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Abstract

This paper provides a tutorial-style overview of sensor networks from a systems and
control theory perspective. We identify key sensor network design and operational control
problems and present solution approaches that have been proposed to date. These include
deployment, routing, scheduling, and power control. In the case of mobile nodes, a sen-
sor network is called upon to perform a “mission”. We present solution approaches to two
types of missions, both involving stochastic mission spaces and cooperative control: reward
maximization missions, and coverage control missions. We conclude by outlining some funda-
mental research questions related to sensor networks and the convergence of communication,
computing, and control.
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1 Introduction

A sensor network consists of a collection of (possibly mobile) sensing devices that can coordinate
their actions through wireless communication and aim at performing tasks such as exploration,
surveillance, or monitoring and tracking “target points” over a specific region, often referred to
as the “mission space”. Collected data are then further processed and often support higher-level
decision making processes. Nodes in such networks are generally inhomogeneous, they have
limited on-board resources (e.g., power and computational capacity), and they may be subject
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to communication constraints. It should be pointed out that sensor networks differ from con-
ventional communication networks in a number of critical ways. First, they allow us to interact
with the physical world, not just computers, databases, or human-generated data. By inserting
decision making and control functionality into such networks one can envision closing the loop
on remote processes that would otherwise be inaccessible. Thus, sensor networks are expected
to realize a long-anticipated convergence of communication, computing, and control [BGK05].
Second, at least some nodes in such a network are “active”, e.g., they execute sensing processes
or they are are mobile; therefore, they are characterized by dynamics making a sensor network
as a whole a challenging dynamic system. In addition, nodes are typically small and inexpen-
sive, operating with limited resources, often in adverse stochastic environments. This implies
that optimization in designing and operating sensor networks is a real need and not a mere lux-
ury. Moreover, the limited computational capabilities of nodes often make distributed control
or optimization methods indispensable. Finally, when it comes to measuring the performance
of sensor networks, the metrics can be quite different from those used in standard communca-
tion networks, giving rise to new types of problems. For example, because of limited energy,
we recognize that nodes have finite lives and we often seek control mechanisms that maximize
an appropriately defined “network lifetime”. Part of such mechanisms may involve switching
nodes on and off so as to conserve their energy or finding means to periodically replenish their
energy supply. When the nodes are mobile, mechanisms are also needed to determine desired
trajectories for the nodes over the mission space and cooperative control comes into play so as
to meet specific mission objectives.

The main goal of this paper is to provide a tutorial-style overview of sensor networks from a
systems and control theory perspective. To do so, we identify key sensor network design and
operational control problems and discuss some solution approaches that have been proposed to
date. Emphasis is placed on rigorously formulating interesting optimization and cooperative
control problems, describing the essential points of solution approaches without getting into
technical details whenever these may be found in cited references. The last part of the paper
addresses the “coverage control” problem, which we concentrate on because the formulation and
solution presented constitute a new contribution and because this particular problem captures
the main features and control challenges encountered in sensor networks: the need to define
network performance in an unconventional manner, the involvement of cooperative control, the
computational limitations of nodes that require a distributed control solution, and the role of
communication constraints. Simulation results are presented throughout the paper to illustrate
various control schemes and algorithms and open research problem are identified.

The rest of the paper is organized as follows. Section 2 describes the basic structure of sensor
networks and classifies them in a way that distinguishes between (i) those with fixed, known
data sources and nodes that are not mobile, and (ii) those where data sources may be unknown
and nodes are mobile. In Section 3, we discuss the main problems related to the first network
type, including deployment, power control, routing, and scheduling. In Section 4, we consider
networks with mobile nodes which are called upon to perform a “mission”. Different types of
missions lead to defining different types of problems and we present two such problems, both
involving stochastic mission spaces and cooperative control: reward maximization missions, and
coverage control missions. In Section 5, we conclude by outlining some fundamental research
questions related to sensor networks and the convergence of communication, computing, and
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control, as well as some more specific issues that developments to date have brought forth.

2 Sensor Network Structure

In its most basic form, the main objective of a sensor network is to collect field data from an
observation region (the “mission space”), denoted by R, and route it to a basestation, denoted
by B (also referred to as “data collection point” or “sink”). At any time instant, there may exist
multiple data sources in R (also referred to as “target points” or simply “targets”). Nodes in a
sensor network collaborate to ensure that every source is sensed and that the data gathered are
successfully relayed to the basestation. During cooperation, a sensor node may fall into one of
the following states: (i) Sensing : a sensing node monitors the source using an integrated sensor,
digitizes the information, processes it, and stores the data in its onboard buffer. These data will
be eventually sent back to the basestation. (ii) Relaying : a relaying node receives data from
other nodes and forwards it towards their destination. (iii) Sleeping : for a sleeping node, most
device functions are either shut down or work in low-power mode. A sleeping node does not
participate in either sensing or relaying. However, it “wakes up” from time to time and listens
to the communication channel in order to answer requests from other nodes. Upon receiving
a request, a state transition to “sensing” or “relaying” may occur. (iv) Dead : a dead node is
no longer available to the sensor network. It has either used up its energy or has suffered vital
damage. Once a node is dead, it cannot re-enter any other state.

Instead of a flat structure, some sensor networks assume a more hierarchical one. In this case,
besides sensors and a basestation, there are also nodes acting as clusterheads. These nodes
generally have more powerful data processing and routing capabilites, at the expense of size and
cost. Each clusterhead is in charge of a cluster of sensor nodes which is obtained by making
a spatial or logical division of the network. By aggregating the data sent from sensor nodes,
a clusterhead refines the observation of the cluster’s region. Then, it may produce some post-
processed data and route them to the basestation. The links connecting clusterheads and the
basestation may have larger data rate in order to support high-speed data transmission. Fig. 1
illustrates this 3-layer structure with sensor nodes (S), routers (R) and a basestation (B).

In most current applications, sensor networks have low data rates. According to the IEEE
802.15.4 standard, the transmission capacity of each channel is 20kb/s (868MHz channel),
40kb/s (915MHz) or 250kb/s (2.4GHz). The data rate required for sensing may be much lower,
which permits a sensor node to act as a data-source and a relay at the same time. Current sensor
networks limit the transmission distance between nodes to less than 100 m (typically, 5-10 m
depending on the environment) and the spatial density of nodes over a mission space varies
between 0.1 and 20 nodes/m2.

Let us start by considering sensor networks where all data sources are fixed and the nodes are
not mobile. Then, the first and most basic problem we face is that of deployment, i.e., position-
ing the nodes so as to meet the goal of successfully transferring data from the sources to the
basestation and, ultimately, to optimize some network performance metric. Once this is accom-
plished, there are numerous operational control issues at different layers (physical, data-link,
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Figure 1: A 3-layer sensor network structure

network, transport, etc.); for a comprehensive overview, see [ASSC02] and [C.C03]. We shall
limit ourselves here to some of the most important problems where dynamic control-oriented
methodolgies may be used and precise mathematical formulations are possible. In particular,
each node must, at a minimum, perform three tasks: (i) Routing, i.e. determining the destina-
tion node of data packets transmitted from some node i on their way to the basestation, (ii)
Scheduling, i.e., determining the precise timing mechanism for transmitting packets of possibly
different types, and (iii) Power control, i.e., making decisions aimed at conserving its energy in
a way that benefits the network as a whole. In the next section, we will discuss these problems
in some more detail.

The second class of sensor networks we will consider is one where nodes are mobile. This
allows a sensor network to carry out missions such as visiting data source targets (so that the
number of mobile nodes may be much smaller than that of the targets sought), searching for
unknown data sources, and tracking targets that may be mobile as well. In this case, the role of
cooperative control becomes essential, as nodes must collaborate to meet mission objectives with
limited resources and under possibly critical time constraints. In Section 4.1, we will discuss a
basic mission that requires cooperation among mobile nodes in visiting targets assigned different
(possibly time-varying) rewards; the goal of the mission is to to maximize the total reward that
can be collected. In Section 4.2, we consider a deployment problem for mobile sensor networks,
which, in this case, is commonly referred to as the coverage control problem. We will present in
some detail a recently developed solution for this problem.

3 Networks with Fixed Data Sources and no Mobility

3.1 The Deployment Problem

The deployment of sensor nodes may be either deterministic or random. The latter situa-
tion arises in applications such as reconnaissance and exploration where sensors are randomly

4



dropped into the mission space and their exact location cannot be precisely controlled. In this
case, research focuses on the relationship between sensor density and network performance. In
[GK98], an analysis is provided of how critical communication power scales with the size of the
network under connectivity constraints, thus indicating the relationship between lifetime and
the density of the network. This work is extended in [SSS03] by also considering the failure
rate of a sensor node. More recent work [MRK+05] studies the deployment of heterogeneous
sensors (i.e., normal nodes and clusterheads) and derives optimal node densities and energies
that guarantee a desired lifetime, while ensuring connectivity and coverage.

Deterministic deployment takes place when the characteristics of the mission space are known in
advance (e.g., in building monitoring). Fundamental questions in this case include: (i) How many
sensor nodes are needed to meet the overall system objectives? (ii) For a given network with
a certain number of sensor nodes, how do we precisely deploy these nodes in order to optimize
network performance? (iii) When data sources change or some part of the network malfucntions,
how do we adjust the network topology and sensor deployment? These questions can be resolved
by an off-line scheme which is akin to the widely studied facility location optimization problem.
One of the commonly applied approaches is to discretize the mission space and place sensor
nodes along grid points. The resulting optimal deployment problem can be formulated as a
linear program. Since all grid points and interconnected links must be considered, this results in
significant combinatorial complexity. Alternatively, one can formulate a nonlinear optimization
problem and seek to exploit the structure of a sensor network in order to develop decomposition
approaches to solve it. In what follows, we review such an approach introduced in [LC05a].

Adopting the source/basestation structure of a sensor network discussed earlier, we consider
M data sources residing at points sm ∈ R

2 (m = 1, . . . , M) and a single basestation B, with
location x0 ∈ R

2. Each data source has a fixed position and a given data rate denoted by rm

(m = 1, . . . , M). To collect data at each data source, a sensor must be deployed at its location.
In addition, since a data source may be far from the basestation and the distance may exceed the
range of radio communication, we also need to deploy a certain number of sensor nodes that work
as relays. Suppose there are N active sensor nodes and each has location xk ∈ R

2 (k = 1, . . . , N).
Let W = (V, E , c, e) be a flow network with underlying directed graph G = (V, E), where V is
the set of nodes and E is the set of links. A capacity vector c = [c1, . . . , c|E|] and a cost vector
e = [e1, . . . , e|E|] are defined on every link j ∈ E with cj , pj ∈ R

+. Each link j starts at node s(j)
and ends at node t(j) and ej denotes some cost metric per unit of data which generally depends
on the node locations. Over this flow network, we can formulate an optimization problem which
minimizes the total cost by controlling on each link j the locations of sensor nodes xs(j) and
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xt(j) and the data rate fm
j from each source m = 1, . . . , M :

min
xi,fm

M∑
m=1

∑
j∈E

ej(xs(j), xt(j))f
m
j (1)

s.t.
∑
j∈E

aijf
m
j = −rmdm

i i ∈ V, m = 1, . . . , M (2)

M∑
m=1

fm
j ≤ cj j ∈ E (3)

fm
j ≥ 0 j ∈ E , m = 1, . . . , M (4)

xm = sm m = 1, . . . , M (5)

In (1), the decision variables are fm and xi, where a component fm
j of the flow vector fm

denotes the data rate on link j (j ∈ E) that originates from source m (m = 1, . . . , M). In the
flow balance equations (2), A = {aij} is the node-link incidence matrix of graph G such that for
all i = 1, . . . , N and j = 1, . . . , |E| [PS98]:

aij =




+1 if arc j leaves node i
−1 if arc j enters node i

0 otherwise

and dm = [dm
i ] is the flow balance vector for data source m such that

dm
i =




−1 i = 0
+1 i = m

0 otherwise

The remaining three equations represent the link capacity constraints, flow non-negativity, and
the fixed locations of the M sources.

Although this formulation is general, we shall consider our objective to be the determination
of a minimum power deployment. In this case, the link cost ej(xs(j), xt(j)) denotes the energy
consumed per unit of data. The function ej(xs(j), xt(j)) can be specified based on an energy
model whose key parameters are the energy needed to sense a bit (Ese), receive a bit (Erx), and
transmit a bit over a distance d (Etx). A 1/dn (n ≥ 1) path loss is commonly assumed [BCG01],
in which case we can write:

Etx = α11 + α2d
n, Erx = α12, Ese = α3 (6)

where α11 is the energy/bit consumed by the transmitter electronics, α2 accounts for energy
dissipated in the transmit op-amp, α12 is the energy/bit consumed by the receiver electronics
and α3 is the energy cost of sensing a bit. Hence, the energy consumed by a node acting as a
relay that receives a bit and then transmits it a distance d onward is

e(d) = α11 + α2d
n + α12 ≡ α1 + α2d

n (7)

Typical numbers for current radios are α1 = 180nJ/bit and α2 = 10pJ/bit/m2 (n = 2) or
0.001pJ/bit/m4 (n = 4) [Hei00]. Therefore, in (1), we have

ej(xs(j), xt(j)) = e(||xs(j) − xt(j)||) = α1 + α2||xs(j) − xt(j)||n (8)
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for each link j ∈ E that starts at node s(j) and ends at node t(j). A property of ej(·) as
formulated in (8) is that it is a convex function of both xs(j) and xt(j). The solution of the
deployment problem is in fact robust with respect to the specific form of ej(·), as long as the
convexity property is preserved.

In [BCG01], a minimum-power topology was proposed based on the assumption that there is
no constraint on the number of intermediate sensor nodes. Under this assumption, the most
energy-efficient path between a data source and the sink is a straight line with multiple hops,
and the minimum-power topology is constructed by building such a path for each data source
in the network. This topology consumes the least power since each data flow rm takes the
shortest path toward the sink and by optimizing the number of intermediate nodes, the power
consumption on this shortest path is also minimized. The theoretical optimal number of hops,
Kopt, including the node that acts as sensor at a data source s, is given by Kopt = D

dchar
where

D = ‖s − b‖ is the distance between s and the basestation b and dchar is the “characteristic
distance” given by

dchar = n

√
α1

α2(n − 1)
where αi, n are defined by the node energy model (6). The corresponding lower bound for power
consumption between some source sm and the basestation is

Pm =
(

α1
n

n − 1
Dm

dchar
− α12

)
rm + α3rm (9)

where Dm = ‖sm − b‖. However, in constructing this minimum-power topology, a large number
of relays is needed, since each data flow is independent and shares no relays with the rest.When
the number of nodes is limited, a natural idea is to minimize the power consumption by (i)
making two or more data flows share some relays, or (ii) deploy fewer relays on some route.
This brings us back to the minimum-power sensor deployment problem (1), which couples two
traditional optimization problems: If flow vectors fm are given and (1) is optimized only over
the locations of sensors xi, (1) can be viewed as a facility location problem; on the other hand,
if sensor locations xi are given and fm are the only decision variables, it can be reduced to a
minimum-cost flow problem. The nonlinearity of the cost function as well as the coupling of
these two problems make (1) difficult to solve. For example, we have found that using standard
Lagrangian relaxation methods does not substantially reduce complexity because this coupling
is tight.

As an alternative, the solution approach proposed in [LC05a] uses a decomposition method
exploiting two facts: (i) The convexity of the link costs ej(xs(j), xt(j)), and (ii) The fact that
in a sensor network data traffic always flows from the sources towards the basestation, which
allows us to reduce the feasible space of fm by only considering flow vectors that form a tree
structure over the network. In addition, we also relax the capacity constraint (3); current sensor
networks indeed operate with light traffic and the actual data flow over a link is unlikely to
reach the link’s capacity. When this capacity is not reached, it is also easy to see that no links
other than those in a tree structure are ever used [PS98] (if any such link is used, the distance
to the sink is increased, hence, the power consumption increases as well).

Problem decomposition. The proposed decomposition method is motivated by the special
structure of the problem. Since the cost ej(·) of link j is a convex function of the location of
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its end points xs(j) and xt(j) and since the total cost in (1) is a weighted sum of all link costs,
this implies that for a given set of flow vectors fm, the cost will also be a convex function of
the locations of sensors xi. This convexity permits the design of a fast algorithm to find the
optimal sensor locations x∗

i and the corresponding minimal cost g(f1, . . . , fM ) for a given set of
flow vectors. More formally,

g(f1, . . . , fM ) = min
xi

M∑
m=1

∑
j∈E

fm
j ej(xs(j), xt(j)) (10)

s.t. xm = sm, m = 0, 1, . . . , M

With g(f1, . . . , fM ) as above, and keeping in mind the network tree structure and the elimination
of (3), the main problem (1) becomes

min
fm

g(f1, . . . , fM ) (11)

s.t.
∑
j∈E

aijf
m
j = −rmdm

i i ∈ V, m = 1, . . . , M (12)

∑
j∈E

bijf
m
j ≤ rm i ∈ V, m = 1, . . . , M (13)

fm
j ∈ [0, rm] j ∈ E , m = 1, . . . , M (14)

where

bij =
{

1 if arc j leaves node i
0 otherwise

In this formulation, (12) are still the flow balance equations, while constraints (13) and (14)
build a unique path between each data source and the basestation, therefore guaranteeing the
tree structure of the network.

Subproblems (10) and (11) suggest an iterative approach for solving the original problem. Start-
ing with a feasible set of flow vectors f1, . . . , fM , the first step is to solve (10), which provides
information used to update the flow vectors. An efficient gradient-based method for doing this
(referred to as the “inner force method”) is detailed in [LC05a]. Briefly, it views the network
as a dynamic system with “inner forces” applied to each node; in particular, a force applied to
node i by link j is defined as

Fij = −
M∑

m=1

fm
j

∂ej(xs(j), xt(j))
∂xi

(15)

Each such force causes node i to move towards the steepest descending direction that leads it to
an equilibrium point (unique, due to convexity) where all forces applied on i are balanced out.

The second step is to solve subproblem (11), i.e., find the optimal routing from all data sources to
the sink in the tree structure resulting from the first step. Although this idea is straightforward,
there is still a difficulty which prohibits its implementation. The difficulty is that g(f1, . . . , fM )
is a non-convex and non-concave function of the flow vectors f1, . . . , fM , which generally implies
the existence of muliple local minima. Thus, we follow a different approach, based on the idea of
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(i) incrementing the number of nodes one at a time, (ii) determining the optimal location of the
new node and the corresponding flow vectors, and (iii) repeating this process until the number
of available nodes N is reached or the cost is sufficiently close to the known lower bound (9).

Incremental iterative approach. In an incremental deployment, the initial step is to begin
with M nodes, each located at one of the M sources, and construct the corresponding tree
structure with the basestation as its root. The associated flow vectors f1, . . . , fM are immediately
given by (12) with aij , bij determined by this simple initial tree structure.

The next step is to add a node and determine its optimal location while preserving the network’s
tree structure. Unfortunately, as the number of nodes increases, the number of possible tree
structures increases exponentially and constructing an efficient algorithm to find the optimal
topology is a crucial issue. The approach proposed in [LC05a] is based on a local topology
adjustment, thus the size of the problem is limited; the price to pay is that global optimality can
no longer be guaranteed. However, since, as discussed above, we know that the optimal deploy-
ment with an unlimited number of nodes consists of multi-hop straight line paths between every
data source and the basestation, we have at our disposal the lower bound (9) that our solution
can be compared to. As numerical results illustrate, this lower bound is rapidly approached by
the proposed algorithm and with a number of nodes significantly smaller than the associated
number Kopt given earlier.

The addition of a node and determination of its optimal location is a 3-step process. First of
all, we determine which part of the network needs a new relay the most. Then, all possible
topology adjustments around this area are obtained. Finally, the power improvement of each
case will be checked and the one which provides the greatest improvement will become the new
configuration. Figure 2 graphically summarizes the overall process.

1. Locate bottleneck node
2. Add node and enumerate candidate tree structures

and corresponding flows (f1,…,fM)t, t = 1,…,T

1. Locate bottleneck node
2. Add node and enumerate candidate tree structures

and corresponding flows (f1,…,fM)t, t = 1,…,T
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Figure 2: Incremental iterative node deployment process

1. Determining the bottleneck node. A bottleneck node is defined as a node around which
a new relay and corresponding new topology would bring the most improvement to the energy
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conservation of the whole network. The bottleneck node is determined by checking the inner
forces applied to nodes: as mentioned earlier, the inner forces on a link contain the gradient
information of the energy consumption on this link. The larger an inner force applied by a link
on the node, the greater the energy savings by shortening this link. Before adding a new node,
all nodes in the network have reached their equilibrium points. Thus, if a node is balanced
under several inner forces which have relatively larger magnitude, it follows that by shortening
one of its links, the energy consumption on this link will improve greatly, but the cost involved
on other links will overwhelm this improvement. Intuitively, we can visualize the area around
this sensor node as being more sparse, and there is a higher need for a new relay in this region.
With these observations in mind, we define the sparseness around node i as

SPi =
∑

j∈V(i)

||Fij ||

with Fij given in (15) and the bottleneck node k is defined to be the node which has the greatest
sparseness. That is,

k = arg max
i=0,...,N

SPi

Obviously, there is no guarantee that the optimal location of the new node is indeed in the
vicinity of the bottleneck node as defined above, so the solution implied by this approach is
generally suboptimal.

2. Enumerating topology adjustment options. The bottleneck node indicates the area
which needs a new relay the most. Once it is determined, the precise placement of this new relay
must be determined. Since we are working on a tree structure, the insertion of a new relay also
means adding a new link. Thus, we need to consider topologies generated when an additional
relay and link are present in the target area. An example will help understand the topology
enumeration process. In Fig. 3, x2 is the bottleneck node. As a node in the tree structure, it
has 3 children nodes, x3, x4 and x5, and its parent is x1. The arrows in the figure indicate these
relationships and x6 is the new node we are adding. Several (but not all) possible topologies
after inserting x6 are shown in Fig. 3. As shown in [LC05a], the number of all possible new
topologies is 3 ·2m−1−2 where m is the number of children of the bottleneck node. For example,
in Fig. 3 there are 10 possible new topologies. In case (a) of Fig. 3, we define x3 to be the child
of new node x6 and x2 to be its parent. As an alternative, if we define x1 as x6’s parent, the
parenthood relationship of x2 and x1 may or may not change: If it does not change, case (d) is
obtained, and if it does, we get case (c).

3. Obtaining a new deployment. The outcome of step 2 when the current number of nodes
is L < N is a number of possible new network tree structures, say TL, each with associated
flow vectors (f1, . . . , fM )t, t = 1, . . . , TL. For each such structure t, subproblem (10) is solved
(as described earlier), giving the corresponding optimal node locations xi,t, i = 1, . . . , L + 1
and cost gt(f1, . . . , fM ). Next, the solution of problem (11) reduces to comparing all such costs
and determining t∗ = arg mint=1,...,TL

gt(f1, . . . , fM ), the corresponding node locations xi,t∗ ,
i = 1, . . . , L + 1, and the flows (f1, . . . , fM )t∗ .

Example. As shown in Fig. 4, a deployment problem for a sensor network with M = 9 data
sources is solved. In this network, rm = 1.0kb/s (m = 1, . . . , 9). Data sources are located on a
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Figure 3: Some possible topologies resulting from the addition of node x6

3 × 3 grid. The sink is located on the left of this grid. The distance between two neighboring
data sources is 300 meters. The distance between the sink and its nearest data source is also
300 meters. In this example, we assume n = 4 and α1 = 180nJ/bit and α2 = 0.001pJ/bit/m4.

Initially, there are only 9 sensors in the network (star nodes in Fig. 4), one for each data source
(N = M = 9). In order to send data back to the basestation, 9 data links have been built as
shown. Next, we incrementally add more sensors into the network which act as relays. Figure
4 demonstrates the min-power deployment configurations obtained when there are L relays
present (L = 5, 10, . . . , 45). As more nodes are deployed, we expect to observe an improvement
in transmission power consumption. Figure 5 demonstrates this improvement. In this figue, L is
the total number of relays in the network (L = N−M). Pself (solid line) is the total transmission
power (mW ) of the network given that relays are deployed using the proposed incremental self-
deployment algorithm. Popt (shown as a triangle) is the minimum power consumption of the
network based on the assumption that there is no constraint on the number of relay nodes (in
this case, Popt = 16.122mW , which is obtained at L = 59). As shown in Fig. 5, for this 9 data
source setting, as L increases the transmission power monotonically decreases towards the lower
bound Popt. The tradeoff between transmission power consumption and the number of relays
deployed in the network is also seen in this figure. When L = 28, the total transmission power
consumption is 16.874mW , which is less than 5% more than the minimum-power consumption
Popt. However, this deployment scheme uses less than half of the relays which are needed to
build up the minimum-power network.

In closing, we should point out that the incremental deployment approach above is based on a
centralized scheme. It assumes the existence of a controller with powerful computational capa-
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Figure 4: A 9 data source example and incremental node deployment

bilities, perfect information of the whole network, and unlimited control over all sensor nodes.
In the case of mobile nodes (to be discussed in Section 4) but still known data sources, an open
problem is the development of distributed algorithms for sensor node deployment through which
an individual sensor node can autonomously decide how to move based on its own knowledge of
the overall system.

3.2 Routing and Scheduling

The wireless nature of sensor networks makes routing and scheduling issues particularly chal-
lenging, especially when one factors in the limited power and computational resources at sensor
nodes, the fact that some nodes may occasionally be in a sleeping state or simply dead, as well
as security concerns. A routing policy is responsible for forwarding packets to their ultimate
destinations. Unlike traditional routing protocols in wired networks which can rely on global
information, routing protocols in sensor networks typically adopt local cost information (e.g.,
distance between two nodes) in order to make routing decisions. In what follows, we limit
ourselves to a brief overview of recent contributions to the routing problem so as to raise the
reader’s awareness of the issues involved as some of them play a crucial role in our discussion of
networks with mobile nodes in Section 4.

A comprehensive survey of routing methods for wireless networks in general can be found in
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Figure 5: Incremental self-deployment algorithm performance as a function of nodes deployed

[AKK04]. For sensor networks in particular, routing algorithms that have been proposed may
be divided into two categories, depending on the network structure adopted, as discussed in
Section 2: flat and hierarchical routing algorithms. Examples of flat algorithms are the “di-
rected diffusion” approach [IGE00], a sink-initiated reactive routing technique in which routes
are established when requested by the sink, and the minimum cost forwarding algorithm in
[YCLZ01], which exploits the fact that in sensor networks the data flow is always towards a
fixed sink: similar to the natural gravity field that drives waterfalls from the top of a mountain
to the ground, at each point, data traffic flows from a high post to a low post along the shortest
path. For this algorithm to work, each node needs to have the least cost estimate from itself to
the sink. Examples of hierachical algorithms are the Low Energy Adaptive Clustering Hierar-
chy (LEACH) scheme [HCB00], a hierarchical routing algorithm in which elected clusterheads
transmit aggregated data to the sink directly, and the Power-Efficient Gathering in Sensor In-
formation System (PEGASIS) algorithm [LR02], in which a node communicates only with its
closest neighbor and takes turns being the leader for transmission to the sink.

Limiting ourselves to flat network structures, it is fair to say that the majority of the proposed
routing methods is based on shortest path algorithms, e.g., [PB94],[PC97],[JM96]. Such algo-
rithms usually require each node to maintain a global cost (or state) information table, which
is a significant burden for resource-constrained sensor networks. Karp and Kung [KK00] have
proposed a Greedy Perimeter Stateless Routing (GPSR) protocol which uses the real positions
of nodes in the network and a packet’s destination to make routing decisions. The advantage
of this protocol is that each node only needs to keep track of local state information. In order
to deal with the issue of node failures, Ganesan et al. [GGSE01] proposed a multipath routing
algorithm, so that a failure on the main path can be recovered without initiating a network-
wide flooding process for path rediscovery. Since flooding consumes considerable energy, this
routing method can extend the network’s lifetime when there are failures. On the other hand,
finding multiple paths and sending packets through them also consumes energy, thus adversely
impacting the lifetime of the network if there are no failures.

The routing policies mentioned above may indirectly reduce energy usage in sensor networks but
they do not explicitly use energy consumption models to address optimality of a routing policy
with respect to energy-aware metrics. In recent years, such “energy awareness” has motivated a
number of minimum-energy routing algorithms which typically seek paths minimizing the energy
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per packet consumed (or maximizing the residual node energy) to reach a destination (e.g.,
[SWR98]). However, as also pointed out in [CT04], seeking a minimum energy (or maximum
residual energy) path can rapidly deplete energy from some nodes and ultimately reduce the
full network’s lifetime by destroying its connectivity. Thus, an alternative perfomance metric is
the network lifetime. Along these lines, Shah and Rabaey [SR02] proposed an Energy Aware
Routing (EAR) policy which does not attempt to use a single optimal path, but rather a number
of suboptimal paths that are probabilistically selected with the intent of extending the network
lifetime by “spreading” the traffic and forcing nodes in the network to deplete their energies
at the same time. In EAR, each node builds a cost information table and propagates local
cost information to other nodes. Costs are determined by the residual energies of each node
and by the distances between them. Each node also maintains a routing probability table
determined by local cost information. In [CT04], routing with the goal of network lifetime
maximization is formulated as a linear programming problem where the decision variables are
source to destination path flows and a shortest cost path routing algorithm is proposed to
efficiently approximate its solution; link costs are defined to combine energy consumption and
residual energy at the end nodes of each link.

Let us take a closer look at the functionality of an energy-aware shortest path routing algorithm
for sensor networks. Returning to the viewpoint of a sensor network as a directed graph G =
(V, E), as discussed in the previous section, let us now denote a node location by si, i ∈ V and
a link by (i, j) ∈ E with a cost eij given by

eij = e(‖si − sj‖) , (i, j) ∈ E (16)

where e(·) is the communication energy consumption on (i, j) as in (8). Over G, a routing
protocol generates a set of “shortest paths” L = {l1, . . . , lN} between each sensor node and the
basestation b. Here, a path li = {(i, j), . . . , (k, 0)} is said to be a “shortest path” between node
i and 0 in the sense that ci =

∑
(j,k)∈li

ejk is minimized over all possible paths between i and
0. It is well-known that the set of shortest paths L forms a tree structure [PS98], and it can
be expressed by a forward index vector H = (h1, . . . , hN ), where hi ∈ {0, 1, . . . , N} denotes
the index of the next-hop node when forwarding data from i. A particular routing protocol is
responsible at each sensor node i for computing the forward index hi and forward cost ci. The
routing protocol also provides node i an upstream vector Ui = (ui

1, . . . , u
i
N ) and a cumulative

flow factor zi defined as

ui
j = 1[hj = i] and zi = ri +

N∑
j=1

ui
jzj

where ui
j indicates whether j is i’s upstream node and zi records the total data rate originated

from i: ri accounts for data collected at i and
∑N

j=1 ui
jzj is the total traffic from upstream nodes.

An example of a routing protocol that dynamically updates the shortest-path set L and generates
at each node i the forward index hi, forward cost ci, upstream vector Ui, and cumulative flow zi

in a distributed manner is the Geographic Energy-Aware Routing protocol (GEAR) proposed
in [YGE01]. According to this protocol, nodes in a sensor network dynamically update next-
hop destinations by repeatedly applying a learning step. Suppose that after the kth learning
step, a node i stores a set of state variables hk

i , ck
i , Uk

i and zk
i which define the current routing.
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Upon the (k + 1)th learning step starting, node i broadcasts a control packet and requests both
forwarding cost ck

j and location sj from all nearby nodes. After receiving replies, i updates
routing by computing new hk+1

i and ck+1
i as follows:

hk+1
i = arg min

j∈Ui

[
ck
j + e (‖si − sj‖)

]
ck+1
i = min

j∈Ui

[
ck
j + e (‖si − sj‖)

]
where Ui is the set of neighboring nodes that respond to node i’s requests. In the case that
hk+1

i �= hk
i , node i sends control packets to node hk

i and hk+1
i in order to inform them of this

routing change. Upon receiving the packet, node hk
i removes i as an upstream node by updating

its state variables Uk+1
hk

i

and zk+1
hk

i

using

u
hk

i
i = 0, zk+1

hk
i

= zk
hk

i
− zk

i

Node hk+1
i , on the other hand, adds i as its upstream node, so that

u
hk+1

i
i = 1, zk+1

hk+1
i

= zk
hk+1

i

+ zk
i

In this way, after a learning step, node i updates its local routing and the corresponding state
variables. As shown in [YGE01], by repeatly performing learning steps at each sensor node, the
resulting forward index vector H converges to the shortest paths in finite time.

Taking a network security viewpoint, deterministic routing policies (i.e., policies where source
nodes send data through one or more fixed paths) are highly vulnerable to node compromising
and falsifying cost information, leading to Denial of Service (DoS) attacks [WS02]. For example,
a “sink-hole attack” compromises a node and broadcasts a fake low cost to neighboring nodes,
thus enticing all such nodes to route packets to it. The neighboring nodes in turn broadcast the
low cost of the compromised node to their neighbors and the end effect is that this node acts as a
sink hole for all packets while also draining the energy of the network nodes. In order to reduce
the effect of such attacks, probabilistic routing is an interesting alternative, since this makes it
difficult for attackers to identify an “ideal” node to take over. In this sense, the EAR policy
is attractive because of its probabilistic routing structure, even though it does not attempt to
provide optimal routing probabilities for network lifetime maximization. Moreover, given the
dynamic behavior of a sensor network in terms of changing topology, node failures, and energy
consumption, one can expect optimal routing probablities to be time-varying. Thus, an optimal
control problem formulation is a natural setting. where the goal is to maximize the network’s
lifetime. In [WC05] it is shown that in a fixed topology case there exists an optimal policy
consisting of fixed routing probabilities which may be obtained by solving a set of relatively
simple nonlinear programming problems.

Turning to the issue of scheduling, the most challenging current issues are again related to
energy awareness and an effort to control the transmission rate at a node based on the state
of the system [UBPG02],[YKP04]. In an Additive White Gaussian Noise (AWGN) channel,
channel capacity is determined by Shannon’s theorem [SW]: C = B log2(1 + SNR), where B is
the channel bandwidth and SNR is the signal-to-noise ratio. Assuming the channel utilization
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ratio is a constant α, 0 < α < 1, the data rate can be represented by r = αC. It can be
seen that increasing the data rate linearly will increase the transmission power exponentially.
The Dynamic Transmission Control (DTC) problem involves controlling the transmission rates,
which will in turn determine the transmission time of a set of tasks, with the objective of
minimizing the total RF transmission energy consumption. This problem has many similarities
to the Dynamic Voltage Scaling (DVS) problem that will be discussed in the next section.

In some cases, the problems of routing and scheduling are jointly treated as a utility maximiza-
tion problem [PLS04] subject to explicit fairness constraints (e.g., imposing equality among all
average transmission rates), modeled through linear inequalities. A transmission of a traffic
class k packet by node i to node j is denoted by (i, j, k). Let rijk denote the net flow rate for an
(i, j, k) or a (j, i, k) transmission and r the corresponding transmission rate vector. Then, the
problem posed in [PLS04] is

max F (r)
s.t. r ∈ Conv(R) ∩ S.

where R be the set of feasible transmission rate vectors (based on power constraints) and S is the
set of rate vectors that satisfy a collection of fairness constraints and flow conservation. It is also
assumed that F (r) is continuous, concave, and bounded in Conv(R). An obvious difficulty in
solving this problem is the need to characterize Conv(R). An efficient decomposition algorithm
is proposed in [PLS04] that terminates in a finite number of iterations and produces a policy that
is asymptotically optimal at low transmission power levels at which sensor networks typically
operate. The resulting policy selects a number of modes at which the network should operate
(i.e., determining who transmits to whom and at what power) and an appropriate time-sharing
schedule among these modes.

3.3 Power control: The Dynamic Voltage Scaling Problem

The issue of controlling the power of a sensor node manifests itself in all problems we have
discussed thus far, e.g., it appears in the objective function of the deployment problem and is a
central part of all energy-aware routing algorithms that have been proposed for sensor networks.
However, in addition to indirect ways of managing power by controling the placement of nodes,
link data rates, and transmission schedules, there are also direct ways of power control. One such
way is by explicitly turning a node off and periodically entering a “sleeping” state, as discussed in
Section 2. Another approach, which we will discuss in this section, is by dynamically controlling
the voltage of a node’s power source while it is not in a “sleeping” state.

As already mentioned, sensor nodes incorporate small, inexpensive devices with limited battery
capabilities. Prolonging battery life is closely tied to the network’s overall performance; in sen-
sor networks, the failure of a few nodes can cause significant topological changes which require
substantial additional power to reorganize the network. In low-power systems, the processor re-
portedly accounts for 18-30% of the overall power consumption and often exceeds 50% [PLS01].
Controlling the voltage and clock frequency provides the means to regulate processor power con-
sumption leading to Dynamic Voltage Scaling (DVS) techniques [PBB98],[PLS01],[SCI+01],[?].
At the heart of these techniques lies the basic fact that the energy consumption E of a device’s
processor is related to the operating voltage V through E = C1V

2 and its processing frequency
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(clock speed) is given by f = V −Vt
C2V where C1, C2 are constants dependent on the physical charac-

teristics of a device and Vt is the threshold voltage, so that V ≥ Vt. These relationships may be
approximate, but the functional interdependence of V , E, and f clearly indicates that reducing
the voltage provides an opportunity to reduce energy, which comes at at the expense of longer
delays. This, in turn, adversely affects performance, with possibly catastrophic consequences in
systems where tasks must satisfy hard real-time constraints [But97]. Thus, managing this trade-
off to take advantage of a quadratic energy reduction through E = C1V

2 without substantially
degrading latency performance becomes an essential design and dynamic control problem.

A number of DVS algorithms have been proposed over the last decade. Most of them are
designed for preemptive scheduling of real-time systems, as in [AMMMA03] and [KSY+02].
Nonpreemptive scheduling is often a better choice in practice, especially for systems with very
limited resources, because uncontrolled preemption can give rise to a large number of context
switches requiring larger stack sizes and increased energy consumption [JSM91],[JLS99]. DVS
algorithms developed for the nonpreemptive case have been reviewed in [HKQ+99]. Many of
them were developed for systems with periodic tasks, as in [SC00]. Aperiodic tasks, on the other
hand, are more likely to occur in a setting consisting of asynchronously operating components
such as a sensor network where sensor nodes asynchronously supply data to a processing node
such as the clusterheads discussed in Section 2.

The fundamental tradeoff between power and delay naturally gives rise to a variety of opti-
mization problems that depend on (i) the importance of task timing, (ii) the ability to control
voltage continuously as opposed to in between tasks only, and (iii) the information based on
which a DVS controller can operate.

Regarding (i), tasks are classified as having “soft” or “hard” timing requirements associated with
them. In the case of soft requirements, the objective function of an optimization problem incor-
porates a cost that penalizes long task completion times (a “task” may involve data processing
at a node or it may refer to transmitting a data packet). In the case of hard requirements, the
problem is formulated with explicit constraints on the task completion times.

Regarding (ii), the simplest form of DVS is to change the voltage with the start of any new task.
Alternatively, however, control may also be applied while a task is processed when a significant
new event takes place (typically, the arrival of a new task at the node) or even at arbitrary time
instants. If a controller is constrained to remain invariant during the full processing of a task,
we refer to it as static, otherwise it is called dynamic. Note, however, that a static controller
can still assign a different voltage value to every new task.

Finally, (iii) pertains to the knowledge the controller has at its disposal when called upon to act.
Normally, we can assume that characteristics of a task such as its required number of operations
(in the case of data processing) or number of bits in a packet (in the case of a transmission task)
are known. On the other hand, the arrival times of tasks may not be known, unless a processor
operates by scheduling in advance a given number of tasks. When the arrival times of tasks
are known, we may develop an off-line controller; otherwise, we refer to an on-line controller
which operates knowing only arrival times of tasks that are already in queue and, possibly, some
limited future arrival times or their estimates.

17



The off-line static control problem with soft timing requirements may be solved using tech-
niques developed for the optimal control of discrete event and hybrid systems. In particular,
problems of these types were addressed in [CCP01] where it was shown that an efficient Forward
Decomposition Algorithm (FA) may be used to avoid the combinatorial complexity that often
comes with such problems. The FA still requires the solution of N convex optimization problems
(where N is the number of tasks) , which is generally demanding for on-line applications with
limited on-board computational capacity. The off-line static control problem with hard timing
requirements, however, possesses structural properties that allow us to further decompose the
problem and solve it without having to rely on any optimization and independent of the physical
characteristics of the devices involved [MZC04]. An interesting recent result related to the static
and dynamic versions of the off-line problem with hard timing requirements is that they both
give the same solution [MC]. The result is significant because it asserts the optimality of a
simple controller that does not require any data collection or processing in environments where
the cost of such actions is high. Moreover, a static controller requires no overhead that would
otherwise be involved in making continuous control adjustments.

In what follows, we will limit our discussion to off-line static control problems. The on-line DVS
control problem remains open when no knowledge of task arrival times is available. If these
arrival times are probabilistically characterized, this gives rise to a stochasic optimal control
problem. Alternatively, if some limited future information is possible, then a receding horizon
control approach can be adopted, which is characterized by several attractive properties as
recently shown in [MC05].

Off-line static control problem formulation. The sensor network node we consider is
modeled as a single-stage first-come-first-served queueing system. Let ai denote the (known)
arrival time of task i and xi denote its departure upon completing processing. The dynamics of
this system are given by xi = max (xi−1,ai) + ui, i = 1, ..., N , where ui is the processing time of
task i. Let θi(ui) be an energy consumption function for task i, which depends on ui. Letting
µi denote the number of operations needed for task i (which may depend on the specifics of this
task) and using the relationships E = C1V

2 and f = V −Vt
C2V we can write

θi(ui) = µiE = µiC1(
Vtui

ui − µiC2
)2 (17)

We emphasize, however, that the precise form of θi(ui) or the values of the constants are not
essential; what matters is only that θi(ui) is a continuously differentiable strictly convex and
monotone decreasing function of ui for ui > µiC2. Note that an additional constraint on V is
imposed by the requirement that V ≤ Vmax, where Vmax is the maximal operating voltage. This,
in turn, leads to a constraint on the control variables:

ui ≥ ui min =
µiC2Vmax

Vmax − Vt

We can now formulate the following problem P1 for the case of soft timing requirements:

min
u1,...,uN

{
J =

N∑
i=1

θi(ui) + ψi(xi)
}

s.t. ui ≥ ui min, i = 1, ..., N ; x0 = 0;
xi = max (xi−1,āi) + ui, i = 1, ..., N.
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where ψi(xi) is a continuously differentiable strictly convex function intended to penalize depar-
ture times. Thus, the cost function above captures the tradeoff between energy and task timing.
In the case of hard timing constraints, each task is also assigned a deadline di and the problem,
referred to as P2, becomes

min
u1,...,uN

{
J =

N∑
i=1

θi(ui)
}

s.t. ui ≥ ui min, i = 1, ..., N ; x0 = 0;
xi = max (xi−1,āi) + ui ≤ di, i = 1, ..., N.

Optimal sample path decomposition. In both problems P1 and P2, the key to obtaining
efficient controllers without resorting to an explicit solution of these hard constrained nonlinear
optimization problems is the fact that there exists a set of indices M = {m1, . . . , mM} with
1 ≤ m1 < · · · < mK ≤ N such that an optimal sample path [a1, x

∗
N ] can be decomposed into

intervals
[a1, x

∗
m1

], [am1+1, x
∗
m2

], . . . , [amk
, x∗

mk+1], . . . , [amM , x∗
N ]

with the following property: x∗
mk

< amk+1 and the optimal cost J∗ of P1 can be written as

J∗ =
M∑

k=1

J∗
k

where, for consistency, x∗
m0

= a1, x∗
mM+1 = x∗

N , and J∗
k is the solution of

min
umk

,...,umk+1

mk+1∑
i=mk

[θi(ui) + ψi(xi)]

s.t. ui ≥ ui min, i = mk, . . . , mk + 1;
xi = xi−1 + ui, i = mk, . . . , mk + 1.

and similarly for P2. It can be shown [CCP01] that each subproblem above is a convex op-
timization problem with linear constraints. In other words, a complex nonlinear optimization
problem with nonlinear, nondifferentiable constraints (because of the max operator involved) is
replaced by a set of much simpler problems. Of course, for this decomposition to be practically
useful we need an effective way for identifying the values of m1, . . . , mM . It is shown in [CCP01]
that for P1 this is possible through a simple efficient algorithm. The case of P2 is particularly
interesting because of the property that di < ai+1 implies i ∈ M [MZC04], so the set M can
be a priori determined. Moreover, one can also show [MZC04] that each [amk

, x∗
mk+1] can be

further decomposed through a set of critical tasks {r1(k), . . . , rR(k)}. Setting τi = ui/µi, the
property of this decomposition is that so that all optimal controls τ∗

i , i = rj(k) + 1, . . . , rj+1(k),
in each [x∗

rj(k), x
∗
rj+1(k)] are constant; in particular,

τ∗
i =

x∗
rj+1(k) − x∗

rj(k)∑rj+1(k)

l=rj(k)+1 µl

, i = rj(k) + 1, . . . , rj+1(k)

and the indices {r1(k), . . . , rR(k)} can also be determined through a low-complexity algorithm.
The resulting Critical Task Decomposition Algorithm (CTDA) derived in [MZC04] is of limited
computational complexity, requiring no optimization problem to be solved. It also has small
space complexity, which makes it appealing for applications involving devices with limited mem-
ory, and it is independent of the details of the energy function, which implies that there is no
need to measure parameters such as C1 or C2 in (17).
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4 Networks with Cooperative Mobile Nodes.

Endowing nodes in a sensor network with mobility drastically expands the spectrum of the
network’s capabilities. Moreover, assuming that each mobile node possesses a certain amount
of decision making autonomy gives rise to a dynamic system with a considerable amount of
flexibility, depending on the extent to which the nodes can cooperate in order to perform a
“mission”. This flexibility, for example, allows us to handle a large number of data source
targets (which we shall henceforth refer as simply “targets”) with a much smaller number of
nodes that can move and visit the targets over time to perform various tasks.

Naturally, mobility also implies an additional layer of complexity. For example, if communication
connectivity is to be maintained, we must ensure that each node remains within range of at least
some other nodes. We must also take into account that mobility consumes a considerable amount
of energy, which amplifies the need for various forms of power control. Another interesting
aspect of mobility is that the exact location of nodes is not always available to other nodes or
to a basestation. This is especially true in settings where GPS tracking is not applicable, such
as locating people or important equipment in a building (this is referred to as “asset tracking”).
The location detection problem is a particularly challenging one, although we do not discuss it
in this paper.

Taking a system and control theory perspective, mobile networks provide the opportunity to
exercise real-time cooperative control involving their nodes. The goal of cooperative control is
to coordinate the actions of the nodes so as to achieve a common objective which we shall refer
to as the mission of the network. Its most popular application to date has been in networks
of Uninhabited Autonomous Vehicles (UAVs) [CPR01],[Clo00],[PPJ+00], in particular study-
ing vehicle trajectory generation for the purpose of formation control, obstacle avoidance, or
stabilization, e.g., see [HS01],[LM02],[GP02],[BL02],[GSM+05].

Depending on the type of mission one wishes to define for a network, a variety of problems can
be formulated in the context of cooperative control. In what follows, we will limit ourselves
to two types of missions that are suited to sensor networks. First, we will discuss a reward
maximization mission, where the mission space contains N target points indexed by i = 1, . . . , N ,
with target i having an associated (possibly time varying) reward Ri. A mission here is the
process of controlling the movement of the nodes and visiting various targets so as to maximize
the total reward collected within a given mission time T . Second, we will consider a coverage
control mission, where the main difficulty is that targets are unknown and the mission involves
positioning the nodes so as to maximize the probability of detecting data originating at the
targets.

4.1 Reward Maximization Missions

In this class of missions, we consider a set A of M mobile nodes indexed by j = 1, . . . , M and
a set T of N targets indexed by i = 1, . . . , N in a 2-dimensional space. Associated with the
ith target is a reward Ri. The mission’s objective is to maximize the total reward collected
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by visiting points in the set T within a given mission time T . The problem is complicated by
several factors: (i) Target rewards may be time-dependent, typically decreasing in time; thus,
the order in which targets are visited by nodes may be critical, (ii) Different nodes have different
capabilities so that assigning specific nodes to specific targets can also be critical, (iii) The exact
location of targets may not always be known in advance, (iv) There may be obstacles in the
mission space, which constrain the feasible trajectories of nodes.

This setting gives rise to a complex stochastic optimal control problem whose solution is compu-
tationally intractable even for relatively simple mission control settings. It is, therefore, natural
to decompose it into various subproblems at different levels – from detailed motion control to
higher-level path planning and assignment of nodes to targets. For example, [CW02],[FPS03]
address issues of dynamically allocating resources, while [BTAH02] formulates the problem of
cooperative path planning as a mixed-integer linear program (MILP) that incorporates task
timing constrains and the presence of obstacles. An alternative to this functional decomposition
approach is one based on time decomposition. The main idea is to solve an optimization prob-
lem seeking to maximize the total expected reward accumulated by the network over a given
time horizon, and then continuously extend this time horizon forward (either periodically or
in purely event-driven fashion). This idea, introduced in [CL02], is in the spirit of Receding
Horizon (RH) schemes, which are associated with model-predictive control and used to solve op-
timal control problems for which feedback solutions are extremely hard or impossible to obtain;
see [MM90],[CSGL01],[SF01] and more recently [FPP04],[DM04],[RH04],[FB04]. The resulting
cooperative control scheme dynamically determines node trajectories by solving a sequence of
optimization problems over a planning horizon and executing them over a shorter action hori-
zon. We should emphasize that the optimization problem involved does not attempt to make
any explicit node-to-target assignments, but only to determine headings that, at the end of the
current planning horizon, would place nodes at positions such that a total expected reward is
maximized. Thus, it is a relatively simple problem to solve. It turns out, however, that node
trajectories actually converge to targets, despite the fact that this approach, by its nature, was
never intended to perform any such discrete node-to-target assignment. In what follows we
outline the approach which is described in detail elsewhere [LC04a].

The location of the ith target is denoted by yi ∈ R
2. Note, however, that some of the target

locations may not be known to the cooperating nodes. Let xj(t) ∈ R
2 denote the position of the

jth node at time t, with intial positions given by xj0, j = 1, . . . , M . For simplicity, we assume
nodes travel at constant velocity throughout the mission, i.e.,

ẋj(t) = Vj

[
cos uj(t)
sin uj(t)

]
, xj(0) = xj0 (18)

where uj(t) ∈ [0, 2π] is the controllable heading of node j and Vj is the corresponding velocity.
We note that M , N and yi may change in time.

To distinguish the relative importance of targets at time t, each target has an associated reward
function denoted by Riφi(t), where Ri is the maximal reward and φi(t) ∈ [0, 1] is a discounting
function which describes the reward change over time. Note that by appropriately selecting
φi(t), it is possible to capture timing constraints imposed on target points, as well as precedence
constraints. By allowing Ri < 0 for some i and properly selecting φi(t), we may also model an
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obstacle in the mission space (see also [LC04b]). A simple discounting function we can use is
the linear one:

φi(t) = 1 − αi

T
t, αi ∈ (0, 1] (19)

When a deadline is associated with a paricular target point, we can use

φi(t) =

{
1 − αi

Di
t if t ≤ Di

(1 − αi)e−βi(t−Di) if t > Di

(20)

where Di is a deadline assigned to target point i, and αi ∈ (0, 1], βi > 0 are parameters which
may be target-specific and chosen to reflect different cases of interest.

In order to distinguish the effectiveness of nodes relative to a target i, we define a node capability
factor pij(t) ∈ [0, 1], which reflects the probability that a node j visiting point i at time t will
complete its task and collect the reward Riφi(t). We say that vehicle j visits target point i at
time t if ‖xj(t) − yi‖ ≤ si and pij(t) > 0. Thus, si > 0 can be viewed as the size of a target. If
during a visit the node successfully completes its task, it will collect the corresponding reward
and, at the same time, target i is no longer of interest to the mission and it is removed from
the set T . Since a visit at i is related to the consumption of node j’s resources, the capability
factor pij(t) may decrease after the visit, i.e. pij(t+) ≤ pij(t−).

Cooperative structure. Nodes cooperate by dynamically partitioning the mission space and
implicitly allocating regions of it among themselves. Given an arbitrary point y ∈ R

2 in the
mission space (not necessarily a target), we would like to assign this point to vehicles at time t
so that y is assigned to the closest vehicle with the highest probability. To formalize this idea,
we first define a neighbor set Bb(y, t) to include the b closest vehicles to y ∈ R

2 at time t, where
b ∈ {1, . . . , M}. Let Bl(y, t) be the lth closest vehicle to y, i.e.,

Bl(y, t) = arg min{||xk(t) − y|| : k ∈ A, k �= B1(y, t), . . . , Bl−1(y, t)}, l = 1, . . . , M

so that Bb(y, t) = {B1(y, t), . . . , Bb(y, t)}. We then define the relative distance function, δj(y, t),
as follows:

δj(y, t) =




‖xj(t) − y‖∑
k∈Bb(y,t) ||xk(t) − y|| if j ∈ Bb(y, t)

1 otherwise
(21)

Of particular interest is the case b = 2, so we set B(y, t) ≡ B2(y, t). Moreover, when y coincides
with a target point yi, we write Bi(t) ≡ B(yi, t) and similarly δij(t) ≡ δj(yi, t).

Next, we define a relative proximity function qj(y, δj) to be any monotonically nonincreasing
function of δj such that qj(y, 0) = 1, qj(y, 1) = 0. An example of such a function when b = 2 is

qj(y, δj) =




1 if δj ≤ ∆
1

1−2∆ [(1 − ∆) − δj ] if ∆ < δj ≤ 1 − ∆
0 if δj > 1 − ∆

(22)

where ∆ ∈ [0, 1/2) is an adjustable parameter which can be interpreted as a “capture radius”:
if a target i happens to be so close to node j as to satisfy δj(yi, t) ≤ ∆, then at time t node
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j is committed to visit target i. Again, when y coincides with a target yi, we write qij(δij) ≡
qj(yi, δj). We can now view qij(δij) as the probability that target i is assigned to node j at time
t, based on the value of δij(t), and observe that

∑
j qij(δij) = 1.

Cooperative Receding Horizon (CRH) trajectory construction. The objective of the
mission is to collect the maximal total reward by the end of some mission time T (or some
specific event that defines the end of the mission). To meet this goal, we design a cooperative
controller which generates a set of trajectories for each node in the team A during [0, T ]. This
on-line controller is applied at time points denoted by tk, k = 0, 1, . . ., during the mission time.
At tk, the controller operates by solving an optimization problem Pk, whose solution is the
control vector uk = [u1(tk) . . . uM (tk)]. Next, we explain how Pk is formulated.

Suppose that nodes are assigned headings u1(tk), . . . , uM (tk) at time tk, intended to be main-
tained for a planning horizon denoted by Hk. Then, at time tk + Hk the planned positions of
the nodes are given by

xj(tk + Hk) = xj(tk) + ẋj(tk)Hk (23)

Define
τij(uk, tk) = (tk + Hk) + ||xj(tk + Hk) − yi||/Vj (24)

and note that τij(tk,uk) is the earliest time that node j can reach target i under the condition
that it starts at tk with control dictated by uk and then proceeds directly from xj(tk +Hk) to the
target at yi. We are interested in the maximal reward that node j can extract from target i if it
reaches the target at time τij(tk,uk). Clearly, this is given by Riφi[τij(tk,uk)]. For convenience,
define

φ̃ij(uk, tk) = φi[τij(uk, tk)] (25)

where it is worth pointing out that φ̃ij(·), unlike φi(·), depends on both i and j. It is also clear
that the probability of extracting this reward, evaluated at time tk, is given by pij [τij(tk,uk)].
For convenience, we set

p̃ij(uk, tk) = pij [τij(uk, tk)] (26)

Returning to the function qij(δij) ≡ qj(yi, δj) defined earlier, we are interested in its value at
t = tk + Hk and define

q̃ij(uk, tk) = qij [δij(tk + Hk)] (27)

Using the notation Ak and Tk to denote dependence of these sets on tk, we can now present the
optimization problem Pk, formulated at time tk, as follows:

max
uk

N∑
i=1

M∑
j=1

Riφ̃ij(uk, tk) · p̃ij(uk, tk) · q̃ij(uk, tk) (28)

with φ̃ij(tk), p̃ij(tk), and q̃ij(tk) as defined in (25),(26), and (27) respectively. The expression
Riφ̃ij(tk) · p̃ij(tk) · q̃ij(tk) in (28) can be seen as the expected reward that node j collects from
target i, evaluated at time tk using a planning horizon Hk.

Problem Pk is parameterized by the planning horizon Hk, which is critical in obtaining desirable
properties for this CRH controller. In particular we will set

Hk = min
j∈Ak,i∈Tk,pij(tk)>0

{‖yi − xj(tk)‖ /Vj} (29)
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i.e., the smallest “distance” (in time units) between any target and any capable node at time
tk. It is shown in [LC04a] that this choice is crucial to ensure that CRH trajectories always
converge to targets. Moreover, from our definition of a node “visiting” a target, it follows that
Hk > minj∈Ak,i∈Tk,pij(tk){si/Vj} where si > 0 is the size of i. At the time of a visit, either the
task at the target is completed and the target is removed from the set Tk or the node depletes
its resources (i.e., pij(tk) = 0); the planning horizon is also re-evaluated at this point.

Upon getting the optimal uk for (28) based on Hk and all state information available at tk, all
nodes follow this control for an action horizon hk ≤ Hk. The process is then repeated at time
tk+1 = tk +hk, k = 0, 1, . . . The value of hk is determined by two factors. First, if an unexpected
event takes place at some te ∈ (tk, tk + hk), then we set hk = te − tk. Otherwise, we simply
update the control after a prespecified amount of time. Thus, in general, {tk} is a random
sequence. The CRH controller terminates when (i) all the target rewards are collected, (ii) all
nodes are eliminated, (iii) nodes deplete all their resources, or (iv) the mission time expires.

As far as computation is concerned, the complexity of this approach is independent of N and
several orders of magnitude more efficient than a discrete assignment algorithm where each
node i is assigned to a sequence of targets, as discussed in [LC04a]. The main question, how-
ever, is whether CRH trajectories are guaranteed to visit targets, since nodes are never ex-
plicitly assigned to them. This property is referred to as trajectory stationarity. Specifically,
for a trajectory X(t) = {x(t) : x(t) = [x1(t) . . . xM (t)]}, if there exists some tv < ∞, such that
‖xj(tv) − yi‖ ≤ si, i ∈ T , j ∈ A, then x(t) is a stationary trajectory, and we say that the
trajectory xj(t) converges to target i. A key contribution of [LC04a] is to show that the CRH
controller indeed generates stationary trajectories under a certain condition. which characterizes
a potential function derived from the cost function in (28). It is, however, difficult to show that
this condition is satisfied for all N , M . For the 1-node N -target case, it can be shown that this
condition reduces to a simple test. For 2-node problems, it is still possible to show analytically
that this condition is satisfied for 1 or 2 targets. Beyond these cases, the analysis becomes highly
complicated, but simulation results illustrate the effectiveness of this approach for very large
values of N , M . More recently, a distributed version of the CRH controller developed in [LC04b]
has also been successfully implemented in a laboratory setting with small robots playing the role
of mobile nodes. Figure 6 shows a picture of this setting with three wireless robots performing a
reward maximization mission involving eight targets (the color coding denotes different rewards
and deadlines).

Example. Fig. 7 shows a reward maximization mission example with 4 nodes (P,G,BK,BL,
all initially located at the same point), where only a single target is initially known (labeled
1). The remaining points indicated are unknown to the network, but can be detected if a node
happens to be within a “sensor detection area” (in this case, a circle of radius 10

3 units). Thus,
an essential aspect of the mission is the search for targets. The implementation of the controller
requires selecting the planning and action horizon Hk and hk respectively. In what follows, Hk

is given by (29) and hk is selected so that

hk =
{

1
2Hk if Hk > r
Hk if Hk ≤ r

(30)

where, for any target point, r is a small distance from it (in the sequel, r = 2). The reward
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Figure 6: Laboratory setting for various reward maximization missions

discounting function φi(t) is given by (20), qij(δij) is given by (22) and δij = δj(yi, t) is defined
by 21 with b = 2.

In this case, the CRH controller serves to disperse the 4 nodes so that they are headed in different
directions. In Fig. 7(a), because targets 4,8,9,11 are located within the detection radius defined
by the initial location, they become known to the network (it is assumed that nodes can fully
communicate among them). Vehicles BK, G, and BL are headed for these targets, while vehicle
P is heading for target 1. In Fig. 7(b) all but one target points have been detected. An
example of the controller’s cooperative nature is seen in the behavior of BK: it was originally
accompanying P towards 1, up to a point where the effect of qij(δij) in (28) is such that the
expected reward is maximized by having node BK be “repelled”, which is tantamount to this
node searching for unknown targets and in fact detecting some as seen in Fig 7(b) relative to
Fig. 7(a). Along the same lines, node G, after visiting target 4, is directed away from the areas
that the other three nodes are covering. Although this node fails to detect any of the remaining
unknown targets, it will continue in “search mode” during the mission. On the other hand, node
BL visits a number of targets that it happens to detect along its trajectory.

4.2 Coverage Control Missions

As we have already seen in the deployment problem considered in Section 3.1, the performance
of a sensor network is sensitive to the location of its nodes in the mission space. When nodes
are mobile and data source targets are either unknown or are mobile as well, the problem of
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Figure 7: An example of a mission with unknown targets

deploying sensors in order to meet the overall system objectives is referred to as the coverage
control or active sensing problem [MKPS01],[CMKB04],[MLBG02]. In particular, sensors must
be deployed so as to maximize the information extracted from the mission space while main-
taining acceptable levels of communication and energy consumption. The static version of this
problem involves positioning sensors without any further mobility; optimal locations can be de-
termined by an off-line scheme which is akin to the widely studied facility location optimization
problem. The dynamic version allows the coordinated movement of sensors, which may adapt
to changing conditions in the mission space, typically deploying them into geographical areas
with the highest information density.

Because of the similarity of coverage control with facility location optimization, the problem is
often viewed in that framework. In [CMKB04], the authors develop a decentralized coverage
control algorithm which is based on Voronoi partitions and the Lloyd algorithm. In [MKPS01]
a coverage control scheme is proposed which aims at the maximization of target exposure in
some surveillance applications, while in [ZC03] a heuristic algorithm based on “virtual forces”
is applied to enhance the coverage of a sensor network. Much of the active sensing literature
[MLBG02] also concentrates on the problem of tracking specific targets using mobile sensors
and the Kalman filter is extensively used to process observations and generate estimates.

Some of the methods that have been proposed for coverage control assume uniform sensing
quality and an unlimited sensing range. Partition-based deployment methods, on the other
hand, tend to overlook the fact that the overall sensing performance may be improved by sharing
the observations made by multiple sensors. There are also efforts which rely on a centralized
controller to solve the coverage control problem. As we have already discussed, a centralized
approach does not suit the distributed communication and computation structure of sensor
networks. In addition, the combinatorial complexity of the problem constrains the application of
such schemes to limited-size sensor networks. Finally, another issue that appears to be neglected
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is the cost of relocating sensors. The movement of sensors not only impacts sensing performance,
but it also influences other quality-of-service aspects in a sensor network, especially those related
to wireless communication: because of the limited on-board power and computational capacity,
a sensor network is not only required to sense but also to collect and transmit data as well. For
this reason, both sensing quality and communication performance need to be jointly considered
when controlling the deployment of sensors.

This motivates a distributed coverage control approach for cooperative sensing [LC05b], which
we will present in this section. The mission space will now be modeled using a density function
representing the frequency that specific events take place (e.g., data are generated at a certain
point). At the two extremes, this allows us to model a mission space with no information
on target locations (using a uniform density function) or one with known locations (using a
probability mass function). We assume that a mobile sensor node has a limited range which
is defined by a probabilistic model. A deployment algorithm is applied at each mobile node
such that it maximizes the joint detection probabilities of random events. We assume that the
event density function is fixed and given; however, in the case that the mission space (or our
perception of the mission space) changes over time, the adaptive relocation behavior naturally
follows from the optimal coverage formulation.

Mission space and sensor model. We model the mission space as a polyhedron Ω ⊂ R
2, over

which there exists an event density function R(x), x ∈ Ω, that captures the frenquency or density
of a specific random event taking place (in Hz/m2). R(x) satisfies R(x) ≥ 0 for all x ∈ Ω and∫
Ω R(x) < ∞. Depending on the application, R(x) may be the frenquency that a certain type of

data source appears at x, or it could be the probability that a variable sensed (e.g., temperature)
at x exceeds a specific threshold. In the mission space Ω, there are N mobile nodes located at
s = (s1, . . . , sN ), si ∈ R

2, i = 1, . . . , N . When an event occurs at point x, it emits a signal and
this signal is observed by a sensor node at location si. The received signal strength generally
decays with ‖x − si‖, the distance between the source and the sensor. Similar to the model in
[CPRS02], we represent this degradation by a monotonically decreasing differentiable function
pi(x), which expresses the probability that sensor i detects the event occurring at x.

As an example, if we assume signal strength declines polynomially with distance and taking into
consideration environmental noise, the signal strength received at si is expressed by Ei(x) =

E
||x−si||n + ηi, where E is the total energy emitted when an event takes plance, ηi is the noise,
and n is a decay coefficient (typically selected so that 2 ≤ n ≤ 5). If a sensor detects an event
when Ei is beyond some threshold, then pi(x) can be expressed as

pi(x) = Prob
[

E

||x − si||n
+ ηi > c

]
= Prob

[
ηi > c − E

||x − si||n
]

With a given probability distribution of noise (e.g., additive white Gaussian noise), this may be
used as the sensor model. Alternatively, a sensor model with a simpler form may be:

pi(x) = p0ie
−λi||x−si|| (31)

where the detection probability declines exponentially with distance, and p0i, λi are determined
by physical characteristics of the sensor.
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Optimal coverage problem formulation and distributed control. When deploying mo-
bile sensor nodes into the mission space, we want to maximize the probability that events are
detected. This motivates the formulation of an optimal coverage problem. Assuming that sen-
sors make observations independently, when an event takes place at x and it is observed by
sensor nodes, the joint probability that this event is detected can be expressed by

P (x, s) = 1 −
N∏

i=1
[1 − pi(x)] (32)

The optimal coverage problem can be formulated as a maximization of the expected event
detection frequency by the sensor nodes over the mission space Ω:

max
s

∫
Ω

R(x)P (x, s)dx (33)

In this optimization problem, the controllable variables are the locations of mobile sensors in
the vector s. The problem may be solved by applying a nonlinear optimizer with an algorithm
which can evaluate integrals numerically. In this case, a centralized controller with substantial
computational capacity is required. In a mobile sensor network, the basestation is a likely
candidate for such a controller. However, this solution is only suitable for networks of limited size.
Otherwise, both the complexity of the optimization problem and the communication overhead
will make this centralized scheme infeasible.

Thus, instead of using a centralized scheme, we will develop a distributed control method to
solve the optimal coverage problem. We denote the objective function in (33) by

F (s) =
∫
Ω

R(x)P (x, s)dx (34)

When taking partial derivatives with respect to si, i = 1, . . . , N , we have

∂F

∂si
=

∫
Ω

R(x)
∂P (x, s)

∂si
dx (35)

If this partial derivative can be evaluated locally by each mobile node i, then a gradient method
can be applied which directs nodes towards locations that maximize F (s). In view of (32), the
partial derivative (35) can be rewritten as

∂F

∂si
=

∫
Ω

R(x)
N∏

k=1,k �=i

[1 − pk(x)]
dpi(x)
ddi(x)

si − x

di(x)
dx (36)

where di(x) ≡ ‖x − si‖. It is hard for a mobile sensor node to directly compute (36), since it
requires global information such as the value of R(x) over the whole mission space and the exact
locations of all other nodes. In addition, the evaluation of integrals remains a significant task
for a sensor node to carry out. To address these difficulties, we first truncate the sensor model
and constrain its sensing capability by applying a sensing radius. This approximation is based
on the physical observation that when di(x) is large, pi(x) = 0 for most sensing devices. Let

pi(x) = 0,
dpi(x)
ddi(x)

= 0 for all x s.t. di(x) ≥ D (37)
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2D  

Figure 8: Defining neighbor sets

where D denotes the sensing radius. Thus, (37) defines node i’s region of coverage, which is
represented by Ωi = {x : di(x) ≤ D}. Since pi(x) = 0, dpi(x)/ddi(x) = 0 for all x /∈ Ωi, we can
use Ωi to replace Ω in (36). Another byproduct of using (37) is the emergence of the concept of
neighbors. In (36), for a point x ∈ Ωi and a node k �= i, a necessary condition for the detection
probability pk(x) to be greater than 0 is dk(x) ≤ D. As shown in Fig. 8, when the distance
between nodes i and k is greater than 2D, every point x in Ωi satisfies dk(x) > D, thus pk(x) = 0
and [1 − pk(x)] = 1 for all x ∈ Ωi. If we define a set Bi = {k : ‖si − sk‖ < 2D, k = 1, . . . , N, k �=
i}, then, any sensor node k /∈ Bi (k �= i) will not contribute to the integral in (36).

After applying (37) and using Bi, (36) reduces to

∂F

∂si
=

∫
Ωi

R(x)
∏
k∈Bi

[1 − pk(x)]
dpi(x)
ddi(x)

si − x

di(x)
dx (38)

∆ V⋅∆

D 

Figure 9: Discretization using a grid

The final step in making (38) computable is to discretize the integral evaluation. As shown in Fig.
9, a grid is applied over the coverage region Ωi. Thus, Ωi is represented by a (2V +1)× (2V +1)
grid with V = 
D/∆�, where ∆ << D is the resolution of the grid. On the grid of each node
i, a Cartesian coordinate system is defined, with its origin located at si, its axes parallel to the
grid’s setting, and the unit length being ∆. In this local coordinate system, let (u, v) denote
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the location of a point x. Then, the transformation that maps (u, v) onto the global coordinate
system is x = si +

[
u∆ v∆

]T . Upon switching to this local coordinate system, the terms in
(38) become:

R(x) = R̃i(u, v), pi (x) = p̃i(u, v),
dpi(x)
ddi(x)

= p̃′i(u, v)

where R̃i(u, v) indicates node i’s local perception (map) on the event density of the mission space.
In a typical dynamic deployment application, all sensor nodes start with the same copy of an
estimated event density function at the beginning of the deployment. As nodes are deployed
and data are collected, an individual node may update its local map through merging new
observations into its perception, and by exchanging information with nearby neighbors.

We also rewrite the product term in (38) as

∏
k∈Bi

[1 − pk(x)] =
∏
k∈Bi

[
1 − p̃k

(
u − sk1 − si1

∆
, v − sk2 − si2

∆

)]
≡ B̃i(u, v)

where
(
u − sk1−si1

∆ , v − sk2−si2
∆

)
are the coordinates of x in the kth node’s local coordinate sys-

tem. By applying the grid and the coordinate tranformation, (38) can be rewritten as

∂F

∂si1
≈ ∆2∑V

u=−V

∑V
v=−V

R̃i (u, v) B̃i(u, v)p̃′i(u, v)u√
u2 + v2

(39)

∂F

∂si2
≈ ∆2∑V

u=−V

∑V
v=−V

R̃i (u, v) B̃i(u, v)p̃′i(u, v)v√
u2 + v2

These derivatives can be easily computed by mobile sensor nodes using only the local information
available. An advantage of switching to the local coordinates in (39) is that the values of p̃i(u, v)
and p̃′i(u, v) are uniquely determined by (u, v) and the sensor model. This motivates the storage
of p̃i(u, v) and p̃′i(u, v) as two matrices in the on-board memory of a sensor node. Through
acquiring key sensor model parameters (e.g. p0k and λk in (31)) from neighbors and properly
rescaling p̃i(u, v) and p̃′i(u, v), node i can also easily evaluate B̃i(u, v) using stored matrices. By
doing so, the computation effort in repeatedly evaluating (39) is drastically reduced.

The gradient information above provides a direction for a mobile node’s movement. The precise
way in which this information is used depends on the choice of motion scheme. The most
common approach in applying a gradient method is to determine the next waypoint on the ith
mobile node’s motion trajectory through

sk+1
i = sk

i + αk
∂F

∂sk
i

(40)

where k is an iteration index, and the step size αk is selected according to standard rules (e.g.,
see [Ber95]) in order to guarantee the convergence of motion trajectories.

The computational complexity in evaluating the gradient shown in (39) depends on the scale of
the grid and the size of neighbor set Bi. In the worst case, node i has N − 1 neighbors and the
number of operations needed to compute ∂F

∂si
is O(NV 2). The best case occurs when there is no

neighbor for node i, and the corresponding complexity is O(V 2). In both cases, the complexity
is quadratic in V .

30



Optimal coverage Problem with communication costs. Besides sensing and collecting
data, the coverage control mission includes the task of forwarding data to the basestation.
Assuming a flat network structure (i.e., no clusterheads as discussed in Section 2), the cost of
communication comes from the power consumption for wireless transmissions. We shall use once
again the link energy model (6)-(7) of Section 3.1. The basestation location is represented as
s0 ∈ R

2 and the data rate originating from the ith sensor node is denoted by ri(si), i = 1, . . . , N .
Note that ri is defined as a function of si because the amount of data forwarded at i is determined
by the number of events detected, and the latter depends on the node’s location. Here we assume
that ri(si) is proportional to the frequency that events are detected, i.e.,

ri(si) = α3

∫
Ω

R(x)pi(x)dx (41)

where α3 (bits/detection) is the amount of data forwarded when the sensor node detects an
event. Let ci(s) be the total energy consumed by the network in order to deliver a bit of data
from node i to the basestation. Then, the optimal coverage problem can be revised by combining
sensing coverage and communication cost as follows:

max
s

{
w1

∫
Ω

R(x)P (x, s)dx − w2

N∑
i=1

ri(si)ci(s)

}
(42)

where w1, w2 are weighting factors. One can think of w1 as the reward for detecting an event
and w2 as the price of consuming a unit of energy.

Let us denote the communication cost by

G(s) =
N∑

i=1

ri(si)ci(s) (43)

so that, recalling (34), the overall objective function is written as

J(s) = w1F (s) − w2G(s)

In order to derive partial derivatives ∂J
∂si

as done earlier, we shall focus on the evaluation of ∂G
∂si

,
which can be expressed as

∂G

∂si
= ci (s)

dri (si)
dsi

+
N∑

k=1

rk (sk)
∂ck (s)

∂si
(44)

In this expression, both ri and ∂ri
∂si

can be obtained by applying the same method as before.

That is, recalling that x = si +
[

u∆ v∆
]T ,

ri ≈ α3∆2
V∑

u=−V

V∑
v=−V

R̃ (u, v) p̃i(u, v) (45)

dri

dsi1
≈ α3∆2

V∑
u=−V

V∑
v=−V

R̃ (u, v) p̃′i(u, v)u√
u2 + v2

dri

dsi2
≈ α3∆2

V∑
u=−V

V∑
v=−V

R̃ (u, v) p̃′i(u, v)v√
u2 + v2
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The only term remaining to derive in (44) is ci(s) and its gradient. The cost of delivering a bit
of data from i to the basestation, ci(s), is determined by the way in which data forwarding paths
are constructed, i.e., the precise routing mechanism used. The issue of routing was discussed
in Section 3.2, where we saw that a typical shortest-path based routing scheme must specify at
each node i a forward index hi, a forward cost ci, an upstream vector Ui = (ui

1, . . . , u
i
N ), and a

cumulative flow factor zi (see Section 3.2). Given hi, ci, Ui and zi, a node i can evaluate ∂G
∂si

locally. To accomplish this, let us rewrite G(s) in (43) as

G(s) =
N∑

i=1

ri(si)ci(s) =
N∑

i=1

ri

∑
(j,k)∈li

ejk

=
N∑

i=1

∑
(j,k)∈E

1 [(j, k) ∈ li] riejk

=
∑

(j,k)∈E
ejk

{
N∑

i=1

1 [(j, k) ∈ li] ri

}
(46)

In the last expression above,
∑N

i=1 1 [(j, k) ∈ li] ri is actually equivalent to the total flow on link
(j, k). Because of the tree structure of the network, we have

N∑
i=1

1 [(j, k) ∈ li] ri =
{

zj if k = hj

0 otherwise

By removing all the terms with value zero in (46), we get

G(s) =
N∑

i=1

eihi
zi (47)

Using (47), the term
∑N

k=1 rk
∂ck
∂si

in (44) is equivalent to

N∑
k=1

rk
∂ck

∂si
=

N∑
k=1

zk
∂ekhk

∂si

where we assume that network routing remains fixed when sensor locations (i.e., s) change
slightly. Using (7) and (8),

∂ekhk

∂si
=

{
nα2 ‖si − sj‖(n−2) (si − sj) if k = i or hk = i
0 otherwise

Thus,
N∑

k=1

rk
∂ck

∂si
=


zi

∂eihi

∂si
+

∑
{j|ui

j=1}
zj

∂ejhj

∂si


 (48)

By combining (39), (44), (45) and (48), sensor node i can derive ∂J
∂si

locally. Then, each sensor
uses gradient information to direct motion control as in (40) with ∂J

∂sk
i

replacing ∂F
∂sk

i
. With

properly selected step sizes, mobile sensors will finally converge to a maxmium point of J(s).
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Simulation examples. The distributed deployment algorithm above has been implemented
in a Java-based simulation environment. In the example shown in Fig. 10, a team of 6 mobile
sensors is waiting to be deployed into a 40×40 (meter) mission space. The event density function
R(x) is given by,

R(x) = R0 − β ‖x − x0‖ (49)

where R0 = 3.0, β = 0.1, x0 = [0, 20]. According to (49), the event density of a point x ∈ Ω
declines linearly with the distance between x and the center point x0 of the mission space.

At time t = 0, mobile sensor nodes reside near the origin of the mission space. Each mobile
node is equipped with a sensor whose detection probability is modeled as in (31) by pi(x) =
p0ie

−λi||x−si|| where p0i = 1.0, λi = 1.0 for all i = 1, . . . , N . The sensing radius is D = 5.0, as
illustrated by black cirlces in Fig. 10. A mobile node also has a wireless transeiver whose energy
consumption is modeled by (7) with α1 = 0.01nJ/bit, α2 = 0.001nJ/bit/m4 and n = 4. In the
mission space, there is a radio basestation residing at s0 = [0, 0], (marked by a red square in
Fig. 10). Upon a sensor detecting an event, it collects 32 bits of data and forwards them back
to the basestation (so that α3 = 32 in (41)).

Figure 10: Cooperative coverage control problem with 6 mobile sensor nodes

We will present simulation results for this coverage control problem by looking at two distinct
cases. In the first case, no communication cost is considered, which corresponds to w1 > 0,
w2 = 0 in the optimal coverage formulation (42). In the second case, both sensing coverage and
communication cost are included (w1, w2 > 0).

Figure 11 presents several snapshots taken during the deployment process of the first case.
Starting with Fig. 11-(a), 6 nodes establish a formation and move towards the center of the
mission space. During its movement, the formation keeps evolving, so that nodes expand the
overall area of sensing and at the same time jointly cover the points with high event density. In
addition, nodes also maintain wireless communication with the basestation. This is shown in
Fig. 11 as links between sensor nodes and the basestation. The team of nodes finally converges
to a stationary formation as shown in Fig. 11-(d). It can be seen in this symmetric formation
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that all 6 nodes are jointly sensing the area with the highest event density.

Figure 11: Sensor node deployment without communication cost consideration

We incoporate communication cost into the optimal coverage formulation by setting w2 = 0.0008
and w1 = 1−w2 in (42). The corresponding deployment simulation results are shown in Fig. 12.
Comparing with the first case, a critical difference can be observed in the network formation:
nodes not only move towards the area with high event density, but they also maintain an
economical multi-hop path to the basestation. The network reaches a stationary deployment as
illustrated in Fig. 12-(d). In contrast to the final formation of the first case (Fig. 11-(d)), only
4 nodes gather around the center of the mission space. The other 2 nodes are aligned as relays
to support the communication with the basestation.

Figures 13 and 14 demonstrate the sensing coverage and communication cost associated with
the previously shown two cases. Figure 13 depicts the change in sensing coverage (measured by
the expected frequency of event detection) when nodes move towards the optimal deployment.
A direct observation is that in both cases, sensing coverage increases monotonically with the
evolution of formations. If no communication cost is considered during deployment, sensing
coverage reaches a maximum at 91.47Hz. However, in the case that communication cost is
considered, when sensors reach optimal deployment, only 84.74 events can be detected per
second, which corresponds to a 7.36% coverage loss. This coverage loss is natural, since the
optimal coverage formulation (42) actually trades off sensing coverage for a lower communication
cost. This tradeoff can be further examined by looking at Fig. 14. If communication cost is
considered, the final power consumption is 8.01×103 nW . Compared to the communication cost
of the first case (1.877 × 105 nW ), there is a 95.73% power saving. One issue that we have not
explicitly addressed in the development of this distributed cooperative coverage control approach
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Figure 12: Sensor node deployment with communication cost consideration

is that of the global optimality of the gradient-based algorithm involved. This remains a topic
of ongoing research. In particular, one expects that global optimality is intrically connected to
properties of the event density function and the sensor model adopted.

5 Future Research Directions

We have attempted in this paper to categorize and describe major design and control problems
related to sensor networks, as well as to cooperative control as it pertains to sensor networks with
moblie nodes. For some of these problems, we have also presented selected solution approaches,
some already published in the literature and some novel. Open research issues were mentioned
or briefly hinted at throughout the previous sections and we summarize some of them here.
First, we mentioned in Section 2 that a potentially better structure for sensor networks is a
hierarchical one, making use of clusterheads acting as intermediate processing nodes between
data sources and a basestation. The presense of clusterheads implies different approaches for
some of the problems we have discussed; for example, deployment may be quite different if a
clusterhead can “aggregate” data from neighboring nodes and avoid the need for these nodes to
use up energy for direct communication with the basestation. Second, we also briefly mentioned
that one form of power control is to switch the state of sensor nodes between “sleeping” and
“sensing” or “relaying” (see Section 2). Formulating such a switching control problem and
devising solution methods dependent on the information available to each node is an interesting
direction for research. Third, the problem of location detection when nodes are mobile is also
one that was only briefly mentioned (see Section 4) and it clearly deserves in depth study. In
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the context of cooperative control, we saw that one can define different types of sensor network
missions, two classes of which were discussed in Section 4. Some of the most pressing technical
concerns here are related to the properties of the associated optimization problems involved,
particularly the questions of local vs global optimality and the need for mechanisms consistent
with the distributed nature of sensor networks.

Although many of the open questions above are technically challenging in their own right, we
would like to bring this section to a close by turning our attention to some more fundamen-
tal issues of much broader long-term impact where progress has been minimal. These issues
are closely related to the convergence of communication, computing, and control which brings
together three disciplines that often use different modeling paradigms and different ways of
thinking. Naturally, bridging the gaps between them is a real challenge. One of these issues
concerns the combination of asynchronous and synchronous modes of operation in a common
system setting. While the gathering of data is inherently asynchronous (due to multiple sen-
sor nodes operating in different temporal and spatial scales), the processes of data fusion and
control are traditionally based on a synchronized time structure. This is one manifestation of
the difference between time-driven and event-driven behavior; designing a system environment
where both can coexist remains an open problem. The traditional setting of differential equation
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models and time-driven digital sampling provides a comfortable infrastructure for communica-
tion and control methodologies, but that is being challenged by computational models which
rely on event-driven processes and by the simple intuitive observation that time-driven sampling
is inherently wasteful. The limited resources of sensor network nodes emphasize the need to
switch to a more efficient event-driven sampling approach, where data are collected only when
“something interesting” happens. To do so, however, requires new sampling mechanisms and
possibly new data collection hardware as well.

A second research issue of particular importance to control theory is the obvious shift from
sensor-poor to data-rich control systems. Traditional feedback control systems have been de-
signed under the premise that sensors are few and expensive and much of the “intelligence”
in such systems is concentrated on compensating for limited state information. The sudden
wealth of sensor data (subject, of course, to bandwidth and delay limitations) shifts the need for
“intelligence” towards processing potentially huge amounts of data and combining model-based
methodologies with increasingly data-driven ones. To date, there appears to be a significant
gap between schools of thought advocating one vs the other approach. One would expect that
a combination can enable us to exploit advantages of both.
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