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Abstract— We consider a large-scale road network in Eastern
Massachusetts. Using real traffic data in the form of spatial
average speeds and the flow capacity for each road segment
of the network, we convert the speed data to flow data and
estimate the origin-destination flow demand matrices for the
network. Assuming that the observed traffic data correspond
to user (Wardrop) equilibria for different times-of-the-day and
days-of-the-week, we formulate appropriate inverse problems
to recover the per-road cost (congestion) functions determining
user route selection for each month and time-of-day period.
Then, we formulate a system-optimum problem in order to
find socially optimal flows for the network. We investigate the
network performance, in terms of the total latency, under a
user-optimal policy versus a system-optimal policy. The ratio
of these two quantities is defined as the Price of Anarchy (POA)
and quantifies the efficiency loss of selfish actions compared to
socially optimal ones. Our findings contribute to efforts for a
smarter and more efficient city.

Index Terms— Transportation networks, variational inequal-
ities, price of anarchy, smart cities, optimization.

I. INTRODUCTION

A transportation (traffic) network is a system with non-
cooperative agents (drivers) in which each driver seeks to
minimize her own cost by choosing the best route (resources)
to reach her destination without taking into account the
overall system performance. In these systems, the cost for
each agent depends on the resources it chooses as well as the
number of agents choosing the same resources [1]. In such a
non-cooperative setting, one often observes convergence to
a Nash equilibrium, a point where no agent can benefit by
altering its actions assuming that the actions of all the other
agents remain fixed [2]. However, it is known that the Nash
equilibrium is not always the best strategy from the system’s
point of view and results in a suboptimal behavior compared
to the socially optimal policy. In a transportation network
with selfish drivers, each agent (driver) follows the path
(we will use “path” and “route” interchangeably) derived
from a user optimal policy. In order to quantify the social
suboptimality of selfish driving, we use the Price of Anarchy
(POA) as a measure to compare system performance under
a user-optimal policy vs. a system-optimal policy.
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The equilibrium flow in traffic networks, known as
“Wardrop equilibrium,” is the solution of the Traffic Assign-
ment Problem (TAP) [3], [4]. In the transportation science
literature, the TAP, which will be termed “forward problem”
in what follows, has been extensively explored; see, e.g.,
[4] and the references therein. To solve the TAP, we need
to know a priori the specific cost function, as well as the
Origin-Destination (O-D) demand matrix.

Recent developments in data-driven inverse optimization
techniques [5] enable the estimation of the cost (usually,
the travel time) functions given the observations of the
equilibrium flows from a large-scale transportation network.
This facilitates a better understanding of the underlying
dynamics of the transportation system itself. In addition,
with cost function estimates at our disposal, we can address
the issue of improving a traffic network’s performance by
controlling traffic flows, hence, contributing to the design of
better transportation systems that serve smart cities.

In this paper, we leverage actual traffic data provided to
us by the Boston Region Metropolitan Planning Organiza-
tion (MPO). Applying a traffic flow model, we first infer
equilibrium flows on each segment from the spatial average
speed data. Then, by adopting the estimated traffic flows we
obtain O-D demand matrices which pave the way to the
derivation of cost function estimators by solving a set of
inverse variational inequality problems. Finally, we formulate
a system-centric problem in which agents, here drivers,
cooperate to optimize the overall system performance. This
allows us to estimate the POA for a sub-network so as to
determine the difference in network performance between
selfish routing (non-cooperative) and system-optimal routing
(cooperative).

The rest of the paper is organized as follows. In Sec. 1II
we present the models and methods we apply to the traffic
data. In Sec. III we provide descriptions of the datasets we
use. We elaborate on data processing tasks in Sec. IV and
show our findings for the cost function estimators in Sec. V.
We quantify the POA for the transportation network in Sec.
VI, where numerical results for a subnetwork are included
to illustrate our approaches. We conclude in Sec. VIIL.

Notational conventions: All vectors are column vectors.
For economy of space, we write X = (x1,...,Xdim(x)) to de-
note the column vector x, where dim(x) is its dimensionality.
We use “prime” to denote the transpose of a matrix or vector.
Unless otherwise specified, || - || denotes the ¢, norm. ||

denotes the cardinality of a set 7. A &1 B indicates A is
defined using B.



II. MODELS AND METHODS

We first describe the model for single-class transportation
networks, which we adopt throughout the paper. We then
provide two equivalent formulations for the forward problem.
Finally we provide a formulation for the inverse problem
which will play a key role in estimating the cost functions.

A. Model for single-class transportation network

Consider a directed graph, denoted by (¥, /), where ¥
denotes the set of nodes and 7 the set of links. Assume it is
strongly connected. Let N € {0, 1,—1}W|XW‘ be the node-
link incidence matrix, and e, the vector with an entry equal
to 1 corresponding to link @ and all the other entries equal
to 0.

Let w = (ws,w;) denote an origin-destination (O-D) pair
and W = {w;: w; = (wsi,wy;),i=1,...,|#} the set of all
O-D pairs. Denote by d% > 0 the amount of the flow demand
from wy to w,. Let d¥ € R be the vector which is all zeros,
except for a —d" in the coordinate corresponding to node
wg and a dY in the coordinate corresponding to node w;.

Let %; be the index set of simple routes (a simple route is
a route without cycles) connecting O-D pair i. For all a € o7,
re%;, and i € {1,...,|#|}, define the link-route incidence

by
6, — {

Let x,, be the total link flow on link a € & and x the vector
of these flows. Let 7,(x) : Rl_fﬂ — Ry be the cost function
for link a € «7; in particular, when #,(x) only depends on x,,
we also write 7,(x) as 7,(x,). In addition, denote by t(x) the
vector-valued function whose ath component is #,(x).

Throughout the paper, we assume that the cost functions
have the following form [5], [6]:

m@»:k(3>, (1)

where 70 is the free-flow travel time of a € <7, g(+) is strictly
increasing and continuously differentiable on R, and m, is
the effective flow capacity of a € <.

Let .% be the set of feasible flow vectors defined by

{x cIxY e lel st.x= Y xV Nx"=a" vwe 7/},

wew

where xV is the flow vector attributed to O-D pair w. As a
stepping stone for formulating the problems of interest, we
present next the definition of Wardrop equilibrium.
Definition 1 (/5]). A feasible flow x* € ¥ is a Wardrop
equilibrium if for every O-D pair w € #/, and any route
connecting (wg,w;) with positive flow in x*, the cost of
traveling along that route is less than or equal to the cost of
traveling along any other route that connects (wy,w;). Here,

the cost of traveling along a route is the sum of the costs of
each of its constituent links.

1, if route r € %; uses link a,

0, otherwise.

B. The forward problem

In this work, the forward problem (i.e., the TAP) refers
to finding the Wardrop equilibrium for a given single-class
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transportation network with a given O-D demand matrix.
We first formulate the TAP as a Variational Inequalities (V1)
problem (see Def. 2 below), and then present an optimization
problem as an alternative.
Definition 2 (/5]). The VI problem, denoted VI(t,. %), is to
find an x* € . s.t.
t(x*) (x—x*) >0, Vxec.Z. (2)

We need the following assumption for the theorem that
follows.
Assumption 1 ([4], [5]). t(-) is strongly monotone (see
[4] or [5] for the definition of strong monotonicity) and
continuously differentiable on R‘ffl. Z is nonempty and
contains an interior point (Slater’s condition).

Theorem IL.1 ([4], [5]). Suppose Assump. 1 holds. Then,
there exists a Wardrop equilibrium of the single-class trans-
portation network, which is the unique solution to VI(t,F).

Proof: This can be established by applying [4, Thms.
3.14, 3.17, and 3.19]. Recall that, in the single-class trans-
portation network model, we assume the network to be
strongly connected and the demand for each O-D pair to be
fixed (given) and nonnegative. In addition, having assumed
the additivity for the route costs in the definition of the
Wardrop equilibrium (Def. 1), we see that, under Assump. 1,
[4, Assump. 3.A], which yields [4, Thm. 3.14], [4, Assump.
3.C], which in turn yields [4, Thm. 3.17], and [4, Assump.
3.D], which implies [4, Thm. 3.19], are all satisfied. ]

Now we present an equivalent formulation of the forward
problem. It is a well-known fact that the TAP can also be
formulated as the following optimization problem [3], [4]:

min " 10 (s)ds. 3)
ZQ//O (s)

xXeF
aec
Note that here the objective function is different from the one
we will use in the formulation for finding the social optimum
(see Sec. VI); for a detailed explanation, see [3].

C. Inverse VI problem formulation

Now, given € > 0, we present the definition of an e&-
approximate solution to VI(t, #) by replacing the right-hand
side of (2) with —e&:

Definition 3 (/5]). Let € > 0. Then, % € .% is said to be an
€-approximate solution to VI(t,.7) if
tR)(x—%) > —¢, Vxe.Z. 4)

Assume we are given observations (xy,-%), k=1,...,K,
with x; € .%; and each .%; being a set of feasible flow
vectors satisfying Slater’s condition accordingly. The inverse
VI problem amounts to seeking a function t such that x; is an
&c-approximate solution to VI(t,.%;) for each k. Therefore,
we can formulate the inverse VI problem as [5]

€]l 5)

min
t.e
st t(xp) (x—xp) > —&, Vx€F, Yk

We now apply the nonparametric estimation approach of
[5] which expresses the congestion function in a Reproducing
Kernel Hilbert Space (RKHS) [7]. In particular, we use the



polynomial kernel, i.e., ¢(x,y) &ef (¢c+xy)" for some choice
of ¢ >0 and n € N. Take the costs as in (1). Assume we
are given networks (¥, <%, #;),k=1,...,K, and the nor-
malized link flow data {x* = (xX/mk;a € o);k=1,... K}
are available, where k is the network index and x’; (resp.,
mﬂ‘,) is the flow (resp., capacity) for link a € 7 accordingly.
Let M =YK | || and 2= (z1,...,20) = ((x1),..., (xK)").
Define the kernel matrix as ® = [¢ (z;,z j)]ﬁlj:]. Then, using
conic duality, by [5, Thm. 2], we reformulate the inverse VI
problem (5) as the following Quadratic Programming (QP)
problem [5]:

min o'®a+ | €| (6)
ay,e

st e Ny <tla'®e,, Ywe W, ac o, k=1,... K,

X, Xz

a'®e, < a'®e;, Va,ac oy st — <,

mg mg
Y dx.a®e,— Y (@Y)yV <&, Vk=1,... K,

ac o) weWy

a'de, =1,
where @, y = (yW;we #,k=1,... K), and € = (g;k =
1,...,K) are decision vectors, ¥ is a regularization parameter,

aly C UkK:] ., and ag is some (arbitrary) link chosen for
normalization purposes. The second constraint in (6) forces
the function g(-) to be non-decreasing on the links in 7.

We can derive an estimator g(-) of the cost function g(-)
by solving the QP (6), thereby, obtaining an optimal &*. In
particular, if writing &* = (o, ..., ), then, by [5, Thm.
4], we obtain

Y 0 d(am. ).

III. DATA SET DESCRIPTION

g() )

A. Speed dataset description

The actual traffic data provided by the MPO is a dataset of
51.2 GB consisting of 861 CSV files, each with more than 1
million lines of data. The dataset includes the spatial average
speeds for major roadways and arterial streets in Eastern
Massachusetts for the year 2012. The average speed within
a given unit of spatial reference is calculated by aggregating
observed speeds from billions of data points. Specifically, it
is derived by combining data from physical traffic sensors
(e.g., induction loop sensors, toll tag readers, etc), as well
as all available data from probe vehicles (equipped with on-
board GPS devices returning speed and location back to a
central system) that fall within a specific segment of a road
for a particular time window.

The dataset includes traffic data for more than 13,000 road
segments (with the average distance of 0.7 miles; see Fig.
1) of Eastern Massachusetts, covering the average speed for
every minute of the year 2012.

For each road segment, identified with a unique tmc (traffic
message channel) code, the dataset provides information
such as speed data (instantaneous, average and free-flow
speed) in mph, date and time, and traveling time (minute)
through that segment. Note that a road typically consists of
many segments.
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Fig. 1.

(a)
(a) An interstate highway sub-network of Eastern Massachusetts
(a sub-map of Fig. 1; the blue numbers indicate node indices); (b) The
topology of the sub-network (the numbers beside arrows are link indices,
and the numbers inside ellipses are node indices).

®)
Fig. 2.

B. Capacity dataset description

The flow capacity (vehicles/hour) dataset, provided by the
MPO, includes capacity data — vehicle counts for each road
segment — for more than 100,000 road segments (average
distance of 0.13 miles) in Eastern Massachusetts. In particu-
lar, the capacity data is given for four different time periods
(AM: 6 am — 9 am, MD: 9 am — 3 pm, PM: 3 pm — 6 pm,
and NT: 6 pm — 6 am) in a day. For each time period, the
total roadway capacity for all available lanes for that time
period is given. These values are calculated based on the
share of daily traffic counts in each hour of that time period.
For each time period there exists a period capacity factor
applied to represent peak hour conditions within that period.
These factors are as follows: 2.5 for AM, 4.75 for MD, 2.5
for PM, and 7 for NT. Then, the total roadway capacity for
a time period is the product of the capacity/lane/hour, the
number of lanes, and the capacity factor. In our experiments,
we need flow capacity on each segment in vehicle counts per
hour. Thus, for each time period we scale the given vehicle
counts by the inverse of the corresponding capacity factor.



C. Matching capacity data with speed data

Note that, in the capacity dataset, the ID for a road
segment is named road inventory ID, and the segments are
not absolutely identical with those in the speed dataset. Based
on the geographic longitude and latitude, we have built up
a dictionary mapping segments with fmc code to capacity
dataset road inventory ID, through which we can read the
capacity data for each road segment in the speed dataset.

IV. DATA PROCESSING

A. Preprocessing

1) Calculating average speed and free-flow speed: First,
we select the time instances set .7 consisting of each minute
of AM (7 am — 9 am), MD (11 am — 1 pm), PM (§ pm —
7 pm), and NT (9 pm — 11 pm) for each day of January,
April, July, and October, all in 2012. Note that the selected
AM (resp., MD, PM, NT) period is a subinterval of the AM
(resp., MD, PM, NT) period in the capacity dataset. Then,
we calculate the average speed for each segment separately
for the four time periods, each of which lasts 120 minutes.
Finally, for each segment, we compute a reliable proxy of
the free-flow speed by using the 85th-percentile point of the
observed speeds on that segment for all the time instances
belonging to 7.

2) Selecting a sub-network: To reduce the computational
burden while capturing the key elements of the Eastern Mas-
sachusetts road network, we only consider a representative
interstate highway sub-network as shown in Fig. 2(a), where
there are 701 road segments, composing a road network with
8 nodes and 24 links. We depict the topology of this sub-
network in Fig. 2(b).

3) Aggregating flows of the segments on each link: Let
i eV 1% mls j=1,...,J,} denote the available obser-
vations (v/, rJ), and parameters (vV¥, 13/, m}) of the segments
composing link a € o7, where, for each segment j, v/ (resp.,
vY/) is the speed (resp., free-flow speed; miles/hour), ¢/ (resp.,
%) is the travel time (resp., free-flow travel time; hour),
and m/ is the flow capacity (vehicles/hour). Then, using
Greenshield’s model [8], we calculate the flow on segment
J by _
4m},
T (vi)*. ®)
In our analysis, we enforce v/, < V% to make sure that the
flow given by (8) is nonnegative. In particular, if for some
time instance v/, > v% (this rarely happens), we set v/ = v%
in (8), thus leading to a zero flow estimation for this time
instance.

Aggregating over all segments composing link a we com-
pute:

J
; 4m)

J
Xa 0)
Va

J
a

J
Va

Ja JtJ a J+0j
= Zj:] Xala 0 __ ZJ,, N — Zj:l myly
a — ZJ” Z‘j v ta — j=1 a a — ZJa toj 9
j=1'a j=1'a

where x;, is given by (8) and 1% = vigi W, j=1,...,J,.
4) Processing flow data such that the flow conservation
law is satisfied: For a € o7, let X, denote the original estimate
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of the flow on link a, and x, its adjustment. We then solve
the following Least Squares Problem (LSP):

min Y (x,— %) ©)
X acd
s.t. Z Xq = Z Xa, VieV,
acl(i) acO(i)
X, >0, Va e o,

where the first constraint enforces flow conservation for each
node i € ¥, where I(i) (resp., O(i)) denotes the set of links
entering (resp., outgoing) to (resp., from) node i.

B. Estimating O-D demand matrices

Note that we need to know the O-D demand information
(compiled into a matrix) in both the forward problem for-
mulation (3) and the inverse problem formulation (6). Based
on the parameters and flows of the road network, we borrow
the General Least Squares (GLS) method [9] to estimate the
desired O-D demand matrix, using the following steps:

1) Obtaining link-route incidence matrix: We assume that
each node could be an origin and a destination; for the
subnetwork shown in Fig. 2(a), there are 8 x (8§ — 1) = 56
O-D pairs in total. We then identify feasible routes for each
O-D pair, thereby obtaining a 24 x 314 link-route incidence
matrix.

2) Implementing the GLS method: Vectorize the O-D
demand matrix as A. Let A be the link-route incidence
matrix obtained in Sec. IV-B.1 and P = [p;] the route
choice probability matrix, where p;. is the probability that
a traveler between O-D pair i uses route r. Let {x(k>; k=
1,...,K} denote K observations of the flow vector and X the
average. Then, the O-D demand matrix estimation problem is
equivalent to the following generalized least squares problem

[9]:

PO  max 1 f (xV—aPa)'s ! (x - aPa)
P=0,A0 25
Stopr=0 W) e{(ir):ré &),

P1=1,
where S = (1/(K—1)) XX, (x(k) —x) (x® —i)/ is the sam-
ple covariance matrix. Letting & = P'A and expanding the
objective function in (P0), we see that the problem (PO)
reduces to the following two problems:

. K, ,
(P1) min 56Q5 b, (10)
where Q = A’S™'A and b =YX | A’S~'x(®), and
(P2) min  h(P,A) (11)
P~0,A>0
st. pir=0 V(i,r)e{(i,r):r¢ %},
PA=§",
P1=1,

where i(P,A) can be taken as any smooth scalar-valued
function, and €” is the optimal solution to (P1). Note that
(P1) is a typical Quadratic Programing (QP) problem, and
(P2) is a Quadratically Constrained Programming (QCP)
problem. Letting (P*,A") be an optimal solution to (P2),
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Fig. 3.

then A™ is our final estimation of the vectorized O-D demand
matrix.

We solve (P1) and (P2) using data corresponding to five
different time periods (AM, MD, PM, NT, and weekend) of
four months (Jan., Apr., Jul., and Oct.) in 2012, thus obtain-
ing 20 different O-D demand matrices for these scenarios;
for details, see [10].

It is worth pointing out that the GLS method assumes the
traffic network to be uncongested; therefore, the estimated O-
D demand matrices for non-peak periods (MD/NT/weekend)
are relatively more accurate than those for peak periods
(AM/PM), and we only take the latter as a rough approx-
imation of the corresponding true O-D demand matrices.

C. Estimating cost functions

Using the estimated flow data and the O-D demand matri-
ces, we then estimate the costs for 20 different scenarios by
solving the QP (6) accordingly. We use polynomial kernels
® and obtain the estimated cost functions g(-) as polynomial
functions. To make the estimated costs reliable, for each
scenario, we perform a 3-fold cross-validation; for details,
see [10].

V. NUMERICAL RESULTS FOR COST FUNCTIONS

We list the comparison results of the cost functions in
Fig. 3, where in each sub-figure, we plot the curves of the
estimated g(-) corresponding to five different time periods.

We observe from Figs. 3(a) — 3(d) that the costs for peak
periods (AM/PM) are more sensitive to traffic flows than for
non-peak periods (MD/NT/weekend). This can be explained
as follows: during rush hour, it is very common for vehicles
to pass through a congested road network while during non-
rush hour, drivers mostly enjoy an uncongested road network.

In addition, it is seen that, for different months, the cost
curves for non-peak periods differ more greatly than for peak
periods. Aside from the observation and modeling errors, this
can also be explained by seasonal traveling patterns.

VI. PRICE OF ANARCHY

In this section we quantify the POA in a traffic network
as the ratio between the total latency, i.e., the total travel
time over all drivers in different O-D pairs, obtained under
Wardrop flows and that obtained under social-optimal flows.
Assuming a network with multiple O-D pairs, the total
latency of the network is defined as follows:

L(x) = Z Xata(Xa)-

acd/

(12)
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Comparison of the estimated cost functions corresponding to different time periods.

Let now x* and x" denote the socially optimum and the
Wardrop link flow vectors respectively. Then, the POA is
defined as

L(Xne)

POA = T+

(13)

In order to find socially optimum flows we formulate the
following optimization problem [4] [11]:
Z Xata(xq)-
acd

The problem above is a Non-Linear Programming (NLP)

problem in which the non-linearity comes from the cost
function #,(x,).

We calculate x’s via (14) using the corresponding O-D
demand matrix and cost function, #,(x), derived from the
speed and capacity datasets. Once we have socially optimum
flows, we can calculate the POA by considering the link flow
data derived from the speed and capacity datasets as the user-
optimum flows, x},°, Va € &7. In particular, for a specific date
and time period, we calculate the POA as follows:

POA — Yaco Xq' ta (xZe) '
Yacor Xita(X))

min
xeF

(14)

A. Numerical example

In this subsection, we investigate the POA for the network
shown in Fig. 2(a). First, we calculate the POA for a specific
time period in a day and then for a whole month during the
year 2012. As an example we calculate the POA for the PM
(5 pm — 7 pm) period of Wed., Apr. 11, 2012. To do so,
we calculate socially optimal flows by solving problem (14).
Tab. I shows the flow values on each link obtained under

TABLE I
SOCIAL-OPTIMUM VS WARDROP-EQUILIBRIUM FLOWS
edge No. 0 1 2 3 4 5
X 1.79e3 | 0.7e3 | 1.08e3 | 1.67e3 | 3.43e3 | 1.94e3
X 2.05e3 | 1.57e3 | 1.95¢3 | 2.42e3 | 3.28e3 | 1.69e3
edge No. 6 7 8 9 10 11
X, 0.85e3 | 0.35¢3 | 5.21e3 | 4.2¢3 3e3 1.47e3
xie 1.12¢3 | 2.23e3 | 5.08e3 | 5.23e3 | 4.94e3 | 3.67¢3
edge No. 12 13 14 15 16 17
X 1.19e3 | 2.28¢3 | 1.14e3 | 1.4e3 | 0.13e3 | 0.38e3
xne 1.41e3 | 3.12¢3 3e3 2.82e3 | 1.69¢3 | 1.09e3
edge No. 18 19 20 21 22 23
X, 3.35e3 | 4.34e3 | 1.48e3 | 2.26e3 | 1.44e3 | 2.24e3
xne 2.5¢3 | 4.56e3 | 5.39e3 | 3.93¢3 | 1.26e3 | 1.86e3

the socially optimal policy, x}, as well as the average flow
during the PM period extracted from data, x¢, for Apr. 11.
These flows result in the total latency of 1.6871e4 for the



selfish driving vs. 1.0869¢4 for the socially optimal routing
which yields POA = 1.5522.

We then look at the POA for a specific time period in
a whole month. Fig. 4 shows the POA for the PM period
during April 2012. It is observed that POA > 1 for all days
in April during the PM period. In the worst case, on April
12 and April 22, POA ~ 2, which means that the system is
considerably inefficient under selfish driving. On the other
hand, POA = 1.23 in the best case showing that we can
reduce the total latency in the network by at least 23% if
drivers follow socially optimal paths. Fig. 5 shows the so-

POA

15 20 25
April days - PM period

Fig. 4. POA for PM period in Apr. based on avg. flow on each link.

5 10 30

cially optimal vs. average user-optimal flows on each link for
all days of April 2012 during the PM period. We can observe
that for some links (e.g. links 7, 11, 19 and 23), there exist
significant differences between selfish behavior and system-
centric behavior suggesting several potential opportunities to
improve the system performance.

VII. CONCLUSIONS

In this paper, we study a large-scale transportation network
(Eastern Massachusetts) using vehicle probe data obtained
from the Boston Region MPO for the year 2012, and obtain
estimates for the cost functions determining users’ route
choices. We then quantify the Price of Anarchy (POA).
Our findings help elucidate the underlying operation of
a large transportation system and provide useful insights
contributing to efforts for building a smarter city.
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