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Abstract— We develop a hybrid system model to describe
the behavior of multiple agents cooperatively solving an opti-
mal coverage problem under energy depletion and repletion
constraints. The model captures the controlled switching of
agents between coverage (when energy is depleted) and battery
charging (when energy is replenished) modes. It guarantees
the feasibility of the coverage problem by defining a guard
function on each agent’s battery level to prevent it from dying
on its way to a charging station. The charging station plays the
role of a centralized scheduler to solve the contention problem
of agents competing for the only charging resource in the
mission space. The optimal coverage problem is transformed
into a parametric optimization problem to determine an optimal
recharging policy. This problem is solved through the use
of Infinitesimal Perturbation Analysis (IPA), with simulation
results showing that a full recharging policy is optimal.

I. INTRODUCTION

A coverage task is one where agents are deployed so as
to cooperatively maximize the coverage of a given mission
space [1], where “coverage” is measured in a variety of ways,
e.g., through the joint detection probability of random events
cooperatively detected by the agents. Widely used methods
to solve the coverage problem include distributed gradient-
based algorithms [2] and Voronoi-partition-based algorithms
[3]. These approaches typically result in locally optimal
solutions, hence possibly poor performance. To escape such
local optima, a boosting function approach is proposed in [4]
where the performance is ensured to be improved. Recently,
the coverage problem was also approached by exploring the
submodularity property [5] of the objective function, and
a greedy algorithm is used to guarantee a provable bound
relative to the optimal performance [6].

In most existing frameworks, agents are assumed to have
unlimited on-board energy to perform the coverage task.
However, in practice, battery-powered agents can only work
for a limited time in the field [7]. Therefore, in this paper we
take into account such energy constraints [8], [9], [10] and
add another dimension to the traditional coverage problem.
The basic setup is similar to that in [2]. Agents interact with
the mission space through their sensing capabilities which
are normally dependent upon their physical distance from
an event location. Outside its sensing range, an agent has
no ability to detect events. Unlike other multi-agent energy-
aware algorithms whose purpose is to reduce energy cost
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[11], we assume that a charging station is available for
agents to visit according to some policy. The objective is
to maximize an overall environment coverage measure by
controlling the movement of all agents in a cooperative
manner while guaranteeing that no agent runs out of energy
while in the mission space.

We provide a solution to the above problem by modeling
the behavior of an agent through three different modes:
coverage (Mode 1), to-charging (Mode 2), and in-charging
(Mode 3). We assume that an agent has no prior knowledge
of the mission space except for the location of the charging
station and the positions of agents within its communication
range. While in Mode 1, each agent moves along the gradient
direction of the objective function at the maximum velocity
so as to cooperatively maximize the coverage measure. As
an agent’s energy is depleted, the agent switches to Mode 2
according to a guard function designed to guarantee that a
minimum energy amount is preserved to reach the charging
station from its current location while traveling at maximum
speed. Note that an agent shares its position and battery state
information with the charging station only when it is in the
to-charging mode (Mode 2). Since the charging station is
shared by all agents, there can only be at most a single
agent at the station at any time. Therefore, two scheduling
algorithms are proposed to resolve contention among low-
energy agents: (i) First-Request-First-Serve (FRFS), and
(ii) Shortest-Distance-First (SDF). The charging station is
perceived as a centralized controller executing a scheduling
algorithm by dictating agents’ speeds so that a queue is
formed by agents while in Mode 2. In Mode 3, an agent
is located at the charging station and a model is developed
for the battery charging dynamics using the dwell time of
an agent at the station as a controllable parameter to be
optimized. The details for the modeling can be found in [12],
and here we focus on using IPA in order to obtain the optimal
dwell time of all agents at the charging station.

II. PROBLEM FORMULATION
Consider a bounded mission space Ω ∈ R2, which is

modeled as a non-self-intersecting polygon. We deploy N
agents in the mission space to detect possible events that
may occur in it. By viewing the position of agent i in R2,
its coordinates si = [xi,yi]

T obey the following dynamics:

ẋi (t) = vi (t)coswi (t) , (1)
ẏi (t) = vi (t)sinwi (t) , (2)

with vi (t) denoting the speed, and wi (t) the heading direction
of agent i. We assume that vi (t)∈ [0,v] , and wi (t)∈ [0,2π) ,
where v is the maximum speed of an agent. The mission
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space does not contain obstacles. If it does, the problem can
be modified appropriately as done in [2].

In contrast to traditional multi-agent coverage problems,
agents are assumed to have a limited on-board energy supply,
which is modeled by the state-of-charge qi(t) of its battery
(i.e., the fraction of the battery available at time t). The
dissipation of energy obeys the following dynamics:

q̇i (t) =−αv2
i (t)− γ, (3)

where α is a scaling constant and γ is associated with the
energy costs of sensing and computation. When qi (t) is
negative, this implies that agent i is “dead” in the mission
space.

Remark 1: In [13], the agent motion is modeled by a
double integrator and the energy dynamics are modeled as
q̇i (t) = −v2

i (t)− au2
i (t), where vi (t) is the velocity and

ui (t) is the acceleration. We assume that an agent’s speed
can be controlled directly, therefore, we do not include
the acceleration in (3). The communication cost which
depends on the distances from neighbor agents will be
considered in future work based on: q̇i (t) = −αv2

i (t)−
η ∑ j∈Ni(t)

∥∥si (t)− s j (t)
∥∥2, where α and η are two scalars,

Ni is the set of neighbors of agent i defined as Ni ={
j
∣∣Ω j ∩Ωi 6= /0

}
, and Ωi is the sensing range of agent i

to be defined later.
To prevent agents from dying in the mission space, a

charging station is available to all agents to replenish their
energy supply during the mission time. Without loss of
generality, we assume that the charging station is located
at the origin with coordinates (0,0). At the charging station,
the charging process has the following dynamics:

q̇i (t) = β , (4)

where β > 0 is the charging rate. We assume that only one
agent can be served at the charging station at any time.

Our objective is to maximize the coverage of the mission
space Ω∈R2 over a time interval [0,T ] with T being a finite
time horizon, and at the same time keep all agents alive, that
is, qi (t) > 0 for all t ∈ [0,T ]. The case qi (t) = 0 can occur
only at the charging station (0,0). Therefore, we consider
the following optimization problem for each agent i:

max
wi(t), vi(t)

1
T
∫ T

0 H (s(t))dt

s.t. qi (t)≥ 0,
qi (t)> 0 when si (t) 6= 0,
(1), (2)
0≤ vi(t)≤ v,
(4) if charging, (3) otherwise
if si(t) = 0,
then s j(t) 6= 0 for all j 6= i
i = 1, . . . ,N,

(5)

where s = [sT
1 , . . . ,s

T
N ]

T is a column vector that contains all
agent positions, and

H (s) =
∫ ∫

Ω

R(x,y)P(x,y,s)dxdy

is the coverage metric. For simplicity, in what follows we
assume that all points in the mission space are indistinguish-
able and set R(x,y) = 1. Here

P(x,y,s) = 1−∏
N
i=1 [1− pi (x,y,xi,yi)] . (6)

Even though the precise form of the function pi (x,y,xi,yi)
does not affect our subsequent analysis, for ease of calcula-
tion in the sequel we take it to be

pi (x,y,xi,yi) = 1− (x− xi)
2 +(y− yi)

2

δ 2
i

, (7)

for all (x,y) ∈ Ωi. The physical meanings of P(x,y,s) and
R(x,y) are discussed in [2] and [12].

Remark 2: We emphasize that the particular forms of
R(x,y) and pi (x,y,xi,yi) in (7) are only adopted for ease
of calculation. It is worth noting that the optimal coverage
theory applies to any reasonable R(x,y) and pi (x,y,xi,yi),
such as

pi (x,y,xi,yi) = αi exp
[
−βi

√
(x− xi)

2 +(y− yi)
2
]

used in [2], where 0 < αi ≤ 1 and βi > 0 are sensing
parameters.

Returning to problem (5), there are two challenges we
face. First, recall that an agent has no prior knowledge of
either the mission space or the battery levels of other agents;
it only knows the location of the charging station and of its
neighbors. In addition, the charging station is only provided
with the location and battery state information of agents
when they are in the to-charging mode. Under this informa-
tion structure, it is clearly impossible to tackle the coverage
problem in a centralized way. The second challenge stems
from the fact that, unlike the traditional coverage problem
in [2] where the goal is to find the optimal equilibrium
locations of agents, (5) is a dynamic multi-agent coverage
problem: due to the energy dynamics and constraints in (5),
such an equilibrium may never exist, as agents move back
and forth between coverage and battery charging modes.
Thus, in general, finding the optimal speed v∗i (t) and the
optimal heading w∗i (t) in problem (5) for all i = 1, . . . ,N
and all t is a challenging task since its solution amounts to a
notoriously hard two-point-boundary-value problem similar
to other dynamic multi-agent optimization problems, e.g.,
see [14]. In the following, we will show how to solve this
problem by modeling the combined cooperative coverage-
recharging processes as a hybrid system to obtain a sub-
optimal solution.

III. HYBRID SYSTEM MODEL

Our first step is to construct a hybrid system model to
guarantee that the constraints in (5) are satisfied for all t. To
ensure that the problem is well-posed, we assume that

β ≥ N(αv2 + γ). (8)

This assumption is sufficient to guarantee the feasibility of
the hybrid system model to be constructed. In particular, by
treating the charging station as a server, the charging rate is β
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if it is occupied at all times, and referring to (3), the worst-
case energy depletion rate over all agents is N(αv2 + γ).
Thus, the condition (8) is sufficient to prevent any agent from
running out of energy (dying) anywhere in the mission space.
However, this assumption is not necessary in the sense that
the problem may be feasible even when (8) is not satisfied.

For any agent, we define three different modes: coverage
(Mode 1), to-charging (Mode 2) and in-charging (Mode 3).
This hybrid system consists of a single cycle for each agent:
Mode 1→Mode 2→Mode 3→Mode 1 and detailed next.

At Mode 1, vi (t) = v (the maximum speed is optimal for
each agent in Mode 1 which can be easily shown by applying
the Pontryagin’s maximum principle to the optimal coverage
problem without energy constraints), and

coswi (t) =
∂H(t)
∂xi(t)√(

∂H(t)
∂xi(t)

)2
+
(

∂H(t)
∂yi(t)

)2
, (9)

sinwi (t) =
∂H(t)
∂yi(t)√(

∂H(t)
∂xi(t)

)2
+
(

∂H(t)
∂yi(t)

)2
, (10)

where the calculations of detailed expressions for ∂H(t)
∂xi(t)

and
∂H(t)
∂yi(t)

are given in [12]. We rewrite the dynamics in (3) as

q̇i (t) =−αv2− γ. (11)

In other words, agent i travels at the maximum speed, and
the heading direction follows the gradient direction of the
coverage metric with respect to agent i’s location. The state-
of-charge of the battery monotonically decreases with rate
αv2 + γ and when it drops to a certain value, the agent
switches to Mode 2.

A transition from Mode 1 to Mode 2 occurs when
the guard function gi (si,qi) = q2

i (t)− v2α2 ‖si(t)‖2 is zero,

where ‖si(t)‖=
√

x2
i (t)+ y2

i (t). At Mode 2, the speed vi (t)
is determined by the scheduling algorithm used to assign
an agent to the charging station and the heading direction is
constant and determined by the location of agent i at the time
of switching from Mode 1 to Mode 2, say τ2. The details
of the FRFS and SDF scheduling algorithms are discussed
in [12], [15]. Then, the motion dynamics and the state-of-
charge dynamics are:

ẋi (t) =−vi (t)
xi (τ2)

‖si(τ2)‖
, ẏi (t) =−vi (t)

yi (τ2)

‖si(τ2)‖
, (12)

q̇i (t) =−αv2
i (t)− γ. (13)

The speed vi (t) in Mode 2 is piecewise constant or constant
depending on which scheduling algorithm is used to resolve
conflicts when multiple agents request to use the charging
station at the same time (note that we assume no energy loss
at points where the speed may experience a jump).

A transition from Mode 2 to Mode 3 occurs when agent i
arrives at the charging station and the guard function gi (si) =
‖si(t)‖2 is zero. At Mode 3, an agent remains at rest at the

charging station, therefore, it satisfies the dynamics

ẋi (t) = 0, ẏi (t) = 0. (14)

While the agent is in charging mode, the state-of-charge
dynamics are given by q̇i (t) = β , where β ≥ N(αv2 + γ)
is the charging rate.

Finally, a transition from Mode 3 to Mode 1 occurs when
the guard function gi (qi)= θi−qi (t) is zero, where θi ∈ (0,1]
is a controllable threshold parameter indicating the desired
state-of-charge at which the agent may stop its recharging
process.

Remark 3: The energy consumption of sensing and com-
putation is relatively small compared with motion and com-
munication. In the rest of the paper, we assume that γ = 0
and agents still perform the coverage task while they are in
Modes 2 and 3 without costing extra energy. Our approach
also is able to deal with the case that an agent turns off
its sensing and communication functionalities while it is in
either Mode 2 or Mode 3. In this case, the coverage problem
applies to fewer agents. Therefore, the energy costs in Mode
2 are only related to the agent’s speed. It is worth noting that
the hybrid model does not rely on a detailed energy depletion
model of the state-of-charge in Mode 1.
The results on feasibility and rationality of the proposed
hybrid model can be found in [12]. Here we only show the
results on schedulability and optimality of the parameter θ .

Remark 4: This remark pertains to the centraliza-
tion/decentralization of the proposed method. In Mode 1,
we solve the basic coverage maximization problem by using
gradient-based methods which are distributed as shown in
[2] even though it seems that the heading angle depends
on all agents through H(s) in (9) and (10). This follows
from the fact that a truncated sensing model limits the
gradient calculation of the objective function by agent i to
its own sensing range and its neighbors. In Mode 2, an
agent locally determines its trajectory, but its speed depends
on the scheduling algorithm which requires some degree
of centralized coordination over all agents which are in
Mode 2. In Mode 3, the recharging process is decentralized
once the optimal recharging level is found by using the IPA
methodology as shown in the next section.

IV. MAIN RESULTS

We now address the question of selecting an optimal
charging level, denoted by θ = [θ1, . . . ,θN ], when an agent is
in the charging mode. This problem boils down to optimizing
the parameter θ so that the objective function in (5) is
maximized. By writing explicitly the dependence on θ , the
optimization problem becomes

J (θ) = max
θ

1
T

∫ T

0
H (s(θ , t))dt.

Even though θ is only used in Mode 3, its optimal value
affects the entire hybrid system model. By controlling θ , we
directly control the switching times of agents from Mode
3 to Mode 1, and indirectly control the switching times
of agents from Mode 1 to Mode 2. The switching times
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of agents from Mode 2 to Mode 3 are controlled by the
proposed scheduling algorithms. Also note that the parameter
θ is constant. We can obtain optimal charging thresholds
through off-line analysis and implement the coverage task
on line by all agents in distributed fashion. We use IPA [16]
to determine the optimal θ .

Before proceeding, we briefly review the IPA framework
for general stochastic hybrid systems as presented in [16],
which plays an instrumental role in obtaining the optimal
dwell time of all agents at the charging station.

Let {τk(θ)}, k = 1, . . . ,K, denote the occurrence times of
all events in the state trajectory of a hybrid system with
dynamics ẋ = fk(x,θ , t) over an interval [τk(θ),τk+1(θ)),
where θ ∈ Θ is some parameter vector and Θ is a given
compact, convex set. For convenience, we set τ0 = 0 and
τK+1 = T . We use the Jacobian matrix notation: x′(t) ≡
∂x(θ ,t)

∂θ
and τ ′k≡

∂τk(θ)
∂θ

, for all state and event time derivatives.
It is shown in [16] that

d
dt

x′(t) =
∂ fk(t)

∂x
x′(t)+

∂ fk(t)
∂θ

, (15)

for t ∈ [τk,τk+1) with boundary condition:

x′(τ+k ) = x′(τ−k )+ [ fk−1(τ
−
k )− fk(τ

+
k )]τ ′k, (16)

for k = 0, ...,K. In order to complete the evaluation of x′(τ+k )
in (16), we need to determine τ ′k. We classify events into
two categories. An event is exogenous if it causes a discrete
state transition at time τk independent of the controllable
vector θ and, therefore, satisfies τ ′k = 0. Otherwise, the event
is endogenous and there exists a continuously differentiable
function gk : Rn×Θ→ R such that τk = min{t > τk−1 :
gk (x(θ , t) ,θ) = 0} and

τ
′
k =−[

∂gk

∂x
fk(τ

−
k )]−1(

∂gk

∂θ
+

∂gk

∂x
x′(τ−k )) (17)

as long as ∂gk
∂x fk(τ

−
k ) 6= 0 (details may be found in [16]).

Denote the time-varying cost along a given trajectory
as L(x,θ , t), so the cost in the k-th inter-event inter-
val is Jk(x,θ) =

∫
τk+1
τk

L(x,θ , t)dt and the total cost is
J(x,θ) = ∑

K
k=0 Jk(x,θ). Differentiating and applying the

Leibniz rule with the observation that all terms of the form
L(x(τk),θ ,τk)τ

′
k are mutually canceled with τ0 = 0,τK+1 = T

fixed, we obtain

∂J(x,θ)
∂θ

=
K

∑
k=0

∂

∂θ

∫
τk+1

τk

L(x,θ , t)dt

=
K

∑
k=0

∫
τk+1

τk

∂L(x,θ , t)
∂x

x′(t)+
∂L(x,θ , t)

∂θ
dt. (18)

Now let us return to our problem and define the following
notations

τ
′
k =

∂τk(θ)

∂θ
, x′i =

∂xi(θ)

∂θ
, y′i =

∂yi(θ)

∂θ

which are row vectors, and
∂x(θ , t)

∂θ
=
[
x′1 (θ , t)

T , · · · ,x′N (θ , t)T
]T

,

∂y(θ , t)
∂θ

=
[
y′1 (θ , t)

T , · · · ,y′N (θ , t)T
]T

,

are matrices.
Let us assume that all agents start with the battery level

qi (0)> vα ‖si (0)‖ ,

for i = 1, . . . ,N, that is, all agents start with Mode 1.
For t ∈ [τ1,τ2), applying (15) to (9) and (10) yields that

d
dt

x′i (θ , t) = v
∂ coswi (t)
∂x(θ , t)

∂x(θ , t)
∂θ

+ v
∂ coswi (t)
∂y(θ , t)

∂y(θ , t)
∂θ

,

(19)
d
dt

y′i (θ , t) = v
∂ sinwi (t)
∂x(θ , t)

∂x(θ , t)
∂θ

+ v
∂ sinwi (t)
∂y(θ , t)

∂y(θ , t)
∂θ

,

(20)

where the detailed calculations of ∂ coswi(t)
∂x(θ ,t) , ∂ coswi(t)

∂y(θ ,t) ,
∂ sinwi(t)
∂x(θ ,t) , and ∂ sinwi(t)

∂y(θ ,t) are given in [15]. Note that for agents
j /∈Ni,

∂ coswi (t)
∂x j (t)

= 0,
∂ sinwi (t)

∂x j (t)
= 0.

For the state-of-charge, we have

d
dt

q′i (θ , t) = 0,

by applying (15) to (11), which implies that q′i
(
θ ,τ−2

)
=

q′i
(
θ ,τ+1

)
. By solving the differential equations (19) and

(20), we can obtain x′i
(
θ ,τ−2

)
and y′i

(
θ ,τ−2

)
.

At τ2, the guard condition

gi (xi (θ ,τ2) ,yi (θ ,τ2) ,qi (θ ,τ2))

=q2
i (θ ,τ2)− v2

α
2‖si (θ ,τ2)‖2 = 0.

This is an endogenous event. By applying (17) to the above
guard function and the dynamics in (9), (10) and (11), we
have

τ
′
2 =

qi (τ2)q′i
(
τ
−
2
)
− v2α2 [xi (τ2)x′i

(
τ
−
2
)
+ yi (τ2)y′i

(
τ
−
2
)]

αv2qi (τ2)+ v3α2
[
xi (τ2)coswi

(
τ
−
2
)
+ yi (τ2)sinwi

(
τ
−
2
)]

with the boundary conditions

q′i
(
τ
+
2
)
= q′i

(
τ
−
2
)
+α

[
v2

i
(
τ
+
2
)
− v2]

τ
′
2

x′i
(
τ
+
2
)
= x′i

(
τ
−
2
)
+
[
vcoswi

(
τ
−
2
)
− vi

(
τ
+
2
)

coswi
(
τ
+
2
)]

τ
′
2,

y′i
(
τ
+
2
)
= y′i

(
τ
−
2
)
+
[
vsinwi

(
τ
−
2
)
− vi

(
τ
+
2
)

sinwi
(
τ
+
2
)]

τ
′
2,

which are obtained by applying (16) to the dynamics in (12)
and (13).

Remark 5: Irrespective of the scheduling algorithm, if
agent i is the first to request charging in the current queue,
then vi

(
τ
+
2

)
= v, and q′i

(
θ ,τ+2

)
= q′i

(
θ ,τ−2

)
= q′i

(
θ ,τ+1

)
.

In Mode 2, the right-hand sides of (12) and (13) are
constant or piecewise constant depending on the scheduling
algorithm. Therefore, we have

d
dt

x′i (θ , t) = 0,
d
dt

y′i (θ , t) = 0,
d
dt

q′i (θ , t) = 0,

according to (15). It is easy to see that

x′i
(
θ ,τ−3

)
= x′i

(
θ ,τ+2

)
, y′i

(
θ ,τ−3

)
= y′i

(
θ ,τ+2

)
, (21)

q′i
(
θ ,τ−3

)
= q′i

(
θ ,τ+2

)
. (22)
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In the SDF scheduling algorithm, the velocity of agent
i may be adjusted due to the competition to the charging
station. This is the case when agent j, which is closer to the
charing station than agent i, requests for the charging service.
Such events are independent of θ and are, therefore, treated
as exogenous events. In Mode 2, the relationships (21) and
(22) hold independent of the scheduling methods, and the
number of exogenous events.

At time τ3, the guard function gi (xi (θ ,τ3) ,yi (θ ,τ3)) =
‖si (τ3)‖2 = 0. This is an endogenous event. According to
(17), we can calculate

τ
′
3 =−

xi (θ ,τ3)x′i
(
θ ,τ−3

)
+ yi (θ ,τ3)y′i

(
θ ,τ−3

)
xi (θ ,τ3)vi

(
τ
−
3
)

coswi
(
τ
−
3
)
+ yi (θ ,τ3)vi

(
τ
−
3
)

sinwi
(
τ
−
3
)

based on the dynamics (12) and (13) and the boundary
conditions are

x′i
(
θ ,τ+3

)
= x′i

(
θ ,τ−3

)
+ vi

(
τ
−
3
)

coswi
(
τ
−
3
)

τ
′
3

y′i
(
θ ,τ+3

)
= y′i

(
θ ,τ−3

)
+ vi

(
τ
−
3
)

sinwi
(
τ
−
3
)

τ
′
3

q′i
(
τ
+
3
)
= q′i

(
θ ,τ−3

)
−
[
αv2

i
(
τ
−
3
)
+β

]
τ
′
3

by applying (16) to the dynamics in (14), and (4).
Remark 6: When calculating τ ′3, we find that both the

numerator and denominator are zero due to xi (θ ,τ3) =
yi (θ ,τ3) = 0. In this case, the value of τ ′3 is calculated
according to its limit in the direction wi(τ

−
3 ). Let us put

xi and yi in the polar coordinate, then xi = r coswi
(
τ
−
3

)
and

yi = r sinwi
(
τ
−
3

)
. Replacing xi and yi in τ ′3, it becomes

τ
′
3 =− lim

r→0

r coswi
(
τ
−
3

)
x′i
(
θ ,τ−3

)
+ r sinwi

(
τ
−
3

)
y′i
(
θ ,τ−3

)
rvi
(
τ
−
3

)
cosw2

i

(
τ
−
3

)
+ rvi

(
τ
−
3

)
sinw2

i

(
τ
−
3

)
=−

coswi
(
τ
−
3

)
x′i
(
θ ,τ−3

)
+ sinwi

(
τ
−
3

)
y′i
(
θ ,τ−3

)
vi
(
τ
−
3

) .

Note that in Mode 2, agents do not change their direction
and wi

(
τ
−
3

)
= wi

(
τ
+
2

)
.

In Mode 3, during the cycle [τ3,τ1) , we can obtain

d
dt

x′i (θ , t) = 0,
d
dt

y′i (θ , t) = 0,
d
dt

q′i (θ , t) = 0

by applying (15) to the dynamic equations (14) and (4).
Therefore, it is easy to calculate

x′i
(
θ ,τ−1

)
= x′i

(
θ ,τ+3

)
, y′i

(
θ ,τ−1

)
= y′i

(
θ ,τ+3

)
q′i
(
θ ,τ−1

)
= q′i

(
θ ,τ+3

)
.

At time τ1, the threshold

gi (qi (θ ,τ1)) = qi (θ ,τ1)−θi = 0.

This is an endogenous event. We can obtain

τ
′
1 =

1−q′i
(
θ ,τ−1

)
β

,

and the boundary conditions

x′i
(
θ ,τ+1

)
= x′i

(
θ ,τ−1

)
− vcoswi

(
τ
+
1
)

τ
′
1

y′i
(
θ ,τ+1

)
= y′i

(
θ ,τ−1

)
− vsinwi

(
τ
+
1
)

τ
′
1

q′i
(
θ ,τ+1

)
= q′i

(
θ ,τ−1

)
+
(
β +αv2)

τ
′
1,

according to (17) and (16), respectively, based on the dynam-
ics in (14), (4), (9), (10) and (11). Now the IPA derivative
of dJ/dθ can be obtained by taking derivatives of J(θ) with
respective to θ as shown in (18):

dJ
dθ

=
l

∑
k=0

d
dθ

∫ tk+1

tk
Hk (s,θ , t)dt

and applying the Leibnitz rule we obtain, for every k =
0, . . . , l,

d
dθ

∫ tk+1

tk
Hk (s,θ , t)dt

=
∫ tk+1

tk

[
∂Hk (s,θ , t)

∂x
x′+

∂Hk (s,θ , t)
∂y

y′
]

dt

+Hk (s(tk+1) ,θ , tk+1) t′k+1−Hk (s(tk) ,θ , tk) t′k

where tk are event times of any agents, t0 = 0 and tl = T .
The parameter θ is updated as

θn+1 = θn +λn
dJ(θn)

dθn
, (23)

where {λn} is a step size sequence.

V. SIMULATION RESULTS

In this section, we illustrate the optimization process
in (23), and compare the performance by using different
scheduling algorithms (FRFS, and SDF).

The mission space is a 60 by 50 rectangular area without
obstacles. We consider a team of four agents with initial
locations (2,2), (4,4), (6,6) and (8,8). The initial state-of-
charge variables are randomly generated, which are 97%,
48%, 71%, and 46%, respectively. The maximum speed is
v = 5, and the sensing range δi = 22 for all i = 1, . . . ,4. The
parameter α = 0.0001, and β = 4αv2 = 0.01. Figures 1 and 2
show the evolution of θ under the FRFS and SDF scheduling
algorithms, respectively, where the step size sequence {λn}
over iterations n = 0,1, . . ., is chosen as {(‖ dJ(θn)

dθn
‖n 3

2 )−1}. It
can be seen from both figures that it is optimal to fully charge
the battery for both scheduling algorithms. The simulation
runs for T = 5400 by considering the optimal θ = 1. The
comparison of the coverage performance between different
scheduling algorithms is depicted in Fig. 3. The coverage per-
formance is J(θ)= 186407 for FRFS, and J(θ)= 186095 for
SDF, respectively. The difference between the performance
of the two scheduling algorithms is within 0.1%. Therefore,
no general conclusions can be drawn on which scheduling
algorithm is better, even though we might expect SDF to be
preferable because it uses the distance information compared
to FRFS.

A visual interactive simulation can be found at
http://www.bu.edu/codes/simulations/
Coverage_ADHS. Interested readers are encouraged to
interact with the simulation by choosing different scheduling
algorithms, as well as adjusting parameters such as the
number of agents N, the sensing range δi, or the maximum
speed v.
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Fig. 1: The evolution of θ under the FRFS scheduling
method
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Fig. 2: The evolution of θ under the SDF scheduling method

0 1 2 3 4 5 6

Time 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
105

FRFS
SDF

Fig. 3: The comparison of performance using different
scheduling algorithms

VI. CONCLUSIONS

A hybrid system model is proposed to capture the be-
havior of multiple agents cooperatively solving an optimal
coverage problem under energy depletion and repletion con-
straints. The proposed model links each agent’s coverage,
to-charging, and in-charging modes so as to form a cycle
and the guard conditions are designed to maximize the
coverage performance over a finite time horizon as well as to
ensure that the agents never run out of energy. Full repletion
is optimal to maximize the coverage objective function as
shown by numerical calculations using IPA; and a theoretical
proof is the subject of ongoing research. We are also working
on the inclusion of energy expended for communication
among agents (see Remark 1).
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