) or (38).
‘Thus, in case the induced event never took place, ie.,
mode sequence (1,2,3,4) took place and the transition
into mode 4 was the result of the guard condltlon x < b,
the next cycle completes with

M) —u )
—u+ A(rf") _ ab+A(zy)

xl (tf-l-) —_ ,(Tl_l_)ea(u_tl)

@) -

Otherwise, when the induced event takes place, the next ’

cycle completes with

,\(rf+)

'X(Tf. =t

—u+ Az

9 [ax(m) +u+ AAr(1g)

+ ¥ (r}F)etm—m)
ad + A(z) Fr (e

« (eam_rz) _ax(m) +u+t Ak(m))]
. ad +A(ry)

43)

Given that the initial condition is x’ (0) 0, we can.imme-

. diately see that until an induced event occurs in a cycle we

have x’ (r"') = 0 and rf = 0. Once, however, the pres-

ence of an 1nduced event results in some x (rf+), # 0,
the TPA derivatives for the continuous.state and the event
times remain nonzero in general. In addition, it is not hard

- to show that x’ (t_) and tjﬁ are non-negative as long as’

the cycle starts: w1th x (r ) >-0. However, / (r+) can
become negative if AT is negatlve as seenin (41) Ttis

' . also possible that, in the absence of any restriction on A(z),

after entering mode 1 the state is such that x(¢) < 0 and
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remains at that mode thereafter (if desired, this behavior
can be prevented by modifying the dynamics in (18) so
that x = O if x(¢) = 0 and A(r) < 0).

- It is also worth pointing out that the evaluation of the
IPA derivatives ‘L’k and x'(¢) above does not involve any
knowledge of the random delay (). It requires event

. time information; an observation x(t4) whenever mode 4
" in entered, and observations of the process A(¢) only at

mode transition times 13, 73, 74, 7. Moreover, the use of
the state variables ¥m(?) does not affect tk and x’(f) in this
particular SHS because the conditions of Lemma 2.1 are
satisfied. _ :

Now let us return to the cost function J(0) in.(20) in

order to determine the IPA derivative d /d6. Decompos- -
- ing a sample path into cycles indexed by &k = 1,2,.
‘let 14.; denote the ith event in the kth cycle. Let us also

define
={k: (6.0 2 b, t € [w3, w4l
C Thd4 > T3, k= 1,..._,N}

ie., the subset of eycles‘ which contain a strictly posi-
tive interval during which the system is in mode 3. Then,

- observe that a sample function £(8) can be written as

o3[

(c—x(e,t)>dt+CZ<‘rk,4-rk,g) .
k=1 =1 ki . ke

where N is the (sample path dependent) number of cycles
in the interval [0, T], including a possibly 1ncomplete last
one. leferentlatmg with respect to 8 we get

ace
_il - Z Z [(c —x(% z+1))1’k +1-

k=1 i=1
—(c— x(tk,,-))r,é’i — / “Tk‘ib 'x’(t)dt]
) Thi .
+ CZ(TM , 3) ' @4

keSZ

In the second term, rk’3 is given by (30) with the value of
x (t:: D obtained at the. start of the kth cycle. On the other

hand, 'c,i 4 1s given by either (33) if the transition to mode 4
is caused by the guard condition x <'b or by 36) if 1t is

caused by an induced event.

In the first term of (44) the values of rk and rk ;

are. given by the event time derivatives (25) (30), (33), :

(36), (39) dependlng on the event observed. The values
of x(r;4+1) and x(7y ;) are directly observable and; except -

for induced events, eoincide with 0, 6, or b. Finally, the
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integral terms are evaluated as follows. For (tx,1, T,2),
(23) applies and we have

T2 T2 ‘
/ X' ()dt = x‘(t,;" 1) / =11 gy
T ’ 'L'k,[ .

k,1

fert
— M [ea(l'k.z—rm) - 1]
a

Since the x(f) dynamics are unaffected in (742, 7 3) and
(3, tr,4) (if mode 3 is entered), the expression above
remains the same until mode 4 is entered, with Tk, 1, Tk 2
replaced by the corresponding event times. For (T4, Te,5)
where x'(f) remains unchanged from x’ (‘L’I:- 4)s

s ‘
/ X (0dt = x' (1) (s — .a)
T

k4

~ where x’ (r,:' 4) is given by either (34) or (37) depending on
whether mode 4 is entered as a result of an induced event
or not.
‘We note that the cost term (c —x(6, 1)) may be replaced
by a quadratic cost 5 (c — x(9,1))? without affecting any
~ of our analysis except for the fact that the integral terms
in (44) would require integrating the process A(z). If this
is arandom process, then the evaluation of these integrals
would require sample path observatlons of A(¢) and some
numerlcal 1ntegrat10n :

4. A ‘System withTime’-Critical Tasks

In this section we consider a resource contention system,
modeled as a finite capacity queue, where time critical
tasks are executed. The objective is to optimally trade off
a cost due to tasks that are blocked because there are no
resources available (they find the queue full) against the
delay that an accepted task will experience. Specifically,
we assume that each task has a deadline by which it has
to be completed and investigate two types of deadlines.
A hard deadline where if the delay exceeds the deadline
then a fixed penalty is paid and a soft deadline where the
-penalty is proportional to the duration of the deadline vio-
" lation. The control parameter of interest is the size of
the queue denoted by 6. We point out that increasing 6
decreases the cost due to blocked tasks; however, it also
allows the buffer to grow larger which increases the delay
experienced by the tasks. For this problem, we adopt the
SFM framework [6] to derive the IPA estimators: however,
we emphasize that the resulting IPA algorithm is computed
. using data observed from the actual DES (see Section 4.3
for more detalls)
Next, we present the adopted SFM whlch is also shown

in Fig.3. In this context, a(¢) is the fluid arrival rate and,
B(¢) is the maximum rate by which fluid is discharged. -
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f*x(t‘ P

af)

‘é 7(&#9),

Fig.3. The SFM System Model.

. These processes are very general except for two mild tech-

nical assumptions that will be described later. The amount
of fluid in the buffer is denoted by x(0, 1) € [0,0],6 € R¥
and its dynamics. are shown below:

dx(8,1)
drt
0, ifx(0 ) =0and a(®) — B@) <0,
=40, if x(@,6) =6 and a(r) — B@) =0,
o) — ﬂ(t), otherwise
45)

whose initial condition will be set to x(6, t) = xg; for sim-
plicity, we set xp = 0 throughout the paper. The overflow
rate y(0,1) is given by

if x(6,1)

: . Ol(t) - ﬁ(t)’ 1) =0,
v = [0, if x(9,) <. (“46)

Finally, we point out that a particle that arrives in the sys-
tem at time ¢ will depart from the system at time t+w (0, t),
where w(0,¢) is the.time that the system needs to ser-

.-vice all fluid that arrived up until ¢. If x(0,£) = 0, and

a(f) = B(¢) < O thenthe particle will depart immediately,
i.e., w(0,r) = 0. On the other hand, if x(f) > 0, then
the particle will depart as soon as all fluid that has accu-
mulated in the buffer exits. In other words, the following

relation should hbld

tHo@.) '
f ﬁ(r)dr = x(9 t) “@n
1

Next, we define the ob]ecuve function that we aim to

optimize ,
J(6) = E[L(®) + C - D®)] ' (48)

’Where L) is the average blocked fluid due to overflow,
D(0) is the average delay deadline violation cost and C'is

- an appropriate weight between the two. The loss volume

is given by

1T ; _
0= [ vona
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For the delay deadline violation cost we consider two
possibilities; a hard deadline (D1(6)) and a soft deadlme
(D,(8)) as shown below.

m@=%]1meﬂ>wmmf"@®

D) = fl@w0—ﬂm+ﬂ_ 50

where d(t) denotes the deadline applicable' tc_particles'

that arrive at time ¢ (independent of the parameter 6) and
It = max{0,y}.

To complete the overall system dynam1cs observe that
both_ D1(8) and D,(0) are functions of w(8,r) which
suggests that w(9,¢) must be treated as an additional
state variable. To derive its dynamics;, we will use the

_definition of w(0,¢) in (47). We will adopt the same

notation as in previous sections and set @ = %—‘;’. We
will also write @ (¢) instead of w(#,r) for ease of nota-
tion. Differentiating both sides of (47) with respect to £

we get

@+1)- B +w®)—p@) =4
If 0 < x(t) < 6, then & = ar(r) — B(r) and it follows that

_a®-B+o0)
B+ w@®)

On the other hand, if x(f) = 0, then % = 0 and we get
" @ = B(t + w(t)). Finally, if x(¢) = 0 then w(f) = 0 and

@ = 0. To summarize

0 ifx(#) =0

BO —BU+o®) ..

o=1 Batam THO=0 )
o) — B+ o) | otherwise
Bt + w(®) ’

Even though the dynamics of w(¢) are complicated we
will see that we can still derive simple expressions for the
IPA derivatives dD;(9)/d9 and dD»(6)/d6.

The problem as described above fits the general SHS
framework 'introduced in Section 2. Figure 4 shows a
hybrid automaton model for this system, consisting of four
discrete states (modes). Invariant sets for each-mode are

'indicated by conditions in brackets and the guard condi-
tions are shown on the transition arrows. In this SFM, there
are several exogenous events corresponding to changes in -

the external processes {a (1)}, {8(£)}, and {d(¢)}. In partic-

ular, the transition from mode 1 to mode 2 when the buffer.
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*=alt)~ B)
i Q0= Bit+ot)
Be+an)

Ba+axry
[0<x<8,w<d]

x=0
o= BO-Be+ w(t))

B+ an))
[x=¥]

Fig.4. Hybrid automaton model for the system of Fig. 3.

ceases to be empty is an exogenoﬁs event corresponding
to a change in the sign of a(f) — B(¢) from non-positive to
positive; similarly, the transition from mode 4 to mode 3 -

.when the buffer ceases to be full is an exogenous-event

corresponding to a change in the sign of a(¢) — B(¢) from
non-negative to negative. The transition from mode 2 to
mode 3 (or mode 3 to mode 2) may be exogenous if it

* is caused by a discontinuity in d(¢) causing w(f) — d(t)

to switch from non-positive to positive (or from positive

_to non-positive). On the other hand, it may be caused

by the evolution of w(¢) hlttmg the switching function
() = d(), in which case it is an endogenous event.’
Additional endogenous events are: (i) The event corre-. -
sponding to the guard condition x = @ being satisfied,

- (if) The &vent corresponding to the guard condition x = 0

being satisfied. We also note that this SEM contains no.
induced events.

A typlcal sample path of this system is shown in Fig. 5
(when B(t) = B and d(¥) = d). As already pointed out;.
the events “buffer ceases to be empty or full” seen in this
sample path are exogenous; these correspond to transi-
tions from mode 1 to 2 and from mode 4 to 3 in Fig. 4.
On the othér hand, the events “buffer becomes empty or
full” are endogenous and depend on 6; these correspond

'to transitions from mode 3 to 1 and from mode 3 to 4 in

Fig. 4;.It is convenient to partition a sample path into By
Non-Empty Periods (NEP), i.e., periods where x(6,¢) > 0.
The kth NEP (denoted as Py) starts-with the event “buffer

- ceases to be empty” at time 7 = v and ends with thie

event “buffer becomes empty” at time ¢t = vg,, ie,
= [V,0, Vi,5,)- In the kth NEP 'we also identify another
(Sk — 1) points v j,j = 1,---,8¢ — 1 where the buffer
either becomes full or ceases to be full. Note that v -
identifies the event “buffer becomes full”; if j Jj=2i+1,




~ occur My times, ie,j =1,
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Fig. 5. Typical system sample path.

where i = 0,--- S" ie., j is odd. Also, ifj = 2i,

i.e., jis even, Vg j 1dent1ﬁes the event “buffer ceases to be
full”. For completeness, we also define the empty periods
as the maximal intervals such that x(8,f) = 0. In addi-
tion, we define boundary periods as the intervals during
which x(8, t) is constant and equal to a boundary value, i.e.,

" either empty (x(9,f) = 0) which correspond to the inter-

vals (vg.s,, Vk+1,0) or full (x(9,1) = 6) which correspond

to the intervals (v2i—1,Vk,2;), Where i = 1,- S"zl

Similarly, non-boundary periods are all penods such that

0 <x(0,1) <6.

Next; we define the threshold function y(t)

. t+d (@) o o
30 = ft B)dr. 52)

Thus, a fluid molecule that_entered the buffer at ¢ will
experience adelay greater than its deadline d(¢) if x (6, £) >

¥(r) (see (47)). Figure 5 shows an example where B(f) = -

B and d(f) = d are constant for all #, thus y(@©) = Bd,
constant for all ¢. Observe that the condmon ‘w > d” in
Fig. 4 is equivalent to the condition “x > y™ o

- In addition, we define the sequence of event times {u;j}
such that the automaton of Fig. 4 switches between modes
M = 2 and M = 3 for the jth time, during the kth
NEP (see Fig. 5). During the kth NEP, this event may
-+, My, and by definition
we let uro = vio and upp+1 = ViSe w1th the undei-

standing that it is possible to have My = 0. Note that '

during the intervals (ug2n—1, Uk2n), 1 = 1+ -Mz—k the

" automaton is either in mode 3 or 4 and the condition

“w() > d(t)” is satisfied. Using the above notation,

W€ can rewnte sample functions D1(9) and D, (6) as

follows
Br (Mp—1)/2 :
D1 ©) == Z > (uk 2n = Uk 2n—1) (53)

k—— n=1 .

- By (Mx— 1)/2

D2(9)——Z Z [ :1 @) ~d) (54)

Vs  Veuao 0 Vema o i
Nkz uH_,-‘,;

Finally, we make the following assumptions regardmg
the processes a(r), B(¢) and d(?).

Assumption Al: With probability 1, d(’t), B@) and d(¢)
are piecewise constant functions independent of 0 with
a(t) < oo, B(f) < oo, and d(t) < .

AsSumpﬁon A2: With probability 1, the processes a(f),
B, and d(t) do not experience any discontinuity af

-, exactly the same time.

By Assumption A1, we represent a flow rate as a piece-

wise continuous process, which allows us to approximate
it with an arbitrarily large number of constant segments.

Assumption A2 is a purely technical one allowing two
events to occur concurrently with probability 0. Even if it
is violated, one can perform IPA using one-sided deriva-
tives. Given Al and A2, the process y(f) is piecewise
continuous with 0 < y(f) < oo. The d1scontmu1t1es-
of B(t) are not inherited by y(r) due to the integral
in' (52); however, y(f) may 1nher1t the dlscontmumes
ofd (t) '

4.1. Inﬁnitesimal‘ Perturbation Analysis .

As in the previous section, we shall use the notation:

8X(9 t) aw(est)
30 -

o' (f) =

@) =

dup i dvp;:
! »J A K] -
uk’j = —d6 ) vk’j = —_de .

Lemma 4.1: At time t = uy,j, the sample derivative of
the delay with respect to 8, &' (t), is given by

@
Bt +w(®))

[

w"(t) =

Proof: Att = u s 47) holds with 0 < x(¢) < 6. Takmg

“derivatives with respect to § in (47), we get

_ ‘ t+w(.r) a8 N
o' (OB ¢t + @) +ft o '£dr =i‘J_C/(t) :
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!
E
|
i
i
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and since ﬂ(l‘) is independent of 6, it follows that

x'() .
() = ——
AR I0))]
yielding the desired result. -~ . |

"Let us now consider all possxble transitions in the kth NEP

of a typical sample path. Clearly, €X0genous events can
have no effect on state variable or event time derivatives, so
we concentrate on the three possible endogenous events,

I. At time u,; a transition from mode 2 to mode 3 (or
from mode 3 to mode 2) takes place. If the transition is

not due to a discontinuity in d(f) (which would be an

exogenous event), then it is due to an endogenous event

with switching functlon w (uk )—d = 0. Applying (11)

we get

) — B (i +405.)
B (u,;j + d(u,:’j))

Usihg Lemma4.1 andrecalling Assumption A2, we get

7 _
uk,j—-

—~x’(uk”,j)
a(ur;) — B (uk;j +d(u,j))

o
uk,j—

(35)

~ Sincethe x(f) and w (f) dynamics remain unchanged in

this transition, using (7), we have x’ (u;cF D= X' (uy, j)

and o' (uf{’j) = 0'(u N2

2. Attime vy jwithj = 2i+1,i =0, .. S"2 atransition

from mode 3 to mode 4 takes place with switching -

“function x(v, ;) — 6 = 0. Applying (11) we get -

X =1
() =By

7

Vij =
In additioh, applying (7) gives
xf(v,jjj) =X )+ [‘” V) — 8 ({»,;j')] Vi,
- and combining the two equations implies that

x’(v,'c"j) =1. - - (56)

3. At ume vk S @ transmon from mode 2to mode 1 takes "

place with sw1tch1ng funct1on x(vg,s,) = 0. Applymg
(11) we get

v} » —x'(v, 5
k,Si. =
L, a(Vk SL) ﬂ(vk,Sk

o ).

o g otherwise
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In-addition, applying (7) gives |
X (s =¥ 0g)+[@0s) = BOEg) s,
. and corhbining the two equetions implies that
¥ 0fg) =0. | | 57)

It follows from (56) and (57) that x’(¢) always resets
to O at the end of a NEP and then switches to 1 with
every “buffer becomes full” event if one occurs during
aNEP. :

Let us define

Uy ; = max{Vi; : Vi< Ukj,

k=12, ,-,‘zo Lo, j=1,2, ...}
to be the most recent event “buffer ceases to be either
full or empty” that occurred just before ¢ = uy, ;. We '

can then establish the following result.

Lemma 4.2: Let St be the finite Set of all time instants
where d(t) experiences a discontinuity in the interval
[0,T]. Then '

, —
M=

@ (ugj) — Blugj + d(ur,))

X)) =0, uej ¢ ST
59

Proof- First, as already pointed out, if u,j € St then the
event at U, is gxogenous, hence uk = 0: Next, consider

(55). There are two cases: (i) If uk . is such that x(uk )=
0, then by (57) we have x (uk D= 0 therefore, uk = =0,

and @) If uk T .is such thatx(uk ) = 0, thenby (56) we have

x (uk ;) = 1, therefore, uk 1/[a(uk,]) — Blu,j +
d(uy ]))] and the result follows I

Now we are ready to derive the IPA estimators for
the performance metrics of interest. D;(6) and Dy (6). .
For the IPA estimator of L(9) the reader is referred
to [6].

Lemma 4.3: The sample derivative of D1(0) with respect
to 0 is given by

[x(“/t 2n) - ]
o (g, 2m) — Bugan +d(u 2n))

@ >y

Br (Mi— 1)/2['.

'l[x(yz,2rz—l) = 6] » . ] e
o(2n—1) — BQtk2n—1.+ d(Wg20—1))
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The proof follows easily by differentiatihg (53) and then
substituting the result from Lemma 4.2. Next, the question
that arises is how one can compute D} (9). Assuming
that one has a way of estimating the instantaneous arrival
and service rates, the only information missing is the
time instants uy, which are the arrival times of certain
“molecules” that will violate the delay threshold. As
described in detail in Section 4.3, this is easﬂy doable
~ in a DES setting.

Lemma 4.4: Assuming B(t) = B constant, the sample
derivative of D»(8) is given by

Br (Mp-1)/2

46) = —Z Z / 20, 0)de
Uk 2n—1
where each integral I\2" | = fu';"i”_l x'(t)dt is evaluated

depending on the value of vi,1 as Jollows.

" e Ifugon < Vi1, then Iuk;" , =0
-
o ffugon-1 < Vi1 < Ugon then L | = o — i1

o If Vit < Weon—1, then L2 | = ugon — U 201

The proof follows easily by differentiating (54) and then
substituting the results from Lemma 4.1 (by definition,
for all points uy,j, w(ux,;) — d(ur,;) = 0). Note that
this sample derivative is again very easy to implement.
It simply consists of an accumulator (double sum) of time

intervals as indicated by the three considered cases. This =

result holds also for time varying d(f), however, if B is
also time varying, then some numerical integration may
be needed (see Lemma 4.1).

An important observation from both Lemmas 4 3
and 4.4 is that the TPA derivatives for the two met-
-rics D1(0) and D2(8) do not require any knowledge of
delay w(f) which was used for modeling purposes but
ultimately it is not involved in the IPA evaluation. The
IPA evaluation depends only on detecting “buffer full”
and “buffer empty” events and their times, y = Bd
events and their times u,; and also a(uy, ;) — B(ux, i+

d(ug,j)). The latter may be a little difficult to obtain -

in an SFM setting, however, as mentioned earlier, in
a DES all these quantities can be easﬂy evaluated (see
Section 4.3).

4.2. -Unbiasedness y
. In this section we show that the IPA estimators derived in
the previ_ohs'section are unbiased. To Show tt_le unbiased-
‘ness property we make the following mild assumptions.

Assumption A3: Let T1, e, T be the time instants
‘Wwhen the net-inflow process «(f) — B(t) changes value,

and let Ry = a(t) — B(z), i = 1,

C.G. Cassandras et al.

.M. Assume
that Ryin < R; < Ruax and that there exists R < oo
such that the pdf of R; satisfies fR,(r) < R for all

Ry < r < Ryax.

Assumption A4: Let X; = x(0, ), i =1,--- ,M where
T; is defined in Assumption A3. Assume that the pdf of X;
satzsﬁes &) <P <ooforall0 < X; < 8. Also,
assume that, for some € > 0, fx,(X;) = O for all X; such
that |X; — y(w)l <e.

Assumptlon A3 is a mild condition requiring that rates
do not become infinite, which is expected in practice and -
can obviously be verified. Assumption A4 is a technical
condition that does not allow the net inflow process to
change rate exactly (or arbitrarily close) to points where

x(6,0) = y@).

Theorem 4.1: Under Assumptions AI-A4, the sample
derivative of Lemma 4.3 is unbiased thh respect to the~
objective function (49).

Proof: Existence is guaranteed by Assumptions Al
and A2. Therefore, we only need to show Lipschitz con-
tinuity of D1(6). Lipschitz continuity can be shown using
the mean value theorem. For Dy (@), let 6 < 0 <6+A0
such that '

dDy@) _ D10+ 26) — D1(9)
- de A6 ’

Thus we need to show that —1—(9_2 is bounded by arandom
variable Q with E[Q] < 0. From Lemma 4. 3 by s1mply
re—mdexmg all terms, we get

l[x(u*-‘;e) = e]

()
10 = Z o) = 3 + dG)

During any interval I; = [1;, 7341),i=0,--- ,M — 1, the
net inflow rate R; is constant for all ¢ € I;. Thus we can
rewrite

' M 1[C ] M |
16) = Z E=Y6 (59)
k= ) k=1 -

where Cy, is the event thatx(to; 9) = y(tp) for some £y € I,
and 1[Cy] is the indicator function that takes. the value 1
if the event occurred during I; and 0 otherwise. Note that
during any Iy only asingle Cy event can occur since during
the interval the net inflow is constant. Therandom vanable
Gk is defined so that G = [C"] . Then,

E[Gi] = Ey, [Ex, [EG,, [GelRe, Xd] %] (60)
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and each term is computed next assuming  is the length
of the intervals I obviously bounded by [ < T.

1 .
EG, [Gr|Re, Xi ] = R—kPr{l[Ck] =1|Re. X}

1. .
= R—ka{IXk ~y(u)l < R * I | R, X}
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according to a generally unknown stochastic process and

are placed in the queue that operates according to a First

In First Out (FIFO) policy. Associated with every task is a

- deadline and a service time, each taken from some distri-

bution. Note that, since this is'a DES, the state x(-) takes
only integer values and the concept of sample derivative
may not be well defined (or it may be zero). To distinguish

them from the SFM quantities, in this section we denote

1 p R. X — y(z)] R X * the state by X(-) and the buffer capacity by K and allow
- E; Tihe > L them to take real values. In the DES setting, the objective .
_ ‘ functions of interest are given below '
1 X =yl ,
N HR> ———— N
= £ lk ~ 1 L
N . LK) = — 1[X(4;K) =K] (61)
lU vuiac1 W‘lb\/ NT ;
. » 1 Nr '
Ex [Ec [GrlRe: XilIXi] Bi(K) = -3 " 1[Bu—An > Bl (62)
[ Rimax r n=1 V
- ./ Wyl 7 f Re (r)dr U B -
, ¢ Dy(K) = = ) By = An = Bal* (63)
X — y(m)l AT '
=R ln(R,,w) | —— ‘ _ ‘
L where we used the  notation to emphasize that these
< Z(€) < 00 functions are with respect to the DES. A, and B, are,

where Z(¢€) is some constant that depends onlyonT and ¢
and we have used Assumptions A3 and A4. Finally, again
by A4,

o 9
Ex, [Br, [Bo, 16 X)) < [ 2 s

',<_0'-P-Z(e) < 00.

Thus, from (59) D 1(60) is bounded by a random variable

Q with E[Q] < M - 'o.p. Z(e) < 0. (]

_Theofem 4.2: Under assumptions A1—-A2‘ the sample

derivative of Lemma 4.4 is unbiased thh respect to the
objective functzon (50).

. The proof is smular to the. proof of Theorem 4.1. Note
that the sample derivative terms in.Lemma 4.4 do not
have the Ry, at the denominator, thus one can easily show
that the sample derivative-is bounded without requiring
Assumptions A3 and Ad.

4.3. Simulation Resﬁlts :

In this section we-consider an actual” DES and present
simulation results where we use - the IPA estimators
obtained using the “equivalent” SFM. However, the esti-
mators are computed using information observed from the
sample path of the DES. In this real DES, tasks arrive

respectively, the arrival and departure times of task.n and
B, is the associated deadline. Ny is the number of tasks
that arrived in the interval [0, T']. In the DES context, one
needs to find K* that minimizes an objectlve function of
the form (48).

Since there are no closed form solutions for the required
derivatives, we compare the obtained sample deriva-
tives with the corresponding finite differences AW(K) =

"W(K +'1) — W(K) where W corresponds to the perfor-

mance metric of interest (D1(K) or Da(K ). We point
out that'the finite difference is not necessarily an accu-
rate estimate of the requlred derivatives and it may have
31gn1ﬁcant error at points where the objective function is

- non-linear. However we use it as an approximate estimate

since there are no analytical results. Another important
point is that, in order to obtain a single estimate using
finite differences, one needs to observe the system under
two different parameters K and K + 1. The great advan-
tage of the IPA approach is that the estimate is obtained
by observing the system under a single parameter K. Thus .

“the TPA approach is more appropnate for on—lme parameter

optimization. -

Recall that the SFM is used to derlve performance sen-
sitivity estimates. which cannot be obtained in'the actual
DES, in order to drive the optimization scheme (4) for the
original DES. To evaluate the IPA estimators in Lemma

) 4.3 and Lemma 4.4,'weneed to identify all events defiped -

! Z(K ) is not treated here since it was covered extensively in [6]. .
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in the SFM with observable events in the DES sample
path. For exogenous events, we monitor changes in arrival
rates a(f) and B(¢) through simple rate estimators; if
la(t) — a(t — 8)| > € for some small § and adjustable €,
we detect such changes and similarly for 8(¢). For endoge-
nous events, we simply observe when the queue becomes
full or empty. One difficulty 'in identifying endogenous
events is that we have to recognize that in a DES the
queue content may “chatter” near K. For example, sup-
pose at time ¢ the queue is full, i.e., X(r) = K, although
the interarrival time mean is less than the interdeparture
time mean; this means the arrival rate is larger than the
output rate, yet it is still possible that for some sample
path the departure event will happen first at time #; > ¢,
so that X(¢r1) = K — 1 < K. However, from the com-
parison of input and output rates, we know that in the
SFM the system does not actually leave @ at #;. More-

over, suppose at f2 > f1 an arrival event occurs which .

_ brings X back to K; then, based on our previous analy-
~ sis, since the system does not actually leave mode 4 at #1,
the event at £ should not be considered as an endogenous
evernt. Thus, during the interval [z,%,], the queue length
of the actual DES “chatters” around the threshold level.
" However, in the SFM, the system remains in mode 4 dur-
ing this period. Then, the question is how to identify the
start and end of a “full buffer period”. We resolve this
- issue by comparing . the serviee rate B(¢) and arrival rate
() as measured on the actual DES sample path. Then,
we can identify a “full buffer period” as starting at T, if
X (1) < K, X (7)) = K, and B(w) < «(ty); similarly,
we detect the end of this period at 7, if X (1p—1) = K
X (w) < K, and B(wx) > a(zy). Finally, as mentioped in
the last section, events at times ug,j can be identified by
applying timestamps on tasks such that event titne uy 2541,
k=1,2,---,n=0,1,--- is the arrival time of the task
that violated the delay threshold constraint following a
task that did not violate its constraint; whereas event time
Ugon, 1= 1,2,- -, is the arrival time of a task that arrived
after u 7,1 but did not violate the deadline constraint.

Finally, even though the estimator in Lemma 4.2 is
‘provably unbiased (for SFM-based objective functions), in
practice thére could be numerical problems introduced by
the fact that the difference in its denominator may be close
to zero over some time intervals. To avoid such numerical
issues, we use the following heuristic for the computation
of f)’l (6) at the expense of a-small bias.

~,  X ,) =K ]
10) = ZZ [c-{— Ia(ukzn) — Bl

1x (5, _y) =K] - .
ctle(uan-)—Bl| ‘ (64)
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where c is a small constant and for the purposes of the
results presented next, ¢ = 0.2. This constant is used to
prevent numerical problems when A3 is violated in prac-
tice, thus it does not allow the denominator to become very
close to 0. Note that in some cases, it is possible that the
estimator of a(«) — B(x) may become very small and, as a
result, the estimated »’ may dominate the value of the dou-
ble sum (especially when the observation interval is not
very long). The introduction of ¢ may introduce a small
bias in the estimation however, it does prevent a single term
of the double sum to dominate its value. Also note that the
use of absolute values is also justified because at points
U, 2n, 0 (Uk,2n) < B and at points ugpn—1, & (Uk,2n-1) > B,
n = 1,2,--- (for simplicity, for all scenarios we use a
constant ). .

_In the first scenario, we assume that a source is generat-
ing tasks according to a Poisson process with rate 50 tasks
per second. The service time of each task is 18 ms fixed.
Furthermore, each task is marked with a deadline which
is also deterministic and equal to 90 ms.

Figure 6(a) presents the normalized estimate D (9) as
computed from data observed from the sample path of the
system described in sceénario 1. Furthermore, the figure
shows the normalized estimate of D} (K) computed using
forward finite differences. Figure 6(b) presents the nor-
malized estimate [, 5(8) again for scenario 1 together with
the corresponding normahzed estimate of D, »(K) com-
puted using finite differences. The results presented in
Fig. 6 comespond to the average of 30 sample paths of
1 hour simulated time. Notice that for small buffer sizes,
no task experiences any deadline violation and therefore
both objectives (and their corresponding derivatives/finite -
differences) are 0. : '

In the second scenario, it is assumed that the source is
generating tasks according to a Markov Modulated Pois-
son Process. At each state, the source generates tasks
according to a Poisson process with rate A where A_is
a random variable uniformly distributed between 33 and
100 tasks per second. The times when the source switches
its rate are exponentially distributed with mean 1 second,
The service time of each task is again deterministic and
equal to 20 ms. Finally, the completion deadline of each
task is a random variable uniformly dlstnbuted between
100 and 300 ms. - »

Figure 7(a) presents the normahzed estlmate D’ (0) as
computed from data observed from the sample pa,th of
the system described in scenario 2. The figure also shows

“the normalized estimate of D’1 (K) computed using finite

differences. Figure 7(b) presents the normalized estimate
l~)’2(6) for scenario 2 together with corresponding finite
difference estimate. The results presented in Fig. 7 are
from a single sample path, 5 hours of simulation time long.

Figure 8 shows an example of applying our IPA esti-
mates and (4) in optimizing the buffer threshold of a
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(a) Sample derivative of D,(6)’
Fig.7. Sample derivatives with respect to the buffer size for Scenario 2.

14 = T T T Y T T — v T

135 -~ Objective Function h
’ -G optimization 2
12 ¢ -4 optimization 1 E
c -
S
AR
.2
L
o 1F
.2
g
o9}
(e}
08
0.7 +
1 2 3 4 5 . 6 7. 8 2 10 11
: Buffer Size K
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(b) Sample derivative of D,(8)

queueing system (again, in the “actual” DES setting). The
objective function is of the form (48), and its accurate
estimate is- obtained by exhaustive simulation- averaged
over- 100 sample paths for about 4 hours. Note that this
estimate is obtained separately beforehand and. it is not
used in the optimization process. This gives an optimal
point K* = 6. For this example, tasks arrive accord-
ing to a Markov Modulated Poisson Process, with mean -
interarrival time uniformly distributed on [0.6sec, 1.4sec].
Service times and delay . thresholds are also piecewise

- constant random processes with means 0.9sec and 3.5sec

respectively. The two trajectories labeled “optimization”
are results of implementing (4) using gradient estimates
obtained through IPA on a single sample path with differ-
ent starting points. We can see that each converges toa
point sufficiently close to the “true” optimum, illustrating
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the effectiveness of our method. We also point out that the
modification (64) is not used in this case: the numerical

effect of an occasional estimate with very small denomina-

tor is negligible during an iterative optimization process.
Note that although we have used this relatively simple
one-dimensional problem simply to illustrate.the use of
our IPA algorithms, this framework has been successfully
applied to higher-dimensional problems as well [221,[291.

5. Conclusions

We have presented a general framework for carrying
out perturbation analysis in SHS of arbitrary structure.
By analyzing sample paths of an SHS, we can obtain
derivatives of event (mode switching) times and of state
variables with respect to various controllable parameters.
An attractive property of these derivatives is that they are
computable exclusively from directly-observable data and
they are generally simple to compute. These derivatives
ultimately translate into gradient estimates of performance
metrics with respect to the controllable parameters which
are then used to drive standard gradient-based optimiza-

tion algorithms implementable on line with little or no

distributional information regarding stochastic processes

involved. We applied this framework to two SHS with dif-.

ferent characteristics, thus illustrating its generality. We
also addressed the issue of establishing the unbiasedness
of the gradient estimators derived and explicitly showed
how to prove it in one of the two SHS studied.

~ One of the contributions of the paper is the generaliza-
tion of the concept of “induced” events which extends the
range of SHS we can study. In recent work [25], induced
events were seen to cause potentially infinite event chains
giving rise to interesting phenomena with occasmnally
counterintuitive effects.
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