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Abstract— We consider the optimal coverage problem where
a multi-agent network is deployed in an environment with
obstacles to maximize a joint event detection probability. We
first show that the objective function is monotone submodular, a
class of functions for which a simple greedy algorithm is known
to be within 1-1/e of the optimal solution. We then derive two
tighter lower bounds by exploiting the curvature information
of the objective function. We further show that the tightness
of these lower bounds is complementary with respect to the
sensing capabilities of the agents. Simulation results show that
this approach leads to significantly better performance relative
to previously used algorithms.

I. INTRODUCTION
Multi-agent systems consist of a team of cooperating

agents, e.g., sensor nodes, vehicles, or robots that perform
one or more tasks in a mission space which may contain
obstacles. Examples of such tasks include environmental
monitoring, surveillance, or animal population studies among
many. Optimization problems formulated in the context of
multi-agent systems, more often than not, involve non-
convex objective functions resulting in potential local optima,
while global optimality cannot be easily guaranteed.

One of the fundamental problems in multi-agent systems is
the optimal coverage problem where agents are deployed so
as to cooperatively maximize the coverage of a given mission
space [1]–[5] where “coverage” is measured in a variety of
ways, e.g., through a joint detection probability of random
events cooperatively detected by the agents. The problem
can be solved by either on-line or off-line methods. Some
widely used on-line methods, such as distributed gradient-
based algorithms [2], [6], [7] and Voronoi-partition-based
algorithms [5], [8], [9], typically result in locally optimal
solutions, hence possibly poor performance. To escape such
local optima, a “boosting function” approach is proposed
in [10] whose performance can be ensured to be no less
than that of these local optima. Alternatively, a “ladybug
exploration” strategy is applied to an adaptive controller
in [11], which aims at balancing coverage and exploration.
However, these on-line approaches cannot quantify the gap
between the local optima they attain and the global optimum.
Off-line algorithms, such as simulated annealing [12], can,
under certain conditions, converge to a global optimal solu-
tion in probability. However, the conditions may be hard to
be satisfied.
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Related to the optimal coverage problem is the “maximum
coverage” problem [13], [14], where a collection of discrete
sets is given (the sets may have some elements in common
and the number of elements is finite) and at most N of
these sets are selected so that their union has maximal size
(cardinality). The objective function in the maximum cover-
age problem is submodular, a special class of set functions
with attractive properties one can exploit. In particular, a
well known result in the submodularity theory [15] is the
existence of a lower bound for the global optimum provided
by any feasible solution obtained by the greedy algorithm,
i.e., an algorithm which iteratively picks the set that covers
the maximum number of uncovered elements at each iterative
step. Defining, for any integer number N , L(N) = f/f?

where f? is the global optimum and f is a feasible solution
obtained by the greedy algorithm, it is shown in [15] that
L(N) ≥ 1− 1

e . In other words, since f? ≤ (1− 1
e )−1f , one

can quantify the optimality gap for a given solution f .
In our past work [10], we studied the optimal coverage

problem with agents allowed to be positioned at any feasible
point in the mission space (which generally includes several
obstacles) and used a distributed gradient-based algorithm
to determine optimal agent locations. Depending on initial
conditions, a trajectory generated by such gradient-based
algorithms may lead to a local optimum. In this paper,
we limit agents to a finite set of feasible positions. An
advantage of this formulation is that it assists us in elim-
inating obviously bad initial conditions for any gradient-
based method. An additional advantage comes from the
fact that we can show our coverage objective function to
be monotone submodular, therefore, a suboptimal solution
obtained by the greedy algorithm can achieve a performance
ratio L(N) ≥ 1 − 1

e , where N is the number of agents
in the system. The idea of exploiting the submodularity of
the objective function in optimization problems has been
used in the literature, e.g., sensor placement problems [16],
[17] and the maximum coverage problem mentioned above,
whereas a total backward curvature of string submodular
functions is proposed in [18] and a total curvature ck for
the k-batch greedy algorithm is proposed in [19] in order to
derive bounds for related problems.

Our goal in this paper is to derive a tighter lower bound,
i.e., to increase the ratio L(N) by further exploiting the
structure of our objective function. In particular, we use
the total curvature [20] and the elemental curvature [21] of
the objective function and show that these can be explicitly
derived and lead to new and tighter lower bounds. Moreover,
we show that the tightness of the lower bounds obtained
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through the total curvature and the elemental curvature
respectively is complementary with respect to the sensing
capabilities of the agents. In other words, when the sensing
capabilities are weak, one of the two bounds is tight and
when the sensing capabilities are strong, the other bound
is tight. Thus, regardless of the sensing properties of our
agents, we can always determine a lower bound tighter than
L(N) = 1− 1

e and, in some cases very close to 1, implying
that the greedy algorithm solution can be guaranteed to be
near-globally optimal.

It is possible to add a final step to the optimal coverage
process, after obtaining the greedy algorithm solution and
evaluating the associated lower bound with respect to the
global optimum. Specifically, we can relax the set of allow-
able agent positions in the mission space from the imposed
discrete set and use the solution of the greedy algorithm as an
initial condition for the distributed gradient-based algorithm
in [10]. However, this is not included in this paper but can
be found in [22].

The remainder of this paper is organized as follows. The
optimal coverage problem is formulated in Sec. II. In Sec.
III, we review key elements of the submodularity theory and
show that how to apply it to the optimal coverage problem.
In Sec. IV, we provide simulation examples to show how
the algorithm works and can provide significantly better
performance compared to earlier results reported in [10] .

II. OPTIMAL COVERAGE PROBLEM
FORMULATION

We begin by reviewing the basic coverage problem. A
mission space Ω ⊂ R2 is modeled as a non-self-intersecting
polygon, i.e., a polygon such that any two non-consecutive
edges do not intersect. Associated with Ω, we define a
function R(x) : Ω → R to characterize the probability of
event occurrences at the location x ∈ Ω. It is referred to
as event density satisfying R(x) ≥ 0 for all x ∈ Ω and∫

Ω
R(x)dx < ∞. The mission space may contain obstacles

modeled as m non-self-intersecting polygons denoted by Mj ,
j = 1, . . . ,m, which block the movement as well as the
sensing of an agent. The interior of Mj is denoted by M̊j

and the overall feasible space is F = Ω \ (M̊1 ∪ . . .∪ M̊m),
i.e., the space Ω excluding all interior points of the obstacles.
There are N agents in the mission space and their positions
are defined by a vector s = (s1, . . . , sN ) with si ∈ FD,
i = 1, . . . , N , where FD = {f1, . . . , fn} is a discrete set of
feasible positions with cardinality n. We assume that si 6= sj
for any two distinct agents i and j. Figure 1 shows a mission
space with two obstacles and an agent located at si.

In the coverage problem, agents are sensor nodes. We
assume that each node has a bounded sensing range captured
by the sensing radius δi. Thus, the sensing region of node
i is Ωi = {x : di(x) ≤ δi}, where di(x) = ‖x − si‖. The
presence of obstacles inhibits the sensing ability of a node,
which motivates the definition of a visibility set V (si) ⊂ F .
A point x ∈ F is visible from si ∈ F if the line segment
defined by x and si is contained in F , i.e., ηx+(1−η)si ∈ F
for all η ∈ [0, 1], and x is within the sensing range of si,

Fig. 1: Mission space example, FD consists of the blue dots

i.e. x ∈ Ωi. Then, V (si) = Ωi ∩ {x : ηx + (1 − η)si ∈
F for all η ∈ [0, 1]} is a set of points in F which are
visible from si. We also define V̄ (si) = F \ V (si) to be
the invisibility set from si, e.g., the grey area in Fig. 1. A
sensing model for node i is given by the probability that
sensor i detects an event occurrence at x ∈ V (si), denoted
by pi(x, si). We assume that pi(x, si) can be expressed as a
function of di(x) = ‖x−si‖ and is monotonically decreasing
and differentiable. An example of such a function is

pi(x, si) = exp(−λi‖x− si‖), (1)

where λi is a sensing decay factor. For points that are
invisible to node i, the detection probability is zero. Thus, the
overall sensing detection probability, denoted by p̂i(x, si), is

p̂i(x, si) =

{
pi(x, si) if x ∈ V (si),

0 if x ∈ V̄ (si),
(2)

which is not a continuous function of si. Note that V (si) ⊂
Ωi = {x : di(x) ≤ δi} is limited by the sensing range of
agents δi and that the overall sensing detection probability
of agents is determined by the sensing range δi as well as
sensing decay rate λi. Then, the joint detection probability
that an event at x ∈ Ω is detected by the N nodes is given
by

P (x, s) = 1−
N∏
i=1

[1− p̂i(x, si)], (3)

where we assume that detection probabilities of different
sensors are independent. Assume that R(x) = 0 for x /∈ F .
The optimal coverage problem can be expressed as follows:

max
s

H(s) =

∫
Ω

R(x)P (x, s)dx

s.t. s ∈ I
(4)

where I = {S ⊆ FD : |S| ≤ N} is a collection of subsets of
FD and |S| denotes the cardinality of set S. We emphasize
again that H(s) is not convex (concave) even in the simplest
possible problem setting.

III. SUBMODULARITY THEORY APPLIED TO THE
OPTIMAL COVERAGE PROBLEM

A naive method to find the global optimum of (4) is the
brute-force search. The time complexity is n!/(N !(n−N)!)
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by choosing N agent positions from n feasible positions.
The brute-force method may not generate quality solutions
in a reasonable amount of time when n and N are large.
In this section, we will introduce the basic elements of
submodularity theory and apply it to the optimal coverage
problem. We will show that our objective function H(s) in
(4) is monotone submodular, therefore, we can apply basic
results from submodularity theory which hold for this class
of functions. According to this theory, the greedy algorithm
(described in Section I and shown in Algorithm 1) produces
a guaranteed performance in polynomial time. The time
complexity of the greedy algorithm is O(nN).

A. Monotone Submodular Coverage Metric

A submodular function is a set function whose value has
the diminishing returns property. The formal definition of
submodularity is given as follows.

Definition 1: Given a ground set Y = {y1, . . . , yn} and
its power set 2Y , a function f : 2Y → R is called submodular
if for any S, T ⊆ Y ,

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ). (5)

If, additionally, f(S) ≤ f(T ) whenever S ⊆ T , we say
that f is monotone submodular. An equivalent definition,
which better reflects the diminishing returns property, is
given below.

Definition 2: For any sets S, T ⊆ Y with S ⊆ T and
any y ∈ Y \ T , we have

f(S ∪ {y})− f(S) ≥ f(T ∪ {y})− f(T ). (6)

Intuitively, the incremental increase of the function is larger
when an element is added to a small set than to a larger set.
In what follows, we will use the second definition.

A general form of a submodular maximization problem is

max f(S)

s.t. S ∈ I
(7)

where I is a non-empty collection of subsets of a finite set
Y .M = (Y, I), I ⊆ 2Y is independent if, for all B ∈ I, any
set A ⊆ B is also in I. Furthermore, if for all A ∈ I, B ∈ I,
|A| < |B|, there exists a j ∈ B \ A such that A ∪ {j} ∈ I,
thenM is called a matroid. Moreover,M = (Y, I) is called
uniform matroid if I = {S ⊆ Y : |S| ≤ N}.

The following theorem establishes the fact that the objec-
tive function H(s) in (4) is monotone submodular, regardless
of the obstacles that may be present in the mission space.
This will allow us to apply results that quantify a solution
obtained through the greedy algorithm relative to the global
optimum in (4).

Theorem 1: H(s) is monotone submodular, i.e.,

H(S ∪ {sk})−H(S) ≥ H(T ∪ {sk})−H(T )

and
H(S) ≤ H(T )

for any S, T ⊆ FD with S ⊆ T and sk ∈ FD \ T .
The proof is omitted due to limited space but can be found

in [22].

B. Greedy Algorithm and Lower Bounds

Finding the optimal solution to (7) is in general NP-hard.
The following greedy algorithm is usually used to obtain
a feasible solution for (7). The basic idea of the greedy
algorithm is to add an agent which can maximize the value
of the objective function at each iteration.

Algorithm 1 Greedy Algorithm

Input: Submodular function f(S), cardinality constraint N
Output: Set S
Initialization: S ← ∅, i← 0

1: while i ≤ N do
2: s∗i = argmaxsi∈Y \S f(S ∪ {si})
3: S ← S ∪ {s∗i }
4: i← i+ 1
5: end while
6: return S

In the following analysis, we assume that f is a monotone
submodular function satisfying f(∅) = 0 and M = (Y, I)
is a uniform matroid. We will use the definition

L(N) =
f

f∗

from Section I, where f? is the global optimum of (7) and
f is a feasible solution obtained by Algorithm 1. Then, as
shown in [15], a lower bound of L(N) is 1− 1/e .

Next, we consider the total curvature

c = max
j∈Y

[
1− f(Y )− f(Y \ j)

f({j})

]
(8)

introduced in [20]. Using c, the lower bound of L(N) above
is improved to be T (c,N):

T (c,N) =
1

c

[
1− (

N − c
N

)N
]
. (9)

where c ∈ [0, 1], and

T (c,N) ≥ 1− 1

e

for any N ≥ 1. If c = 1, the result is the same as the bound
obtained in [15], [23].

In addition, we consider the elemental curvature

α = max
S⊂Y,i,j∈Y \S,i 6=j

f(S ∪ {i, j})− f(S ∪ {j})
f(S ∪ {i})− f(S)

, (10)

based on which the following bound is obtained:

E(α,N) = 1−
(

α+ . . .+ αN−1

1 + α+ . . .+ αN−1

)N
(11)

and it is shown in [21] that L(N) ≥ E(α,N). Note that
E(α,N) can be simplified as follows:

E(α,N) =

{
1− (N−1

N )N , when α = 1;

1− (α−α
N

1−αN )N , when 0 ≤ α < 1.
(12)
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If both bounds T (c,N) and E(α,N) can be calculated, then
the larger one will be the lower bound L(N), defined as

L(N) = max{T (c,N), E(α,N)}. (13)

Accordingly, we have f(S) ≥ L(N)f(S∗), where S? is the
global optimum set, and S is the set obtained by Algorithm 1.

C. Curvature Information Calculation

In this subsection, we will derive the concrete form of the
total curvature c and the elemental curvature α in the context
of coverage problems. For notational convenience, p̂i(x, si)
is used without its arguments as long as this dependence is
clear from the context.

Recall that FD is the set of feasible agent positions. We
can obtain from (4):

H(FD) =

∫
Ω

R(x)

[
1−

n∏
i=1

(1− p̂i)

]
dx

=

∫
Ω

R(x)

1− (1− p̂j)
n∏

i=1,i6=j

(1− p̂i)

 dx,
and

H(FD \ {sj}) =

∫
Ω

R(x)

1−
n∏

i=1,i6=j

(1− p̂i)

 dx.
The difference between H(FD) and H(FD \ {sj}) is

H(FD)−H(FD \ {sj}) =

∫
Ω

R(x)p̂j

n∏
i=1,i6=j

[1− p̂i]dx.

(14)
When there is only one agent sj , the objective function is

H(sj) =

∫
Ω

R(x)p̂jdx. (15)

Combining (8), (14) and (15), we obtain

c = max
sj∈FD

[
1−

∫
Ω
R(x)p̂j

∏n
i=1,i6=j [1− p̂i]dx∫

Ω
R(x)p̂jdx

]
. (16)

Remark 1 If the sensing capabilities of agents are weak,
that is, p̂i is small for most parts in the mission space, then∏n
i=1,i6=j(1 − p̂i) is, in turn, close to 1, which leads to a

small value of c. It follows from (9) that the lower bound
T (c,N) is a monotonically decreasing function of c and
approaches 1 near c = 0. This implies that the solution of the
greedy algorithm is very close to the global optimum when
the sensing capabilities are weak.

Next, we calculate the elemental curvature α. The differ-
ence between H(S) and H(S ∪ {sk}) is

H(S∪{sk})−H(S) =

∫
Ω

R(x)p̂k(x)
∏
si∈S

[1− p̂i]dx. (17)

Using the same derivation, we can obtain

H(S ∪ {sj , sk})−H(S ∪ {sj})

=

∫
Ω

R(x)p̂k(1− p̂j)
∏
si∈S

[1− p̂i]dx. (18)

The elemental curvature in (10) can then be calculated by

α = max
S,sj ,sk

H(S ∪ {sj , sk})−H(S ∪ {sj})
H(S ∪ {sk})−H(S)

= max
S,sj ,sk

∫
Ω
R(x)p̂k(1− p̂j)

∏
si∈S [1− p̂i]dx∫

Ω
R(x)p̂k

∏
si∈S [1− p̂i]dx

= 1− min
sj ,x∈Ω

p̂j(x, sj).

(19)

Remark 2 Observe that the elemental curvature turns out
to be determined by a single agent. If there exists a pair
(x, sj) such that x ∈ V̄ (sj) in (2), then p̂j(x, sj) = 0 and
α = 1. This may happen when there are obstacles in the
mission space or the sensing capabilities of agents are weak
(e.g., the sensing range is small or the sensing decay rate
is large). On the other hand, if the sensing capabilities are
so strong that p̂j(x, sj) 6= 0 for any x ∈ F, sj ∈ FD, then
α < 1. In addition, E(α,N) is a monotonically decreasing
function of α.

An interesting conclusion from this analysis is that
T (c,N) and E(α,N) are complementary with respect to
the sensing capabilities of sensors. From Remark 1, T (c,N)
is large when the sensing capabilities are weak, while from
Remark 2, E(α,N) is large when the sensing capabilities
are strong. This conclusion is graphically depicted in Figs. 2
and 3 (where sensing capability varies from strong to weak).
In Fig. 2, E(α,N) and T (c,N) have been evaluated for
N = 10 and δ = 80 as a function of one of the measures of
sensing capability, the sensing decay rate λ in (1), assuming
all agents have the same sensing capabilities. One can see
that for small values of λ, the bound E(α, 10) is close to
1 and dominates both T (c, 10) and the well-known bound
1 − 1

e . Beyond a critical value of λ, it is T (c, 10) that
dominates and approaches 1 for large values of λ. Figure
3 shows a similar behavior when T (c,N) and E(α,N) are
evaluated for N = 10 and λ = 0.03 as a function of the other
measure of sensing capability, the sensing range δ. When
the sensing range exceeds the distance of the diagonal of
the mission space, there is no value in further increasing the
sensing range and E(·) becomes constant. When δ > 20, the
sensing capabilities are strong and T (·) becomes constant.
Therefore, both E(·) and T (·) become constant when δ
exceeds corresponding thresholds. On the other hand, when
the sensing range is smaller than some threshold, then α = 1,
and E(1, 10) = 0.6513.

Figures 2 and 3 also illustrate the trade-off between the
sensing capabilities and the coverage performance guarantee.
Agents with strong capabilities obviously achieve better
coverage performance. On the other hand, one can get a
better guaranteed performance as the agents’ capabilities get
weaker. Therefore, if one is limited to agents with weak
sensing capabilities in a particular setting, the use of T (c,N)
is appropriate and this trade-off may be exploited.

IV. SIMULATION RESULTS

In this section, we illustrate through simulation our anal-
ysis and the use of the greedy algorithm (Algorithm 1)
for coverage problems in a variety of mission spaces with
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Fig. 2: Lower bound L(10) as a function of the sensing decay rate of agents
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Fig. 3: Lower bound L(10) as a function of the sensing range of agents

obstacles. The mission space is a 60×50 rectangular area and
the event density function R(x) is assumed to be uniformly
distributed, i.e., we set R(x) = 1 in (4). The number of
agents is N = 10. We compare the performance of the
greedy algorithm (Algorithm 1) and the distributed gradient
algorithm in [10] for solving the optimal coverage problem in
different mission spaces: a wall-like obstacle and a room-like
obstacle. Since the global optimum is unknown, we resort to
comparing results as shown in Figs. 4-5 and Figs. 6-7. In
each case, we fix the sensing range to δi = 80, i = 1, ..., N
and use two different values of λ, where (a) shows the results
of the distributed gradient-based algorithm and (b) shows the
results under the greedy algorithm. The mission space is col-
ored from dark to light as the joint detection probability (our
objective function) decreases: the joint detection probability
is ≥ 0.97 for purple areas, ≥ 0.50 for green areas, and near
zero for white areas.

For all cases with obstacles in the mission space, the
greedy algorithm clearly outperforms the basic gradient-
based algorithm. Moreover, the results of the greedy algo-
rithm significantly improve upon those reported in our previ-

(a) H(s) = 437.1 (b) H(s) = 1813.3
Fig. 4: The decay factor λ = 0.12, and a wall-like obstacle in the mission space

(a) H(s) = 269.6 (b) H(s) = 371.9
Fig. 5: The decay factor λ = 0.4, and a wall-like obstacle in the mission space

ous work [10]. As an example, in the case of Fig. 6 with λ =
0.12, the objective function value is improved from a value of
1419.5 reported in [10] (using the distributed gradient-based
algorithm with improvements provided through the use of
boosting functions) to 1462.6 using the greedy algorithm.

V. CONCLUSION AND FUTURE WORK

We have obtained a solution to the optimal coverage prob-
lem through the greedy algorithm with a guaranteed lower
bound relative to the global optimum which is significantly
tighter than the one well-known in the literature to be 1−1/e.
This is made possible by proving that our coverage metric

(a) H(s) = 1187.0 (b) H(s) = 1462.6
Fig. 6: The decay factor λ = 0.12, in a room mission space

(a) H(s) = 303.1 (b) H(s) = 344.5
Fig. 7: The decay factor λ = 0.4, in a room mission space
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is monotone submodular and by calculating its total curva-
ture and its elemental curvature. Therefore, we are able to
reduce the theoretical performance gap between optimal and
suboptimal solutions enabled by the submodularity theory.
Moreover, we have shown that the two new bounds derived
are complementary with respect to the sensing capabilities
of the agents and each one approaches its maximal value
of 1 under different conditions on the sensing capabilities,
enabling us to select the most appropriate one depending on
the characteristics of the agents at our disposal. As shown in
[22], by combining the greedy algorithm with a distributed
gradient-based algorithm it is possible to improve the cov-
erage performance when the feasible region is continuous
with initial conditions provided by the greedy algorithm. We
have included simulation results uniformly showing that the
greedy algorithm outperforms other related methods we are
aware of.

An interesting future research direction is to study whether
a distributed greedy algorithm can be developed and whether
the lower bounds obtained through the associated curvatures
are still as tight as those we have obtained so far.
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