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Abstract

We present a general framework for carrying out perturbation analysis in Stochastic Hy-
brid Systems (SHS) of arbitrary structure. In particular, Infinitesimal Perturbation Analysis
(IPA) is used to provide unbiased gradient estimates of performance metrics with respect to
various controllable parameters. These can be combined with standard gradient-based al-
gorithms for optimization purposes and implemented on line with little or no distributional
information regarding stochastic processes involved. We generalize an earlier concept of “in-
duced events” for this framework to include system features such as delays in control signals
or modeling multiple user classes sharing a resource. We apply this generalized IPA to two
SHS with different characteristics. First, we develop a gradient estimator for the performance
of a linear switched system with control signal delays and a safety constraint and show that it
is independent of the random delay distributional characteristics. Second, we derive closed-
form unbiased IPA estimators for a Stochastic Flow Model (SFM) of systems executing tasks
subject to either hard or soft real-time constraints. These estimators are incorporated in a
gradient-based algorithm to optimize performance by controlling a task admission threshold
parameter. Simulation results are included to illustrate this optimization approach.
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1 Introduction

The study of hybrid systems is based on a combination of modeling frameworks originating
in both time-driven and event-driven dynamic systems and resulting in hybrid automata. In
a hybrid automaton, discrete events (either controlled or uncontrolled) cause transitions from
one discrete state (or “mode”) to another. While operating at a particular mode, the system’s
behavior is described by differential equations. In a stochastic setting, such frameworks are
augmented with models for random processes that affect either the time-driven dynamics or the
events causing discrete state transitions or both. A general-purpose stochastic hybrid automaton
model may be found in [5] along with various classes of Stochastic Hybrid Systems (SHS) which
exhibit different properties or suit different types of applications. The motivation for SHS models
sometimes comes from time-driven systems whose behavior changes as a result of switching
events and sometimes from the perspective of a Discrete Event System (DES) where the time
between events may depend on one or more time-driven components. In some cases, DES become
prohibitively complex and one resorts to SHS models through which the system dynamics are
abstracted to an appropriate level that retains essential features enabling effective and accurate
control and optimization.

The performance of a SHS is generally hard to estimate because of the absence of closed-form
expressions capturing the dependence of interesting performance metrics on design or control
parameters. Consequently, we lack the ability to systematically adjust such parameters for the
purpose of improving - let alone optimizing - performance. In the domain of DES, it was dis-
covered in the early 1980s that event-driven dynamics give rise to state trajectories (sample
paths) from which one can very efficiently and nonintrusively extract sensitivities of various
performance metrics with respect to at least certain types of design or control parameters. This
has led to the development of a theory for perturbation analysis in DES [4],[12],[9], the most
successful branch of which is Infinitesimal Perturbation Analysis (IPA) due to its simplicity and
ease of implementation. Using IPA, one obtains unbiased gradient estimates of performance
metrics that can be incorporated into standard gradient-based algorithms for optimization pur-
poses. However, IPA estimates become biased (hence unreliable for control purposes) when
dealing with various aspects of DES that cause significant discontinuities in sample functions of
interest. Such discontinuities normally arise when a parameter perturbation causes the order in
which events occur to be affected and this event order change may violate a basic “commuting
condition” [9]. When this happens, one must resort to significantly more complicated methods
for deriving unbiased gradient estimates [4].

In recent years, it was shown that IPA can also be applied to at least some classes of SHS
and yield simple unbiased gradient estimators that can be used for optimization purposes. In
particular, Stochastic Flow Models (SFMs), as introduced in [6], are a class of SHS where the
time-driven component captures general-purpose flow dynamics and the event-driven component
describes switches, controlled or uncontrolled, that alter the flow dynamics. Flow or fluid models
are an example of an abstraction process applied to a large class of DES and especially useful
in analyzing communication networks with large traffic volumes. Introduced in [1], fluid models
have been shown to be very useful in simulating various kinds of high speed networks [16],
manufacturing systems [7] and, more generally, settings where users compete over different
sharable resources. It should be stressed that fluid models may not always provide accurate

2



representations for the purpose of analyzing the performance of the underlying DES. What
we are interested in, however, is control and optimization, in which case the value of a fluid
model lies in capturing only those system features needed to design an effective controller that
can potentially optimize performance without any attempt at estimating the corresponding
optimal performance value with accuracy. While in most traditional fluid models the flow
rates involved are treated as fixed parameters, a SFM has the extra feature of treating flow
rates as stochastic processes. With virtually no limitations imposed on the properties of such
processes, the use of IPA has been shown to provide simple gradient estimators for stochastic
resource contention systems that include blocking phenomena and a variety of feedback control
mechanisms [27],[28],[23],[22],[29],[10],[11].

Thus far, the use of IPA has been limited to the class of SFMs and normally exploits the
special structure of specific systems investigated. Recently, a unified framework was introduced
in [23], which provides the basis for a general theory of perturbation analysis for SHS. In this
framework, the types of events causing discrete state transitions are classified as exogenous
or endogenous. This, however, excludes interesting system features such as delays in control
signals or modeling multiple user classes sharing a resource. The inclusion of such features
requires a new class of “induced events” which can result in a (potentially infinite) event chain,
a new phenomenon in the study of perturbation analysis. In [24], induced events were added to
the original framework, albeit under some restrictive conditions. In this paper, we extend the
framework in [24] to allow induced events of arbitrary generality, augmenting the continuous
state with appropriate “timer” variables. Furthermore, the framework we present is placed in
the more general context of stochastic hybrid automata with arbitrary structure.

In Section 2, we present the general framework for IPA in the setting of stochastic hybrid
automata. We then apply IPA to two SHS. The first (Section 3), primarily used to illustrate
the theory, is a linear switched system with a control signal issued at a specific system mode
signaling a change in dynamics. The interesting feature is a random delay incurred before
this control signal can take effect. The performance of the system is defined to represent a
highly simplified tracking problem with a safety constraint and we derive an IPA estimator for
an appropriate cost function. We will show that this estimator is in fact independent of the
random delay distributional characteristics. The second SHS (Section 4) falls in the class of
SFMs and addresses a crucial problem in time-critical systems. We consider a setting where
tasks are executed subject to real-time constraints, i.e., tasks must not exceed a given “deadline”
or must minimize the amount of time by which they exceed it. We derive IPA estimators in closed
form for both types of objectives and also incorporate them into a gradient-based optimization
algorithm to demonstrate their use.

2 A General Framework for Perturbation Analysis of Stochastic
Hybrid Systems

We consider a Stochastic Hybrid System (SHS) and adopt a standard hybrid automaton for-
malism to model its operation [5]. Thus, let q ∈ Q (a countable set) denote the discrete state
(or mode) and x ∈ X ⊆ Rn denote the continuous state. Let υ ∈ Υ (a countable set) denote a
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discrete control input and u ∈ U ⊆ Rm a continuous control input. Similarly, let δ ∈ ∆ (a count-
able set) denote a discrete disturbance input and d ∈ D ⊆ Rp a continuous disturbance input.
The state evolution is determined by means of (i) a vector field f : Q×X×U ×D → X, (ii) an
invariant (or domain) set Inv : Q×Υ×∆ → 2X , (iii) a guard set Guard : Q×Q×Υ×∆ → 2X ,
and (iv) a reset function r : Q×Q×X ×Υ×∆ → X.

A sample path of such a system consists of a sequence of intervals of continuous evolution followed
by a discrete transition. The system remains at a discrete state q as long as the continuous
(time-driven) state x does not leave the set Inv(q, υ, δ). If x reaches a set Guard(q, q′, υ, δ)
for some q′ ∈ Q, a discrete transition can take place. If this transition does take place, the
state instantaneously resets to (q′, x′) where x′ is determined by the reset map r(q, q′, x, υ, δ).
Changes in υ and δ are discrete events that either enable a transition from q to q′ by making
sure x ∈ Guard(q, q′, υ, δ) or force a transition out of q by making sure x /∈ Inv(q, υ, δ). We will
also use E to denote the set of all events that cause discrete state transitions and will classify
events in a manner that suits the purposes of perturbation analysis.

In what follows, we describe the general framework for IPA presented in [24], casting it in the
setting of stochastic hybrid automata, and enhance it by generalizing the definition of induced
events used in [24]. Let θ ∈ Rl be a global variable, henceforth called the control parameter, and
suppose that θ ∈ Θ for a given compact, convex set Θ ⊂ Rl. This may represent a system design
parameter, a parameter of an input process, or a parameter that characterizes a policy used in
controlling this system. The disturbance input d ∈ D encompasses various random processes
that affect the evolution of the state (q, x). We will assume that all such processes are defined
over a common probability space, (Ω,F , P ). Let us fix a particular value of the parameter θ ∈ Θ
and study a resulting sample path of the SHS. Over such a sample path, let τk(θ), k = 1, 2, . . .,
denote the occurrence times of the discrete events in increasing order, and define τ0(θ) = 0
for convenience. We will use the notation τk instead of τk(θ) when no confusion arises. The
continuous state is also generally a function of θ, as well as of t, and is thus denoted by x(θ, t).
Over an interval [τk(θ), τk+1(θ)], the system is at some mode during which the time-driven state
satisfies:

ẋ = fk(x, θ, t) (1)

where ẋ denotes the time derivative ∂x
∂t . Note that we suppress the dependence of fk on the inputs

u ∈ U and d ∈ D and stress instead its dependence on the parameter θ which may generally
affect either u or d or both. The purpose of perturbation analysis is to study how changes
in θ influence the state x(θ, t) and the event times τk(θ) and, ultimately, how they influence
interesting performance metrics which are generally expressed in terms of these variables.

The following assumption guarantees that (1) has a unique solution w.p.1 for a given initial
boundary condition x(θ, τk) at time τk(θ):

Assumption: W.p.1, there exists a finite non-empty set of points tj ∈ [τk(θ), τk+1(θ)], j =
1, 2, . . ., which are independent of θ, such that, the function fk is continuously differentiable on
Rn×Θ×([τk(θ), τk+1(θ)]\{t1, t2 . . .}). Moreover, there exists a random variable K > 0 such that
E[K] < ∞ and the norm of the first derivative of fk on Rn ×Θ× ([τk(θ), τk+1(θ)] \ {t1, t2 . . .})
is bounded from above by K.
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An event occurring at time τk+1(θ) triggers a change in the mode of the system. A change
in mode may also result in new dynamics represented by fk+1, although this may not always
be the case; for example, two modes may be distinct because the state x(θ, t) enters a new
region where the system’s performance is measured differently without altering its time-driven
dynamics (i.e., fk+1 = fk). The identity of fk+1 depends on the kind of event that occurs at time
t = τk+1(θ), and the associated event times play an important role in defining the interactions
between the time-driven and event-driven dynamics of the system. In particular, the linearized
system (defined below in detail) will be shown to depend on the derivatives of the event times
with respect to the control parameters, i.e., the terms dτk

dθ .

We now classify events that define the set E as follows:

1. Exogenous events. An event is exogenous if it causes a discrete state transition at time
τk independent of the controllable vector θ and satisfies dτk

dθ = 0. Exogenous events typically
correspond to uncontrolled random changes in input processes.

2. Endogenous events. An event occurring at time τk is endogenous if there exists a contin-
uously differentiable function gk : Rn ×Θ → R such that

τk = min{t > τk−1 : gk (x (θ, t) , θ) = 0} (2)

The function gk normally corresponds to a guard condition in a hybrid automaton model.

3. Induced events. An event at time τk is induced if it is triggered by the occurrence of
another event at time τm ≤ τk. The triggering event may be exogenous, endogenous, or itself
an induced event. The events that trigger induced events are identified by a subset of the event
set, EI ⊆ E .

We point out that the event times are generally not continuous in θ for all θ ∈ Θ, since variations
in θ may alter the sequence of events. However, we shall see that, under mild assumptions, for
a given θ ∈ Θ, the derivatives dτk

dθ exist w.p.1.

Consider a performance function of the control parameter θ:

J(θ;x(θ, 0), T ) = E [L(θ; x(θ, 0), T )]

where L(θ; x(θ, 0), T ) is a sample function of interest evaluated in the interval [0, T ] with initial
conditions x(θ, 0). For simplicity, we write J(θ) and L(θ) and assume that L(θ) has the form
of a cost functional over the interval [0, T ]. Suppose that there are N events (independent of θ)
occurring during the time interval [0, T ] and define τ0 = 0 and τN+1 = T . Let Lk : Rn×Θ×R+ →
R be a function satisfying Assumption 1, henceforth labeled the cost function, and define L(θ)
by

L(θ) =
N∑

k=0

∫ τk+1

τk

Lk(x, θ, t)dt (3)

where we reiterate that x = x(θ, t) is a function of θ and t. We point out that the restriction of
the definition of J(θ) to a finite horizon T is made merely for the sake of simplicity of exposition.

Given that we do not wish to impose any limitations (other than mild technical conditions)
on the random processes that characterize the discrete or continuous disturbance inputs in our
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hybrid automaton model, it is infeasible to obtain closed-form expressions for J(θ). Therefore,
for the purpose of optimization, we resort to iterative methods such as stochastic approximation
algorithms (e.g., [15]) which are driven by estimates of the cost function gradient with respect to
the parameter vector of interest. Thus, we are interested in estimating ∂J/∂θ based on sample
path data, where a sample path of the system may be directly observed or it may be obtained
through simulation. We then seek to obtain θ∗ minimizing J(θ) through an iterative scheme of
the form

θn+1 = θn − ηnHn(θn;x(θ, 0), T, ωn), n = 0, 1, . . . (4)

where Hn(θn; x(0), T, ωn) is an estimate of dJ/dθ evaluated at θ and based on information
obtained from a sample path denoted by ωn and {ηn} is an appropriately selected step size
sequence. In order to execute an algorithm such as (4), we need the estimate Hn(θn) of dJ/dθ.
The IPA approach is based on using the sample derivative dL/dθ as an estimate of dJ/dθ. The
strength of the approach is that dL/dθ can be obtained from observable sample path data alone
and, usually, in a very simple manner that can be readily implemented on line. Moreover, it is
often the case that dL/dθ is an unbiased estimate of dJ/dθ, a property that allows us to use
(4) in obtaining θ∗. We will return to this issue later, and concentrate first on deriving the IPA
estimates dL/dθ.

The computation of the IPA derivative dL/dθ can be obtained by taking formal derivatives with
respect to θ in (1)–(3) as shown in [23]. We will review these results next and extend them by
including the class of induced events as defined earlier. We point out that in the case of SFMs
(mentioned in the introduction) flow dynamics render the computation of dL/dθ very simple,
enabling the derivation of results reported in the literature as in [6],[27],[22],[29]. We will also
adhere to the convention that for a function F : Rn → Rm, the derivative dF

dx is an m×n matrix.
In the particular case where m = 1, dF

dx is a row, n-dimensional vector.

2.1 Infinitesimal Perturbation Analysis (IPA)

Let us fix θ ∈ Θ, consider a particular sample path, and assume for the time being that all
derivatives mentioned in the sequel do exist. To simplify notation, we define the following for
all state and event time sample derivatives:

x′(t) ≡ ∂x(θ, t)
∂θ

, τ ′k ≡
∂τk

∂θ
, k = 0, . . . , N (5)

In addition, we will write fk(t) instead of fk(x, θ, t) whenever no ambiguity arises. By taking
derivatives with respect to θ in (1) on the interval [τk(θ), τk+1(θ)] we get

d

dt
x′(t) =

∂fk(t)
∂x

x′(t) +
∂fk(t)

∂θ
(6)

The boundary (initial) condition of this linear equation is specified at time t = τk, and by writing
(1) in an integral form and taking derivatives with respect to θ when x(θ, t) is continuous in t
at t = τk, we obtain for k = 1, . . . , N :

x′(τ+
k ) = x′(τ−k ) +

[
fk−1(τ−k )− fk(τ+

k )
]
τ ′k (7)
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We note that whereas x(θ, t) is continuous in t, x′(t) may be discontinuous in t at the event
times τk, hence the left limit and right limit above are generally different. In addition, if x(θ, t)
is not continuous in t at t = τk and the value of x(τ+

k ) is determined by the reset function
r(q, q′, x, υ, δ) discussed earlier, then

x′(τ+
k ) =

dr(q, q′, x, υ, δ)
dθ

(8)

Furthermore, once the initial condition x′(τ+
k ) is given, the linearized state trajectory {x′(t)}

can be computed in the interval t ∈ [τk(θ), τk+1(θ)) by solving (6) to obtain:

x′(t) = e
∫ t

τk

∂fk(u)

∂x
du

[∫ t

τk

∂fk(v)
∂θ

e
− ∫ t

τk

∂fk(u)

∂x
du

dv + ξk

]
(9)

with the constant ξk determined from x′(τ+
k ) which is obtained from (7) since x′(τ−k ) is the final-

time boundary condition of the linearized system in the interval [τk−1(θ), τk(θ)]; alternatively, it
is obtained from (8).

Clearly, to complete the description of the trajectory of the linearized system (6)-(7), we have
to specify the derivative τ ′k which appears in (7). Since τk, k = 1, 2, . . ., are the mode-switching
times, these derivatives explicitly depend on the interaction between the time-driven dynamics
and the event-driven dynamics, and specifically on the type of event occurring at time τk. Using
the event classification given earlier, we have the following.

1. Exogenous events. By definition, such events are independent of θ, therefore τ ′k = 0.

2. Endogenous events. In this case, (2) holds and taking derivatives with respect to θ we
get:

∂gk

∂x

[
x′(τ−k ) + fk(τ−k )τ ′k

]
+

∂gk

∂θ
= 0 (10)

which can be rewritten as

τ ′k = −
[
∂gk

∂x
fk(τ−k )

]−1 (
∂gk

∂θ
+

∂gk

∂x
x′(τ−k )

)
(11)

with ∂gk
∂x fk(τ−k ) 6= 0.

3. Induced events. If an induced event occurs at t = τk, the value of τ ′k depends on the
derivative τ ′m where τm ≤ τk is the time when the associated triggering event takes place. The
event induced at τm will occur at some time τm+ω(τm), where ω(τm) is a random variable which
is generally dependent on the continuous and discrete states x(τm) and q(τm) respectively. This
implies the need for additional state variables, denoted by ym(θ, t), m = 1, 2, . . ., associated with
events occurring at times τm, m = 1, 2 . . . The role of each such state variable is to provide a
“timer” activated when a triggering event occurs. Recalling that triggering events are identified
as belonging to a set EI ⊆ E , let ek denote the event occurring at τk and define

zk = {m : em ∈ EI , m ≤ k} (12)
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to be the set of all indices with corresponding triggering events up to τk. Omitting the depen-
dence on θ for simplicity, the dynamics of ym(t) are then given by

ẏm(t) =
{ −C(t) τm ≤ t < τm + ω(τm), m ∈ zm

0 otherwise
(13)

ym(τ+
m) =

{
y0 ym(τ−m) = 0, m ∈ zm

0 otherwise

where y0 is an initial value for the timer ym(t) which decreases at a “clock rate” C(t) > 0 until
ym(τm + ω(τm)) = 0 and the associated induced event takes place. Clearly, these state variables
are only used for induced events, so that ym(t) = 0 unless m ∈ zm. The value of y0 may depend
on θ or on the continuous and discrete states x(τm) and q(τm), while the clock rate C(t) may
depend on x(t) and q(t) in general, and possibly θ. However, in most simple cases where we are
interested in modeling an induced event to occur at time τm + ω(τm), we have y0 = ω(τm) and
C(t) = 1, i.e, the timer simply counts down for a total of ω(τm) time units until the induced
event takes place. An example where y0 in fact depends on the state x(τm) and the clock rate
C(t) is not necessarily constant arises in the case of multiclass resource contention systems as
recently described in [25].

Henceforth, we will consider ym(t), m = 1, 2, . . ., as part of the continuous state of the SHS and,
similar to (5), we set

y′m(t) ≡ ∂ym (t)
∂θ

, m = 1, . . . , N. (14)

For the common case where y0 is independent of θ and C(t) is a constant c > 0 in (13), the
following lemma facilitates the computation of τ ′k for an induced event occurring at τk.

Lemma 2.1 If in (13) y0 is independent of θ and C(t) = c > 0 (constant), then τ ′k = τ ′m.

Proof. If an event occurs at t = τk induced by some event at τm ≤ τk, then (2) holds with the
switching function ym = 0. Using (11) with x = ym, fk(τ−k ) = −c, we get τ ′k = y′m(τ−k )/c.

At the triggering event time τm, we have ym(τ+
m) = y0. Differentiating with respect to θ gives

y′m(τ+
m) +

∂ym

∂t
(τ+

m)τ ′m = 0

and since ∂ym

∂t = −c, it follows that τ ′m = y′m(τ+
m)/c. Since, from (13), no event in the interval

[τm, τk] has any effect on y′m(t), we conclude that τ ′k = τ ′m.

We point out that in [24] τ ′k = τ ′m was used as the defining condition for induced events, thus
limiting them to the special case satisfying the conditions of Lemma 2.1. The use of ym(t),
m = 1, . . . , N , allows us to generalize the class of induced events, imposing no limits on the
ultimate relationship between τ ′k and τ ′m.

With the inclusion of the state variables ym(t), m = 1, . . . , N , the derivatives x′(t), τ ′k, and y′m(t)
can be evaluated through (6)-(11). In general, this evaluation is recursive over the event (mode
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switching) index k = 0, 1, . . . In some cases, however, it can be reduced to simple expressions,
as seen in the analysis of many SFMs, e.g., [6].

Now the IPA derivative dL/dθ can be obtained by taking derivatives in (3) with respect to θ:

dL(θ)
dθ

=
N∑

k=0

d

dθ

∫ τk+1

τk

Lk(x, θ, t)dt, (15)

and applying the Leibnitz rule we obtain, for every k = 0, . . . , N ,

d

dθ

∫ τk+1

τk

Lk(x, θ, t)dt =
∫ τk+1

τk

[
∂Lk

∂x
(x, θ, t)x′(t) +

∂Lk

∂θ
(x, θ, t)

]
dt

+ Lk(x(τk+1), θ, τk+1)τ ′k+1 − Lk(x(τk), θ, τk)τ ′k (16)

where x′(t) and τ ′k are determined through (6)-(11). What makes IPA appealing, especially in
the SFM setting, is the simple form the right-hand-side above often assumes.

We close this section with a comment on the unbiasedness of the IPA derivative dL/dθ. The
IPA derivative of a sample function L(θ) is statistically unbiased [4],[12] if, for every θ ∈ Θ,

E

[
dL(θ)

dθ

]
=

d

dθ
E[L(θ)] =

dJ(θ)
dθ

. (17)

Obviously, without unbiasedness the use of IPA would come under question, and the main
motivation for studying IPA in the SHS setting is that it yields unbiased derivatives for a large
class of systems and performance metrics compared to the traditional DES setting [4]. The
following conditions have been established in [21] (Lemma A2, page 70) as sufficient for the
unbiasedness of IPA:

Proposition 1. Suppose that the following conditions are in force: (i) For every θ ∈ Θ, the
derivative dL(θ)

dθ exists w.p.1. (ii). W.p.1, the function L(θ) is Lipschitz continuous on Θ, and
the Lipschitz constant has a finite first moment. Fix θ ∈ Θ. Then, the derivative dJ(θ)

dθ exists,
and the IPA derivative dL(θ)

dθ is unbiased.

The crucial assumption for Proposition 1 is the continuity of the sample performance function
L(θ); in fact, it is when discontinuities in L(θ) arise that IPA becomes biased in many DES. In
contrast, in many SHS (and SFMs in particular), such continuity is guaranteed in a straightfor-
ward manner. Differentiability w.p. 1 at a given θ ∈ Θ often follows from mild technical assump-
tions on the probability law underlying the system, such as the exclusion of co-occurrence of
multiple events. Lipschitz continuity of L(θ) generally follows from upper boundedness of |dL(θ)

dθ |
by an absolutely integrable random variable, generally a weak assumption. In light of these ob-
servations, the proofs of unbiasedness of IPA have become standardized and the assumptions in
Proposition 1 can be verified fairly easily from the context of a particular problem.

In the next two sections, we apply the general IPA setting for SHS, and (6)-(11) in particular,
to two problems. The first is a simple switched linear system with a parameterized controller
to trigger one of the mode switches. The interesting feature is the presence of a random delay

9



before this actual switch can take effect. Therefore, we are interested in controlling a parameter
to ensure that some performance metric is minimized taking into account the statistical effects
of this delay. As we will see, this involves the presence of induced events. We will also see
that the resulting IPA estimator is independent of any distributional information regarding the
random delays.

The second problem applies to a SFM for resource contention systems where time-critical tasks
are executed and the objective is to minimize either the fraction of tasks that violate a given
deadline constraint or the average “tardiness” resulting from such violations. This is a difficult
problem that has attracted considerable attention in the fields of computer science, communi-
cation networks, and manufacturing, e.g., [20], [3], [17], [8], [19], [26], [2], [13], [14], [18].

We will omit a discussion of unbiasedness of the IPA estimator derived for the first problem
above. However, to demonstrate the use of Proposition 1, we shall explicitly study unbiasedness
in the second problem (which is of considerable practical interest) by identifying the technical
conditions required in that case and providing explicit proofs.

3 A Switched System with Control Action Delays

Consider a simple scalar linear system operating in two modes. In the first mode, the continuous
state x(t) evolves according to the dynamics

ẋ = ax(t) + λ(t) (18)

where a is a given constant and λ(t) is an input process, either known or some random process
(noise) with unknown characteristics. In the second mode, the system dynamics become

ẋ = −u + λ(t) (19)

where u > 0 is fixed and λ(t) is the same process as before. The switch from the first to the
second mode is intended to occur when the state first reaches from below a given value b > 0.
However, because of a random delay following the switch command, the controller issues this
command when x(t) first reaches from below some θ such that 0 < θ < b. When this event
occurs at time t = τk, the associated delay is denoted by ω(τk).

The objective of the system is to maintain x(t) as close as possible to some target value c > b;
however, there is a cost incurred whenever x(t) is too close to c in the sense that x(t) ≥ b. This
is expressed as a cost function

J(θ) = E[L(θ)] = E

[∫ T

0
[(c− x(θ, t)) + C · 1[x(θ, t) ≥ b]] dt

]
(20)

where C > 0 is a given cost parameter and 1[·] is the usual indicator function. Note that we
have explicitly written x(θ, t) to stress the dependence of the continuous state on the controllable
parameter θ. Lastly, the system operates so that a switch from (19) to (18) takes place whenever
x(θ, t) reaches 0 from above. We will assume that the initial condition is given as x(θ, 0) = 0.
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Figure 1: Hybrid automaton for SHS with random control delays

i.e., the system starts in the first mode. We point out that this is a highly simplified version of
a tracking problem (if c is replaced by a target trajectory c(t)) with a “safety requirement” to
maintain a distance from the target trajectory which in this simple case is captured by penalizing
the system whenever x(θ, t) ≥ b. We can think of a particle that repeatedly tries to get close to
a point c while maintaining a safe distance from it and then returns to a rest position at x = 0
before repeating the process.

Figure 1 shows a hybrid automaton model for this system, consisting of four discrete states
(modes). Invariant sets for each mode are indicated by conditions in brackets. The guard
conditions causing discrete state transitions are shown on the transition arrows and ω is used to
represent the event occurring after some random delay following the condition x = θ. Note that
the time-driven dynamics satisfy (18) in modes 1,2,3; the distinction is used to identify mode 3
when [x ≥ b], during which a cost is incurred as shown in (20), and also to identify mode 2 in
which there is a pending control action which has yet to take effect while [θ < x < b]. Due to
the possibly random process λ(t), the ω event might take place before or after [x ≥ b] becomes
true. If it happens after [x ≥ b] is true, then it is also possible that the guard condition x < b
is satisfied before ω occurs. The controller is designed so that if the transition due to the guard
condition x < b occurs prior to ω, then the ω event is disabled. This implies that no ω event
is feasible in mode 4, in which the time-driven dynamics (19) are in effect. However, it is still
possible that, while in mode 4, x(θ, t) ≥ b due to λ(t), which would incur some additional cost.
For simplicity, we assume that λ(t) is bounded (w.p. 1 if it is random) and that u is selected
so that −u + λ(t) < 0, thus ensuring that no transition from 4 to 3 is feasible. Along the same
lines, it is also possible that a transition from mode 2 to mode 1 takes place so that the ω event
would occur in that mode; however, the controller is designed to disable the ω event if that were
to happen.

Recalling the event classification of the previous section, we first observe that there are no

11



Figure 2: Modified hybrid automaton for SHS with random control delays

exogenous events. On the other hand, there are three endogenous events: (i) The event cor-
responding to the guard condition x = θ being satisfied, (ii) The event corresponding to the
guard condition x = b being satisfied, and (iii) The event corresponding to the guard condition
x = 0 being satisfied. Finally, we observe that an ω event is induced by the first of these three
endogenous events. Therefore, we need to introduce additional state variables ym(t) (strictly
speaking, ym(θ, t)) as in (13) with C(t) = 1 and y0 = ω(τm). The complete hybrid automaton
model is then shown in Fig. 2, where the label ω is replaced by the guard condition ym = 0
indicating that ym = 0 for some m = 1, 2, . . . which was previously such that ym > 0. Note,
however, that when the transition from mode 3 to mode 4 occurs due to the condition x < b,
the state variable ym(t) is reset from a positive value to 0. Similarly, if a transition from mode
2 to mode 1 occurs due to the condition x = 0, the state variable ym(t) is reset from a positive
value to 0. This means that in this case (13) must be modified to include the reset function

r(q, q′, ym(τk)) =
{

0 q = 3, q′ = 4 or q = 2, q′ = 1
ym(τ−k ) otherwise

(21)

The reset condition is not explicitly shown in Fig. 2, but is implicit in the invariant condition
ym = 0 active in modes 4 and 1.

Despite the operational simplicity of this system, we can see that the actual hybrid automaton
that describes it is quite elaborate. We will see next, however, that the evaluation of the IPA
derivatives x′(t), y′m(t) and τ ′k for the state variables and events times as defined in (5) and (14)
is relatively simple.

12



3.1 Infinitesimal Perturbation Analysis (IPA)

We begin with the observation that a sample path of this SHS consists of a sequence of “cycles”:
each cycle starts at mode 1 and consists of one of three possible mode sequences: (1, 2), (1, 2, 4)
or (1, 2, 3, 4) before returning to mode 1. Consider a typical cycle and let τ1, τ2, τ3, τ4 denote
the times when modes 1, . . . , 4 respectively are entered (with the understanding that modes 3, 4
may not be entered at all in a cycle). The initial condition is x(τ+

1 ), the state when the cycle
starts; note that if τ1 = 0, then x(τ+

1 ) = 0 and x′(τ+
1 ) = 0. The cycle will complete at some

time τf when a transition from mode 4 to 1 takes place, at which point the next cycle will start.

While in mode 1, (6) holds over the interval [τ1, τ2) and we have

d

dt
x′(t) = ax′(t) (22)

which implies that
x′(t) = x′(τ+

1 )ea(t−τ1), t ∈ [τ1, τ2) (23)

and, in particular,
x′(τ−2 ) = x′(τ+

1 )ea(τ2−τ1) (24)

Let us now consider all ensuing state transitions in the cycle.

1. At time τ2 a transition from mode 1 to mode 2 takes place. This is due to an endogenous
event with g2 (x (θ, τ2) , θ) = x(τ2)− θ = 0. Applying (11) we get

τ ′2 =
1− x′(τ−2 )

ax(τ−2 ) + λ(τ−2 )
=

1− x′(τ−2 )
aθ + λ(τ−2 )

and using (24):

τ ′2 =
1− x′(τ+

1 )ea(τ2−τ1)

aθ + λ(τ−2 )
(25)

Since the x(t) dynamics remain unchanged in this transition, using (7), we have x′(τ+
2 ) = x′(τ−2 )

and from (24):
x′(τ+

2 ) = x′(τ+
1 )ea(τ2−τ1) (26)

On the other hand, using (13) we have y2(τ+
k ) = ω(τ2) and differentiating with respect to θ gives

y′2(τ
+
2 ) +

∂y2

∂t
(τ+

2 )τ ′2 = 0

where ∂y2

∂t (τ+
2 ) = −1 and we get y′2(τ

+
2 ) = τ ′2. Combining this with (25) results in

y′2(τ
+
2 ) =

1− x′(τ+
1 )ea(τ2−τ1)

aθ + λ(τ−2 )
(27)

Finally, (22) again holds over the interval [τ2, τ3] and we get, similar to (24),

x′(τ−3 ) = x′(τ+
1 )ea(τ3−τ1) (28)
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In addition, applying (6) to y′2(t) over [τ2, τ3), we have

y′2(τ
−
3 ) = y′2(τ

+
2 ) =

1− x′(τ+
1 )ea(τ2−τ1)

aθ + λ(τ−2 )
(29)

2. At time τ3 a transition from mode 2 to mode 3 takes place. If this transition occurs, it is due
to an endogenous event with g3 (x (θ, τ3) , θ) = x(τ3)− b = 0. Applying (11) we get

τ ′3 =
−x′(τ−3 )

ax(τ−3 ) + λ(τ−3 )
=

−x′(τ−3 )
ab + λ(τ−3 )

and using (28):

τ ′3 =
−x′(τ+

1 )ea(τ3−τ1)

ab + λ(τ−3 )
(30)

Since both the x(t) and y2(t) dynamics remain unchanged in this transition, using (7) we have
x′(τ+

3 ) = x′(τ−3 ) and y′2(τ
+
3 ) = y′2(τ

−
3 ) and using (28) and (29):

x′(τ+
3 ) = x′(τ+

1 )ea(τ3−τ1) (31)

y′2(τ
+
3 ) =

1− x′(τ+
1 )ea(τ2−τ1)

aθ + λ(τ−2 )

Finally, (22) again holds over the interval [τ3, τ4) and we get

x′(τ−4 ) = x′(τ+
1 )ea(τ4−τ1) (32)

and

y′2(τ
−
4 ) = y′2(τ

+
3 ) =

1− x′(τ+
1 )ea(τ2−τ1)

aθ + λ(τ−2 )

3. At time τ4 a transition into mode 4 takes place. This can happen in one of two ways, as
described next.

First, a transition from mode 3 to mode 4 may take place due to the guard condition x < b.
This is an endogenous event with g4 (x (θ, τ4) , θ) = x(τ4) − b = 0, so, just as in the previous
case, applying (11) we get:

τ ′4 =
−x′(τ−4 )

ax(τ−4 ) + λ(τ−4 )
=

−x′(τ4)
ab + λ(τ−4 )

and using (32):

τ ′4 =
−x′(τ+

1 )ea(τ4−τ1)

ab + λ(τ−4 )
(33)

In this case, using (7), we get:

x′(τ+
4 ) = x′(τ−4 ) +

[
ax(τ−4 ) + λ(τ−4 ) + u− λ(τ+

4 )
]
τ ′4

= x′(τ−4 ) +
[
ab + λ(τ−4 ) + u− λ(τ+

4 )
]
τ ′4

14



Combining this with (32) and (33) we get

x′(τ+
4 ) =

−u + λ(τ+
4 )

ab + λ(τ−4 )
x′(τ+

1 )ea(τ4−τ1) (34)

In addition, due to the reset condition (21), we get y2(τ+
k ) = 0 and y′2(τ

+
k ) = 0. Finally, while

in mode 4, applying (6) over the interval [τ4, τf ) we have x′(τ+
4 ) = x′(τ−f ) and using (34):

x′(τ−f ) =
−u + λ(τ+

4 )
ab + λ(τ−4 )

x′(τ+
1 )ea(τ4−τ1) (35)

On the other hand, suppose the transition into mode 4 takes place due to the guard condition
y2(τ4) = 0 from either mode 2 or mode 3. This is an induced event which satisfies g4 (y4(τ4), θ) =
y2(τk) = 0. Lemma 1 applies in this case and we immediately get

τ ′4 = τ ′2 =
1− x′(τ+

1 )ea(τ2−τ1)

aθ + λ(τ−2 )
(36)

In this case, using (7), we get:

x′(τ+
4 ) = x′(τ−4 ) +

[
ax(τ−4 ) + λ(τ−4 ) + u− λ(τ+

4 )
]
τ ′4

= x′(τ−4 ) +
[
ax(τ4) + λ(τ−4 ) + u− λ(τ+

4 )
]
τ ′4

where the value of x(τ4) is not specified by the guard condition as in previous cases. Using (32)
and (36) and setting ∆λ(τ4) ≡ λ(τ−4 )− λ(τ+

4 ) (= 0 when λ(t) is continuous), we get

x′(τ+
4 ) = x′(τ+

1 )ea(τ4−τ1) + [ax(τ4) + u + ∆λ(τ4)]
1− x′(τ+

1 )ea(τ2−τ1)

aθ + λ(τ−2 )

=
[ax(τ4) + u + ∆λ(τ4)]

aθ + λ(τ−2 )
+ x′(τ+

1 )ea(τ2−τ1)

[
ea(τ4−τ2) − [ax(τ4) + u + ∆λ(τ4)]

aθ + λ(τ−2 )

]
(37)

In addition, y2(τ+
k ) = 0 and y′2(τ

+
k ) = 0 still apply as before and x′(τ+

4 ) = x′(τ−f ) which gives

x′(τ−f ) =
[ax(τ4) + u + ∆λ(τ4)]

aθ + λ(τ−2 )
+ x′(τ+

1 )ea(τ2−τ1)

(
ea(τ4−τ2) − [ax(τ4) + u + ∆λ(τ4)]

aθ + λ(τ−2 )

)
(38)

5. At time τf a transition into mode 1 takes place and the cycle is complete. This is an
endogenous event with gf (x (θ, τf ) , θ) = x(τf ) = 0 that can occur in either mode 4 or mode 2.
Applying (11) we get

τ ′f =
−x′(τ−f )

−u + λ(τ−f )
(39)

If the transition is from mode 2 to mode 1, then clearly x′(τ+
f ) = x′(τ−f ) = x′(τ+

2 )ea(τf−τ2) and,
recalling (26),

x′(τ+
f ) = x′(τ−f ) = x′(τ+

1 )ea(τf−τ1) (40)
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If the transition is from mode 4 to mode 1, then (7) implies that

x′(τ+
f ) = x′(τ−f ) +

[
−u + λ(τ−f )− ax(τ+

f )− λ(τ+
f )

]
τ ′f

= x′(τ−f )−
[
u + λ(τ+

f )− λ(τ−f )
]
τ ′f

which, in view of (39), gives

x′(τ+
f ) =

λ(τ+
f )

−u + λ(τ−f )
x′(τ−f ) (41)

where the value of x′(τ−f ) depends on the actual mode sequence in the cycle and is given by either
(35) or (38). Thus, in case the induced event never took place, i.e., mode sequence (1, 2, 3, 4)
took place and the transition into mode 4 was the result of the guard condition x < b, the next
cycle completes with

x′(τ+
f ) =

λ(τ+
f )

−u + λ(τ−f )
· −u + λ(τ+

4 )
ab + λ(τ−4 )

x′(τ+
1 )ea(τ4−τ1) (42)

Otherwise, when the induced event takes place, the next cycle completes with

x′(τ+
f ) =

λ(τ+
f )

−u + λ(τ−f )

[
ax(τ4) + u + ∆λ(τ4)

aθ + λ(τ−2 )
+ x′(τ+

1 )ea(τ2−τ1)

(
ea(τ4−τ2) − ax(τ4) + u + ∆λ(τ4)

aθ + λ(τ−2 )

)]

(43)
Given that the initial condition is x′(0) = 0, we can immediately see that until an induced event
occurs in a cycle we have x′(τ+

f ) = 0 and τ ′f = 0. Once, however, the presence of an induced
event results in some x′(τ+

f ) 6= 0, the IPA derivatives for the continuous state and the event
times remain nonzero in general. In addition, it is not hard to show that x′(τ−f ) and τ ′f are
non-negative as long as the cycle starts with x′(τ+

1 ) ≥ 0. However, x′(τ+
f ) can become negative

if λ(τ+
f ) is negative as seen in (41). It is also possible that, in the absence of any restriction on

λ(t), after entering mode 1 the state is such that x(t) < 0 and remains at that mode thereafter
(if desired, this behavior can be prevented by modifying the dynamics in (18) so that ẋ = 0 if
x(t) = 0 and λ(t) < 0).

It is also worth pointing out that the evaluation of the IPA derivatives τ ′k and x′(t) above does
not involve any knowledge of the random delay ω(τk). It requires event time information, an
observation x(τ4) whenever mode 4 in entered, and observations of the process λ(t) only at mode
transition times τ2, τ3, τ4, τf . Moreover, the use of the state variables ym(t) does not affect τ ′k
and x′(t) in this particular SHS because the conditions of Lemma 2.1 are satisfied.

Now let us return to the cost function J(θ) in (20) in order to determine the IPA derivative
dL/dθ. Decomposing a sample path into cycles indexed by k = 1, 2, . . . , let τk,i denote the ith
event in the kth cycle. Let us also define

Ω = {k : x(θ, t) ≥ b, t ∈ [τk,3, τk,4], τk,4 > τk,3, k = 1, . . . , N}
i.e., the subset of cycles which contain a strictly positive interval during which the system is in
mode 3. Then, observe that a sample function L(θ) can be written as

L(θ) =
N∑

k=1

nk∑

i=1

∫ τk,i+1

τk,i

(c− x(θ, t))dt + C
∑

k∈Ω

(τk,4 − τk,3)
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where N is the (sample path dependent) number of cycles in the interval [0, T ], including a
possibly incomplete last one. Differentiating with respect to θ we get

dL(θ)
dθ

=
N∑

k=1

nk∑

i=1

[
(c− x(τk,i+1))τ ′k,i+1 − (c− x(τk,i))τ ′k,i −

∫ τk,i+1

τk,i

x′(t)dt

]
(44)

+ C
∑

k∈Ω

(τ ′k,4 − τ ′k,3)

In the second term, τ ′k,3 is given by (30) with the value of x′(τ+
k,1) obtained at the start of the

kth cycle. On the other hand, τ ′k,4 is given by either (33) if the transition to mode 4 is caused
by the guard condition x < b or by (36) if it is caused by an induced event.

In the first term of (44), the values of τ ′k,i+1 and τ ′k,i are given by the event time derivatives (25),
(30), (33), (36), (39) depending on the event observed. The values of x(τk,i+1) and x(τk,i) are
directly observable and, except for induced events, coincide with 0, θ, or b. Finally, the integral
terms are evaluated as follows. For (τk,1, τk,2), (23) applies and we have

∫ τk,2

τk,1

x′(t)dt = x′(τ+
k,1)

∫ τk,2

τk,1

ea(t−τk,1)dt

=
x′(τ+

k,1)

a

[
ea(τk,2−τk,1) − 1

]

Since the x(t) dynamics are unaffected in (τk,2, τk,3) and (τk,3, τk,4) (if mode 3 is entered),
the expression above remains the same until mode 4 is entered, with τk,1, τk,2 replaced by the
corresponding event times. For (τk,4, τk,5) where x′(t) remains unchanged from x′(τ+

k,4),
∫ τk,5

τk,4

x′(t)dt = x′(τ+
k,4)(τk,5 − τk,4)

where x′(τ+
k,4) is given by either (34) or (37) depending on whether mode 4 is entered as a result

of an induced event or not.

We note that the cost term (c − x(θ, t)) may be replaced by a quadratic cost 1
2(c − x(θ, t))2

without affecting any of our analysis except for the fact that the integral terms in (44) would
require integrating the process λ(t). If this is a random process, then the evaluation of these
integrals would require sample path observations of λ(t) and some numerical integration.

4 A System with Time-Critical Tasks

In this section we consider a resource contention system, modeled as a finite capacity queue,
where time critical tasks are executed. The objective is to optimally trade off a cost due to
tasks that are blocked because there are no resources available (they find the queue full) against
the delay that an accepted task will experience. Specifically, we assume that each task has a
deadline by which it has to be completed and investigate two types of deadlines. A hard deadline
where if the delay exceeds the deadline then a fixed penalty is paid and a soft deadline where
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Figure 3: The SFM System Model

the penalty is proportional to the duration of the deadline violation. The control parameter
of interest is the size of the queue denoted by θ. We point out that increasing θ decreases the
cost due to blocked tasks; however, it also allows the buffer to grow larger which increases the
delay experienced by the tasks. For this problem, we adopt the SFM framework [6] to derive
the IPA estimators; however, we emphasize that the resulting IPA algorithm is computed using
data observed from the actual DES (see Section 4.3 for more details).

Next, we present the adopted SFM which is also shown in Fig. 3. In this context, α(t) is the
fluid arrival rate and β(t) is the maximum rate by which fluid is discharged. These processes
are very general except for two mild technical assumptions that will be described later. The
amount of fluid in the buffer is denoted by x(θ, t) ∈ [0, θ], θ ∈ R+ and its dynamics are shown
below:

dx(θ, t)
dt+

=





0, if x(θ, t) = 0 and α(t)− β(t) ≤ 0,
0, if x(θ, t) = θ and α(t)− β(t) ≥ 0,
α(t)− β(t), otherwise

(45)

whose initial condition will be set to x(θ, t) = x0; for simplicity, we set x0 = 0 throughout the
paper. The overflow rate γ(θ, t) is given by

γ(θ, t) =
{

α(t)− β(t), if x(θ, t) = θ,
0, if x(θ, t) < θ

. (46)

Finally, we point out that a particle that arrives in the system at time t will depart from the
system at time t+ω(θ, t), where ω(θ, t) is the time that the system needs to service all fluid that
arrived up until t. If x(θ, t) = 0, and α(t)− β(t) < 0 then the particle will depart immediately,
i.e., ω(θ, t) = 0. On the other hand, if x(t) > 0, then the particle will depart as soon as all fluid
that has accumulated in the buffer exits. In other words, the following relation should hold

∫ t+ω(θ,t)

t
β(τ)dτ = x(θ, t). (47)

Next, we define the objective function that we aim to optimize

J(θ) = E [L(θ) + C ·D(θ)] (48)
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where L(θ) is the average blocked fluid due to overflow, D(θ) is the average delay deadline
violation cost and C is an appropriate weight between the two. The loss volume is given by

L(θ) =
1
T

∫ T

0
γ(θ, t)dt.

For the delay deadline violation cost we consider two possibilities; a hard deadline (D1(θ)) and
a soft deadline (D2(θ)) as shown below.

D1(θ) =
1
T

∫ T

0
1[ω(θ, t) > d(t)] dt, (49)

D2(θ) =
1
T

∫ T

0
[ω(θ, t)− d(t)]+ dt, (50)

where d(t) denotes the deadline applicable to particles that arrive at time t (independent of the
parameter θ) and [y]+ = max{0, y}.

To complete the overall system dynamics observe that both D1(θ) and D2(θ) are functions of
ω(θ, t) which suggests that ω(θ, t) must be treated as an additional state variable. To derive its
dynamics, we will use the definition of ω(θ, t) in (47). We will adopt the same notation as in
previous sections and set ω̇ = ∂ω

∂t . We will also write ω(t) instead of ω(θ, t) for ease of notation.
Differentiating both sides of (47) with respect to t we get:

(ω̇ + 1) · β (t + ω(t))− β (t) = ẋ

If 0 < x(t) < θ, then ẋ = α(t)− β(t) and it follows that

ω̇ =
α(t)− β (t + ω(t))

β (t + ω(t))

On the other hand, if x(t) = θ, then ẋ = 0 and we get ω̇ = β(t + ω(t)). Finally, if x(t) = 0, then
ω(t) = 0 and ω̇ = 0. To summarize

ω̇ =





0 if x(t) = 0
β(t)−β(t+ω(t))

β(t+ω(t)) if x(t) = θ
α(t)−β(t+ω(t))

β(t+ω(t)) otherwise.
(51)

Even though the dynamics of ω(t) are complicated, we will see that we can still derive simple
expressions for the IPA derivatives dD1(θ)/dθ and dD2(θ)/dθ.

The problem as described above fits the general SHS framework introduced in Section 2. Figure 4
shows a hybrid automaton model for this system, consisting of four discrete states (modes).
Invariant sets for each mode are indicated by conditions in brackets and the guard conditions are
shown on the transition arrows. In this SFM, there are several exogenous events corresponding
to changes in the external processes {α(t)}, {β(t)}, and {d(t)}. In particular, the transition
from mode 1 to mode 2 when the buffer ceases to be empty is an exogenous event corresponding
to a change in the sign of α(t)−β(t) from non-positive to positive; similarly, the transition from
mode 4 to mode 3 when the buffer ceases to be full is an exogenous event corresponding to a
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Figure 4: Hybrid automaton model for the system of Fig. 3

change in the sign of α(t) − β(t) from non-negative to negative. The transition from mode 2
to mode 3 (or mode 3 to mode 2) may be exogenous if it is caused by a discontinuity in d(t)
causing ω(t) − d(t) to switch from non-positive to positive (or from positive to non-positive).
On the other hand, it may be caused by the evolution of ω(t) hitting the switching function
ω(t) = d(t), in which case it is an endogenous event. Additional endogenous events are: (i) The
event corresponding to the guard condition x = θ being satisfied, (ii) The event corresponding
to the guard condition x = 0 being satisfied. We also note that this SFM contains no induced
events.

A typical sample path of this system is shown in Fig. 5 (when β(t) = β and d(t) = d). As

Figure 5: Typical system sample path.

20



already pointed out, the events “buffer ceases to be empty or full” seen in this sample path are
exogenous; these correspond to transitions from mode 1 to 2 and from mode 4 to 3 in Fig. 4.
On the other hand, the events “buffer becomes empty or full” are endogenous and depend on θ;
these correspond to transitions from mode 3 to 1 and from mode 3 to 4 in Fig. 4. It is convenient
to partition a sample path into BT Non-Empty Periods (NEP), i.e., periods where x(θ, t) > 0.
The kth NEP (denoted as Pk) starts with the event “buffer ceases to be empty” at time t = vk,0

and ends with the event “buffer becomes empty” at time t = vk,Sk
, i.e., Pk = [vk,0, vk,Sk

). In
the kth NEP we also identify another (Sk − 1) points vk,j , j = 1, · · · , Sk − 1 where the buffer
either becomes full or ceases to be full. Note that vk,j identifies the event “buffer becomes full”,
if j = 2i + 1, where i = 0, · · · , Sk−1

2 i.e., j is odd. Also, if j = 2i, i.e., j is even, vk,j identifies
the event “buffer ceases to be full”. For completeness, we also define the empty periods as the
maximal intervals such that x(θ, t) = 0. In addition, we define boundary periods as the intervals
during which x(θ, t) is constant and equal to a boundary value, i.e., either empty (x(θ, t) = 0)
which correspond to the intervals (vk,Sk

, vk+1,0) or full (x(θ, t) = θ) which correspond to the
intervals (vk,2i−1, vk,2i), where i = 1, · · · , Sk−1

2 . Similarly, non-boundary periods are all periods
such that 0 < x(θ, t) < θ.

Next, we define the threshold function y(t),

y(t) =
∫ t+d(t)

t
β(τ)dτ. (52)

Thus, a fluid molecule that entered the buffer at t will experience a delay greater than its
deadline d(t) if x(θ, t) > y(t) (see (47)). Figure 5 shows an example where β(t) = β and d(t) = d
are constant for all t, thus y(t) = βd, constant for all t. Observe that the condition “ω > d” in
Fig. 4 is equivalent to the condition “x > y”.

In addition, we define the sequence of event times {uk,j} such that the automaton of Fig. 4
switches between modes M = 2 and M = 3 for the jth time, during the kth NEP (see Fig. 5).
During the kth NEP, this event may occur Mk times, i.e., j = 1, · · · ,Mk and by definition we
let uk,0 = vk,0 and uk,Mk+1 = vk,Sk

, with the understanding that it is possible to have Mk = 0.
Note that during the intervals (uk,2n−1, uk,2n), n = 1, · · · , Mk

2 the automaton is either in mode
3 or 4 and the condition “ω(t) > d(t)” is satisfied. Using the above notation, we can rewrite
sample functions D1(θ) and D2(θ) as follows

D1(θ) =
1
T

BT∑

k=1

(Mk−1)/2∑

n=1

(uk,2n − uk,2n−1) . (53)

D2(θ) =
1
T

BT∑

k=1

(Mk−1)/2∑

n=1

∫ uk,2n

uk,2n−1

(ω(t)− d(t)) dt. (54)

Finally, we make the following assumptions regarding the processes α(t), β(t) and d(t).

Assumption A1: With probability 1, α(t), β(t) and d(t) are piecewise constant functions
independent of θ with α(t) < ∞, β(t) < ∞, and d(t) < ∞.
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Assumption A2: With probability 1, the processes α(t), β(t), and d(t) do not experience any
discontinuity at exactly the same time.

By Assumption A1, we represent a flow rate as a piecewise continuous process, which allows us
to approximate it with an arbitrarily large number of constant segments. Assumption A2 is a
purely technical one allowing two events to occur concurrently with probability 0. Even if it is
violated, one can perform IPA using one-sided derivatives. Given A1 and A2, the process y(t)
is piecewise continuous with 0 ≤ y(t) < ∞. The discontinuities of β(t) are not inherited by y(t)
due to the integral in (52); however, y(t) may inherit the discontinuities of d(t).

4.1 Infinitesimal Perturbation Analysis (IPA)

As in the previous section, we shall use the notation:

x′(t) ≡ ∂x(θ, t)
∂θ

, ω′(t) ≡ ∂ω(θ, t)
∂θ

, u′k,j ≡
duk,j

dθ
, v′k,j ≡

dvk,j

dθ
.

Lemma 4.1 At time t = uk,j, the sample derivative of the delay with respect to θ, ω′(t), is
given by

ω′(t) =
x′(t)

β(t + ω(t))
.

Proof. At t = uk,j , (47) holds with 0 < x(t) < θ. Taking derivatives with respect to θ in (47),
we get

ω′(t)β (t + ω(t)) +
∫ t+ω(θ,t)

t

∂β

∂θ
dτ = x′(t)

and since β(t) is independent of θ, it follows that

ω′(t) =
x′(t)

β (t + ω(t))

yielding the desired result.

Let us now consider all possible transitions in the kth NEP of a typical sample path. Clearly,
exogenous events can have no effect on state variable or event time derivatives, so we concentrate
on the three possible endogenous events.

1. At time uk,j a transition from mode 2 to mode 3 (or from mode 3 to mode 2) takes place. If
the transition is not due to a discontinuity in d(t) (which would be an exogenous event), then
it is due to an endogenous event with switching function ω(uk,j)− d = 0. Applying (11) we get

u′k,j = −

α(u−k,j)− β

(
u−k,j + d(u−k,j)

)

β
(
u−k,j + d(u−k,j)

)


−1

ω′(u−k,j).
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Using Lemma 4.1 and recalling Assumption A2, we get

u′k,j =
−x′(u−k,j)

α(uk,j)− β (uk,j + d(uk,j))
. (55)

Since the x(t) and ω(t) dynamics remain unchanged in this transition, using (7), we have
x′(u+

k,j) = x′(u−k,j) and ω′(u+
k,j) = ω′(u−k,j).

2. At time vk,j with j = 2i + 1, i = 0, · · · , Sk−1
2 a transition from mode 3 to mode 4 takes place

with switching function x(vk,j)− θ = 0. Applying (11) we get

v′k,j = −
x′(v−k,j)− 1

α(v−k,j)− β(v−k,j)
.

In addition, applying (7) gives

x′(v+
k,j) = x′(v−k,j) +

[
α(v−k,j)− β(v−k,j)

]
v′k,j

and combining the two equations implies that

x′(v+
k,j) = 1. (56)

3. At time vk,Sk
a transition from mode 2 to mode 1 takes place with switching function

x(vk,Sk
) = 0. Applying (11) we get

v′k,Sk
=

−x′(v−k,Sk
)

α(v−k,Sk
)− β(v−k,Sk

)
.

In addition, applying (7) gives

x′(v+
k,Sk

) = x′(v−k,Sk
) +

[
α(v−k,Sk

)− β(v−k,Sk
)
]
v′k,Sk

and combining the two equations implies that

x′(v+
k,Sk

) = 0. (57)

It follows from (56) and (57) that x′(t) always resets to 0 at the end of a NEP and then switches
to 1 with every “buffer becomes full” event if one occurs during a NEP.

Let us define

u∗k,j = max{vk,2i : vk,2i < uk,j , k = 1, 2, · · · , i = 0, 1, · · · , j = 1, 2, · · · }

to be the most recent event “buffer ceases to be either full or empty” that occurred just before
t = uk,j . We can then establish the following result.
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Lemma 4.2 Let ST be the finite set of all time instants where d(t) experiences a discontinuity
in the interval [0, T ]. Then

u′k,j =

{ −1
α(uk,j)−β(uk,j+d(uk,j))

if x(u∗k,j) = θ, uk,j /∈ ST

0 otherwise
(58)

Proof. First, as already pointed out, if uk,j ∈ ST then the event at uk,j is exogenous, hence
u′k,j = 0. Next, consider (55). There are two cases: (i) If u∗k,j is such that x(u∗k,j) = 0, then
by (57) we have x′(u∗k,j) = 0, therefore, u′k,j = 0, and (ii) If u∗k,j is such that x(u∗k,j) = θ, then
by (56) we have x′(u∗k,j) = 1, therefore, u′k,j = −1/[α(uk,j) − β(uk,j + d(uk,j))] and the result
follows.

Now we are ready to derive the IPA estimators for the performance metrics of interest D1(θ)
and D2(θ). For the IPA estimator of L(θ) the reader is referred to [6].

Lemma 4.3 The sample derivative of D1(θ) with respect to θ is given by

D′
1(θ) =

BT∑

k=1

(Mk−1)/2∑

n=1


−

1
[
x(u∗k,2n) = θ

]

α(uk,2n)− β(uk,2n + d(uk,2n))
+

1
[
x(u∗k,2n−1) = θ

]

α(uk,2n−1)− β(uk,2n−1 + d(uk,2n−1))




The proof follows easily by differentiating (53) and then substituting the result from Lemma 4.2.
Next, the question that arises is how one can compute D′

1(θ). Assuming that one has a way
of estimating the instantaneous arrival and service rates, the only information missing is the
time instants uk,n which are the arrival times of certain “molecules” that will violate the delay
threshold. As described in detail in Section 4.3, this is easily doable in a DES setting.

Lemma 4.4 Assuming β(t) = β constant, the sample derivative of D2(θ) is given by

D′
2(θ) =

1
β

BT∑

k=1

(Mk−1)/2∑

n=1

∫ uk,2n

uk,2n−1

x′(θ, t)dt

where each integral I
uk,2n
uk,2n−1 =

∫ uk,2n

uk,2n−1
x′(t)dt is evaluated depending on the value of vk,1 as

follows.

• If uk,2n < vk,1, then I
uk,2n
uk,2n−1 = 0.

• If uk,2n−1 < vk,1 < uk,2n, then I
uk,2n
uk,2n−1 = uk,2n − vk,1.
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• If vk,1 < uk,2n−1, then I
uk,2n
uk,2n−1 = uk,2n − uk,2n−1.

The proof follows easily by differentiating (54) and then substituting the results from Lemma 4.1
(by definition, for all points uk,j , ω(uk,j)−d(uk,j) = 0). Note that this sample derivative is again
very easy to implement. It simply consists of an accumulator (double sum) of time intervals as
indicated by the three considered cases. This result holds also for time varying d(t), however, if
β(t) is also time varying, then some numerical integration may be needed (see Lemma 4.1).

An important observation from both Lemmas 4.3 and 4.4 is that the IPA derivatives for the
two metrics D1(θ) and D2(θ) do not require any knowledge of delay ω(t) which was used for
modeling purposes but ultimately it is not involved in the IPA evaluation. The IPA evaluation
depends only on detecting “buffer full” and “buffer empty” events and their times, y = βd events
and their times uk,j and also α(uk,j) − β(uk,j + d(uk,j)). The latter may be a little difficult to
obtain in a SFM setting, however, as mentioned earlier, in a DES all these quantities can be
easily evaluated (see Section 4.3).

4.2 Unbiasedness

In this section we show that the IPA estimators derived in the previous section are unbiased.
To show the unbiasedness property we make the following mild assumptions.

Assumption A3: Let τ1, · · · , τM be the time instants when the net inflow process α(t)− β(t)
changes value, and let Ri = α(τi) − β(τi), i = 1, · · · ,M . Assume that Rmin ≤ Ri ≤ Rmax and
that there exists R < ∞ such that the pdf of Ri satisfies fRi(r) ≤ R < ∞ for all Rmin < r <
Rmax.

Assumption A4: Let Xi = x(θ, τi), i = 1, · · · ,M where τi is defined in Assumption A3.
Assume that the pdf of Xi satisfies fXi(Xi) ≤ P < ∞ for all 0 ≤ Xi ≤ θ. Also, assume that, for
some ε > 0, fXi(Xi) = 0 for all Xi such that |Xi − y(τi)| < ε.

Assumption A3 is a mild condition requiring that rates do not become infinite, which is expected
in practice and can obviously be verified. Assumption A4 is a technical condition that does
not allow the net inflow process to change rate exactly (or arbitrarily close) to points where
x(θ, t) = y(t).

Theorem 4.1 Under assumptions A1-A4, the sample derivative of Lemma 4.3 is unbiased with
respect to the objective function (49).

Proof. Existence is guaranteed by Assumptions A1 and A2. Therefore, we only need to show
Lipschitz continuity of D1(θ). Lipschitz continuity can be shown using the mean value theorem.
For D1(θ), let θ < θ̄ < θ + ∆θ such that

dD1(θ̄)
dθ

=
D1(θ + ∆θ)−D1(θ)

∆θ
.
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Thus we need to show that dD1(θ̄)
dθ is bounded by a random variable Q with E [Q] < ∞. From

Lemma 4.3, by simply re-indexing all terms, we get

D′
1(θ) =

∑

j

1
[
x(u∗j ; θ) = θ

]

|α(uj)− β(uj + d(uj)|

During any interval Ii = [τi, τi+1), i = 0, · · · ,M − 1, the net inflow rate Ri is constant for all
t ∈ Ii. Thus, we can rewrite

D′
1(θ) =

M∑

k=1

1[Ck]
Rk

≡
M∑

k=1

Gk (59)

where Ck is the event that x(t0; θ) = y(t0) for some t0 ∈ Ik, and 1[Ck] is the indicator function
that takes the value 1 if the event occurred during Ik and 0 otherwise. Note that during any
Ik only a single Ck event can occur since during the interval the net inflow is constant. The
random variable Gk is defined so that Gk = 1[Ck]

Rk
. Then,

E [Gk] = EXk
[ERk

[EGk
[Gk|Rk, Xk]] |Xk] (60)

and each term is computed next assuming lk is the length of the intervals Ik obviously bounded
by lk ≤ T .

EGk
[Gk|Rk, Xk] =

1
Rk

Pr{1[Ck] = 1 | Rk, Xk}

=
1

Rk
Pr{|Xk − y(τk)| < Rk ∗ lk | Rk, Xk}

=
1

Rk
Pr{Rk >

|Xk − y(τk)|
lk

| Rk, Xk}

=

{
1

Rk
If Rk > |Xk−y(τk)|

lk
0 otherwise

ERk
[EGk

[Gk|Rk, Xk]|Xk] =
∫ Rmax

|Xk−y(τk)|
lk

1
r
fRk

(r)dr

≤ R
(

ln(Rmax)− ln
( |Xk − y(τk)|

lk

))

≤ Z(ε) < ∞
where Z(ε) is some constant that depends only on T and ε and we have used Assumptions A3
and A4. Finally, again by A4,

EXk
[ERk

[EGk
[Gk|Rk, Xk]] |Xk] ≤

∫ θ

0
Z(ε)fXk

(x)dx

≤ θ · P · Z(ε) < ∞.

Thus, from (59), D′
1(θ) is bounded by a random variable Q with E[Q] < M · θ ·P ·Z(ε) < ∞.
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Theorem 4.2 Under assumptions A1-A2, the sample derivative of Lemma 4.4 is unbiased with
respect to the objective function (50).

The proof is similar to the proof of Theorem 4.1. Note that the sample derivative terms in
Lemma 4.4 do not have the Rk at the denominator, thus one can easily show that the sample
derivative is bounded without requiring Assumptions A3 and A4.

4.3 Simulation Results

In this section we consider an “actual” DES and present simulation results where we use the
IPA estimators obtained using the “equivalent” SFM. However, the estimators are computed
using information observed from the sample path of the DES. In this real DES, tasks arrive
according to a generally unknown stochastic process and are placed in the queue that operates
according to a First In First Out (FIFO) policy. Associated with every task is a deadline and a
service time, each taken from some distribution. Note that, since this is a DES, the state x(·)
takes only integer values and the concept of sample derivative may not be well defined (or it
may be zero). To distinguish them from the SFM quantities, in this section we denote the state
by X(·) and the buffer capacity by K and allow them to take real values. In the DES setting,
the objective functions of interest are given below

L̃(K) =
1

NT

NT∑

n=1

1[X(An;K) = K] (61)

D̃1(K) =
1

NT

NT∑

n=1

1[Bn −An > Bn] (62)

D̃2(K) =
1

NT

NT∑

n=1

[Bn −An − Bn]+ (63)

where we used the ·̃ notation to emphasize that these functions are with respect to the DES.
An and Bn are, respectively, the arrival and departure times of task n and Bn is the associated
deadline. NT is the number of tasks that arrived in the interval [0, T ]. In the DES context, one
needs to find K∗ that minimizes an objective function of the form (48).

Since there are no closed form solutions for the required derivatives, we compare the obtained
sample derivatives with the corresponding finite differences ∆W (K) = W (K +1)−W (K) where
W corresponds to the performance metric of interest (D1(K) or D2(K)1). We point out that
the finite difference is not necessarily an accurate estimate of the required derivatives and it
may have significant error at points where the objective function is non-linear. However we use
it as an approximate estimate since there are no analytical results. Another important point
is that, in order to obtain a single estimate using finite differences, one needs to observe the
system under two different parameters K and K + 1. The great advantage of the IPA approach
is that the estimate is obtained by observing the system under a single parameter K. Thus the
IPA approach is more appropriate for on-line parameter optimization.

1L̃(K) is not treated here since it was covered extensively in [6].
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Recall that the SFM is used to derive performance sensitivity estimates which cannot be obtained
in the actual DES, in order to drive the optimization scheme (4) for the original DES. To evaluate
the IPA estimators in Lemma 4.3 and Lemma 4.4, we need to identify all events defined in
the SFM with observable events in the DES sample path. For exogenous events, we monitor
changes in arrival rates α(t) and β(t) through simple rate estimators; if |α(t)− α(t− δ)| > ε for
some small δ and adjustable ε, we detect such changes and similarly for β(t). For endogenous
events, we simply observe when the queue becomes full or empty. One difficulty in identifying
endogenous events is that we have to recognize that in a DES the queue content may “chatter”
near K. For example, suppose at time t the queue is full, i.e., X(t) = K, although the interarrival
time mean is less than the interdeparture time mean; this means the arrival rate is larger than
the output rate, yet it is still possible that for some sample path the departure event will happen
first at time t1 > t, so that X(t1) = K − 1 < K. However, from the comparison of input and
output rates, we know that in the SFM the system does not actually leave θ at t1. Moreover,
suppose at t2 > t1 an arrival event occurs which brings X back to K; then, based on our previous
analysis, since the system does not actually leave mode 4 at t1, the event at t2 should not be
considered as an endogenous event. Thus, during the interval [t, t2], the queue length of the
actual DES “chatters” around the threshold level. However, in the SFM, the system remains in
mode 4 during this period. Then, the question is how to identify the start and end of a “full
buffer period”. We resolve this issue by comparing the service rate β(t) and arrival rate α(t)
as measured on the actual DES sample path. Then, we can identify a “full buffer period” as
starting at τk, if X (τk−1) < K, X (τk) = K, and β(τk) < α(τk); similarly, we detect the end
of this period at τk, if X (τk−1) = K, X (τk) < K, and β(τk) > α(τk). Finally, as mentioned
in the last section, events at times uk,j can be identified by applying timestamps on tasks such
that event time uk,2n+1, k = 1, 2, · · · , n = 0, 1, · · · is the arrival time of the task that violated
the delay threshold constraint following a task that did not violate its constraint; whereas event
time uk,2n, n = 1, 2, · · · , is the arrival time of a task that arrived after uk,2n−1 but did not violate
the deadline constraint.

Finally, even though the estimator in Lemma 4.2 is provably unbiased (for SFM-based objective
functions), in practice there could be numerical problems introduced by the fact that the differ-
ence in its denominator may be close to zero over some time intervals. To avoid such numerical
issues, we use the following heuristic for the computation of D̃′

1(θ) at the expense of a small
bias.

D̃′
1(θ) =

1
NT

∑

k

∑
n


 1

[
x(u∗k,2n) = K

]

c + |α(uk,2n)− β| +
1
[
x(u∗k,2n−1) = K

]

c + |α(uk,2n−1)− β|


 (64)

where c is a small constant and for the purposes of the results presented next, c = 0.2. This
constant is used to prevent numerical problems when A3 is violated in practice, thus it does
not allow the denominator to become very close to 0. Note that in some cases, it is possible
that the estimator of α(u)−β(u) may become very small and, as a result, the estimated u′ may
dominate the value of the double sum (especially when the observation interval is not very long).
The introduction of c may introduce a small bias in the estimation however, it does prevent a
single term of the double sum to dominate its value. Also note that the use of absolute values
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is also justified because at points uk,2n, α(uk,2n) < β and at points uk,2n−1, α(uk,2n−1) > β,
n = 1, 2, · · · (for simplicity, for all scenarios we use a constant β).

In the first scenario, we assume that a source is generating tasks according to a Poisson process
with rate 50 tasks per second. The service time of each task is 18ms fixed. Furthermore, each
task is marked with a deadline which is also deterministic and equal to 90ms.
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(a) Sample derivative of D1(θ)
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(b) Sample derivative of D2(θ)

Figure 6: Sample derivatives with respect to the buffer size for Scenario 1.

Fig. 6(a) presents the normalized estimate D̃′
1(θ) as computed from data observed from the

sample path of the system described in scenario 1. Furthermore, the figure shows the normalized
estimate of D′

1(K) computed using forward finite differences. Fig. 6(b) presents the normalized
estimate D̃′

2(θ) again for scenario 1 together with the corresponding normalized estimate of
D′

2(K) computed using finite differences. The results presented in Fig. 6 correspond to the
average of 30 sample paths of 1 hour simulated time. Notice that for small buffer sizes, no
task experiences any deadline violation and therefore both objectives (and their corresponding
derivatives/finite differences) are 0.

In the second scenario, it is assumed that the source is generating tasks according to a Markov
Modulated Poisson Process. At each state, the source generates tasks according to a Poisson
process with rate λ where λ is a random variable uniformly distributed between 33 and 100
tasks per second. The times when the source switches its rate are exponentially distributed with
mean 1 second. The service time of each task is again deterministic and equal to 20ms. Finally,
the completion deadline of each task is a random variable uniformly distributed between 100
and 300ms.

Figure 7(a) presents the normalized estimate D̃′
1(θ) as computed from data observed from the

sample path of the system described in scenario 2. The figure also shows the normalized estimate
of D′

1(K) computed using finite differences. Fig. 7(b) presents the normalized estimate D̃′
2(θ)

for scenario 2 together with corresponding finite difference estimate. The results presented in

29



2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

E
x
p
ir
a
ti
o
n
 R

a
te

 (
D

1
) 

D
e
ri
v
a
ti
v

e

 

 

(a) Sample derivative of D1(θ)
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(b) Sample derivative of D2(θ)

Figure 7: Sample derivatives with respect to the buffer size for Scenario 2.

Fig. 7 are from a single sample path, 5 hours of simulation time long.

Figure 8 shows an example of applying our IPA estimates and (4) in optimizing the buffer
threshold of a queueing system (again, in the “actual” DES setting). The objective function is
of the form (48), and its accurate estimate is obtained by exhaustive simulation averaged over 100
sample paths for about 4 hours. Note that this estimate is obtained separately beforehand and it
is not used in the optimization process. This gives an optimal point K∗ = 6. For this example,
tasks arrive according to a Markov Modulated Poisson Process, with mean interarrival time
uniformly distributed on [0.6 sec, 1.4 sec]. Service times and delay thresholds are also piecewise
constant random processes with means 0.9 sec and 3.5 sec respectively. The two trajectories
labeled “optimization” are results of implementing (4) using gradient estimates obtained through
IPA on a single sample path with different starting points. We can see that each converges to
a point sufficiently close to the “true” optimum, illustrating the effectiveness of our method.
We also point out that the modification (64) is not used in this case: the numerical effect of an
occasional estimate with very small denominator is negligible during an iterative optimization
process. Note that although we have used this relatively simple one-dimensional problem simply
to illustrate the use of our IPA algorithms, this framework has been successfully applied to
higher-dimensional problems as well [22],[29].

5 Conclusions

We have presented a general framework for carrying out perturbation analysis in SHS of arbitrary
structure. By analyzing sample paths of a SHS, we can obtain derivatives of event (mode
switching) times and of state variables with respect to various controllable parameters. An
attractive property of these derivatives is that they depend exclusively on directly observable
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Figure 8: Optimization of Actual DES using SFM-based gradient estimation

data and they are generally simple to compute. These derivatives ultimately translate into
gradient estimates of performance metrics with respect to the controllable parameters which
are then used to drive standard gradient-based optimization algorithms implementable on line
with little or no distributional information regarding stochastic processes involved. We applied
this framework to two SHS with different characteristics, thus illustrating its generality. We
also addressed the issue of establishing the unbiasedness of the gradient estimators derived and
explicitly showed how to prove it in one of the two SHS studied.

One of the contributions of the paper is the generalization of the concept of “induced” events
which extends the range of SHS we can study. In recent work [25], induced events were seen
to cause potentially infinite event chains giving rise to interesting phenomena with occasionally
counterintuitive effects.
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