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Abstract— We address the issue of identifying conditions
under which the centralized solution to the optimal multi-agent
persistent monitoring problem can be recovered in a decen-
tralized event-driven manner. In this problem, multiple agents
interact with a finite number of targets and the objective is to
control their movements in order to minimize an uncertainty
metric associated with the targets. In one-dimensional settings,
it has been shown that the optimal solution can be reduced
to a simpler parametric one and that the behavior of agents
under optimal control is described by a hybrid system. This
hybrid system can be analyzed using Infinitesimal Perturbation
Analysis (IPA) to obtain an on-line solution through an event-
driven centralized gradient-based algorithm. We show that
the IPA gradient can be recovered in a distributed manner
based on local information, except for one event requiring
communication from a non-neighbor agent. Simulation exam-
ples are included to illustrate the effectiveness of this “almost
decentralized” algorithm and its fully decentralized counterpart
where the aforementioned non-local event is ignored.

I. INTRODUCTION

Systems consisting of cooperating mobile agents are often
used to perform tasks such as coverage [1], surveillance [2],
or environmental sampling [3]. A persistent monitoring task
is one where agents must cooperatively monitor a dynami-
cally changing environment that cannot be fully covered by
a stationary team of agents (as in coverage control) [4]. Once
the exploration process leads to the discovery of various
“points of interest”, then these become “targets” which need
to be perpetually monitored. Thus, in contrast to sweep
coverage and patrolling where every point in a mission space
is of interest [5], the problem we address here focuses on a
finite number of data sources or “targets”.

In this setting, the agents interact with targets through their
sensing capabilities which are normally dependent upon their
physical distance from the target. The uncertainty state of a
target increases when no agent is visiting it and decreases
when it is being monitored by one or more agents (i.e., it
is within their sensing range). The objective is to minimize
an overall measure of target uncertainty states by controlling
the movement of all agents in a cooperative manner. Unlike
many other multi-agent systems modeled solely through a
network of interconnected agents, here we have two net-
works, one whose nodes are agents and one whose nodes
are targets. Since agents interact with targets, this interaction
is modeled by establishing links between nodes belonging
to the two different networks. Moreover, since agents are
mobile and the overall graph topology is time-varying, the
resulting complexity of this class of problems is significant.
This has motivated approaches where rather than viewing
these as agent-to-target assignment problems [6], [7] (which
are computationally intensive), one treats them as trajectory
design and optimization problems [4], [8].
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In [9], we studied the persistent monitoring problem in 1D
and showed that it can be formulated as an optimal control
problem whose solution is parametric. In particular, every
optimal agent trajectory is characterized by a finite number
of points where the agent switches direction and by a dwell
time at each such point. As a result, the behavior of agents
under optimal control is described by a hybrid system. This
allows us to make use of Infinitesimal Perturbation Analysis
(IPA) [10], [11] to determine on-line the gradient of the
objective function with respect to these parameters and to
obtain a (possibly local) optimal trajectory. Our approach
exploits IPA’s event-driven nature to render it scalable in the
number of events and not its state space.

The optimal controller developed in [9] is established
based on the assumption of a centralized controller which
provides information and coordinates all agents. Similar
centralized controllers can be found in [3], [4], [12]. Clearly,
a centralized controller can be energy-consuming and un-
reliable in adversarial environments. This motivates us to
develop decentralized controllers by distributing functional-
ity to agents so that each one acts upon local information
or by communicating with only a set of neighbors. Such
distributed algorithms have been derived and applied to
coverage [1], formation [13], and consensus problems [14]
where a static fully connected network is usually assumed.
However, decentralization for persistent monitoring problems
is particularly challenging due to the time-varying topology
of agent network in which interactions between agents and
the environment cannot be easily shared through the network.

In this paper, we identify explicit conditions under which
the centralized solution to the persistent monitoring problem
studied in [9] can be recovered through an “almost decentral-
ized” and entirely event-driven manner. In particular, each
agent uses (i) its own local information (to be precisely
defined later), (ii) information (in the form of observable
events) from its neighbors, and (iii) a single specific event
type communicated by a non-neighbor agent. The decen-
tralization result exploits the structure of the IPA gradient
associated with each agent which turns out to depend only
on a limited number of local events, except for one event
requiring communication with a non-neighbor agent.

II. PROBLEM FORMULATION

We begin by reviewing the persistent monitoring model
and problem formulation introduced in [9].

Agent dynamics. We consider N agents moving in a 1D
mission space [0, L]. Each agent can control its speed and
direction. The speed input is scaled and bounded in [−1, 1].
The position of each agent j is represented as sj(t) ∈ [0, L]
with the dynamics:

ṡj(t) = uj(t), |uj(t)| ≤ 1, ∀j = 1, 2 . . . , N (1)

Agent sensing model. The ability of an agent to sense
its environment is modeled by a function pj(x, sj) that mea-
sures the probability that an event at location x is detected by
agent j at sj(t). We assume that pj(x, sj) = 1 if x = sj , and
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that pj(x, sj) is monotonically non-increasing in the distance
‖x−sj‖, thus capturing the reduced effectiveness of a sensor
over its sensing range denoted by rj . Although our analysis
is not affected by the precise sensing model pj(x, sj), we
will limit ourselves to a linear decay model as follows:

pj(x, sj) = max

{
0, 1− ‖x− sj‖

rj

}
(2)

Unlike the sweep coverage problem, here we consider a
known finite set of targets located at xi ∈ [0, L], i =
1, . . . ,M . We set pj(xi, sj(t)) ≡ pij(sj(t)) for simplicity.
The sensing capability of N agents on target i, assuming de-
tection independence, can be captured by the joint detection
probability function

Pi (s(t)) = 1−
N∏
j=1

(1− pij(sj(t))) (3)

where we set s(t) = [s1 (t) , . . . , sN (t)]T.
Target dynamics. We define uncertainty functions Ri(t)

associated with targets i = 1, . . . ,M , so that they have the
following properties: (i) Ri(t) increases with a prespecified
rate Ai if Pi (s(t)) = 0 (as shown in [9], this can be allowed
to be a random process {Ai(t)}), (ii) Ri(t) decreases with
a fixed rate Bi if Pi (s(t)) = 1 and (iii) Ri(t) ≥ 0 for all t.
It is then natural to model uncertainty dynamics associated
with each target as follows:

Ṙi(t) =

{
0 if Ri(t) = 0, Ai ≤ BiPi (s(t))
Ai −BiPi (s(t)) otherwise (4)

where we assume that initial conditions Ri(0) for all i are
given and that Bi > Ai > 0 to ensure a strict decrease in
Ri(t) when Pi(s(t)) = 1.

Optimal control problem. Our goal is to control the
movement of agents through uj (t) in (1) so that the cumula-
tive average uncertainty over all targets is minimized over a
fixed time horizon T . Setting u (t) = [u1 (t) , . . . , uN (t)]

>

we aim to solve the following optimal control problem:

P1 : min
u(t)

J =
1

T

∫ T

0

M∑
i=1

Ri(t)dt (5)

subject to the agent dynamics (1) and target uncertainty
dynamics (4). Generally, the classical solution of (5) involves
solving a Two Point Boundary Value Problem which requires
global information of all agents and targets. In this paper,
we will limit the information of each agent to itself and its
neighbors and study whether this objective function can be
optimized in a distributed manner.

Limited information model for decentralization. In our
model, an agent is capable of observing information within
its sensing range, specifically the state Ri(t) of all targets i
such that pij(sj(t)) > 0. Moreover, agents can communicate
with their neighboring agents to acquire information such as
agent positions, speeds, and the states of targets which are
within their sensing ranges. In contrast to traditional multi-
agent systems modeled through a network of agents, in the
persistent monitoring setting agents move to interact with
targets. Therefore, the network model includes both agents
and targets as shown in Fig. 1. We need to revisit the concept
of neighborhood, accounting as well for the time-varying
network topology.

Definition 1. The agent neighborhood of agent j is the set
Aj(t) = {k : ‖sk(t)− sj(t)‖ ≤ rc, k 6= j, k = 1, . . . , N}.

Fig. 1: Agent-target network. Red triangles are targets and blue
squares are agents.

This is a conventional definition of neighbors in multi-
agent systems, where rc is a communication range. As an
example, in Fig. 1, A1 = {A2, A3, A5}.
Definition 2. The target neighborhood of agent j is the set
Tj(t) = {i : |xi − sj(t)| ≤ rj , i = 1, . . . ,M}.

This includes all targets which are within agent j’s sensing
range. In Fig. 1, T3 = {T1, T2, T3}. Assuming the agents are
homogeneous with a common sensing range r, we require
that rc ≥ 2r in order to establish communication among
agents that are sensing the same target.

Definition 3. The agent neighborhood of target i is the set
Bi(t) = {j : |sj(t)− xi| ≤ rj , j = 1, . . . , N}.

This set captures all the neighbor agents of target i. In Fig.
1, B2 = {A1, A2, A3}. Using Definition 3, the joint sensing
probability in (3) can be rewritten as:

Pi (s(t)) = 1−
∏

j∈Bi(t)

(1− pij(sj(t))) (6)

where Bi(t) ⊆ {1, . . . , N}. We further define

Nij(t) = Bi(t) \ {j} (7)

to indicate the “collaborators” of agent j in sensing target
i. Note that Nij(t) = {k : k ∈ Aj(t) and k ∈ Bi(t)}, thus
capturing a neighbor of agent j and target i at the same time.

Our limited information model restricts observations of
each agent to the agent’s sensing range. However, any agent
j is allowed to communicate with its neighbors in Aj(t).
Therefore, the local information of an agent is the union of
the observations of agent j and the observations of agents
k ∈ Aj(t). In Section IV-A, we will explicitly define
the precise meaning of “information” above to consist of
observable events such as “agent stops” or “target state
becomes Ri(t) = 0”. In Section V, we will show how P1
can be solved by each agent under this limited information
model as opposed to the centralized one in [9].

III. FROM OPTIMAL CONTROL TO PARAMETRIC
OPTIMIZATION

We begin by defining the state vector x(t) = [R1(t), ...
RM (t), s1(t)...sN (t)] and associated costate vector λ =
[λ1(t), ..., λM (t), λs1(t), ..., λsN (t)]. Due to the discontinu-
ity in the dynamics of Ri(t) in (4), the optimal state
trajectory may contain a boundary arc when Ri(t) = 0 for
some i; otherwise, the state evolves in an interior arc. Using
(1) and (4), the Hamiltonian is

H(x, λ,u) =

M∑
i=1

Ri(t) +

M∑
i=1

λi(t)Ṙi(t) +

N∑
j=1

λsj (t)uj(t)

(8)
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Applying the Pontryagin Minimum Principle to (8) with
u?(t), denoting an optimal control, a necessary condition
for optimality is

u∗j (t) =

{
1 if λsj (t) < 0
−1 if λsj (t) > 0

(9)

Note that there exists a possibility that λsj (t) = 0 over some
finite singular intervals [15], in which case u∗j (t) may take
values in {−1, 0, 1}.

Since the optimal control structure is fully characterized
by u∗j (t) ∈ {1, 0,−1}, we can parameterize the optimal
trajectory so as to determine (i) control switching points
in [0, L], where an agent switches its control from ±1 to
∓1 or possibly 0 and (ii) corresponding dwell times so that
the cost in (5) is minimized. In other words, the optimal
trajectory of each agent j is fully captured by two parameter
vectors: switching points θj = [θj1, θj2...θjΓ] and dwell
times wj = [wj1, wj2...wjΓ′ ] where Γ and Γ′ depend on the
given time horizon T . This defines a hybrid system with state
dynamics (1), (4). The agent and target dynamics remain
unchanged in between events, i.e., the points θj1, . . . , θjΓ
above and instants when Ri(t) switches from > 0 to 0 or
vice versa. Therefore, the overall cost function (5) can be
parametrically expressed as J(θ,w) and rewritten as the sum
of costs over corresponding inter-event intervals over a given
time horizon:

min
θ∈Θ,w≥0

J(θ,w) =
1

T

K∑
k=0

∫ τk+1(θ,w)

τk(θ,w)

M∑
i=1

Ri(t)dt (10)

This allows us to apply IPA to determine a gradient
∇J(θ,w) with respect to those parameters of the agent tra-
jectories and apply any standard gradient descent algorithm
to obtain an optimal solution.

IV. INFINITESIMAL PERTURBATION ANALYSIS

We briefly review the IPA framework for general stochas-
tic hybrid systems as presented in [10]. Let {τk(θ)}, k =
1, . . . ,K, denote the occurrence times of all events in the
state trajectory of a hybrid system with dynamics ẋ =
fk(x, θ, t) over an interval [τk(θ), τk+1(θ)), where θ ∈ Θ
is some parameter vector and Θ is a given compact, convex
set. Set τ0 = 0 and τK+1 = T . We use the Jacobian matrix
notation: x′(t) ≡ ∂x(θ,t)

∂θ and τ ′k ≡
∂τk(θ)
∂θ , for all state and

event time derivatives. It is shown in [10] that

d

dt
x′(t) =

∂fk(t)

∂x
x′(t) +

∂fk(t)

∂θ
, (11)

for t ∈ [τk, τk+1) with boundary condition:

x′(τ+
k ) = x′(τ−k ) + [fk−1(τ−k )− fk(τ+

k )]τ ′k (12)

for k = 1, ...,K. In order to complete the evaluation of
x′(τ+

k ) in (12), we need to determine τ ′k. If the event at
τk is exogenous (i.e., independent of θ), τ ′k = 0. However,
if the event is endogenous, there exists a continuously
differentiable function gk : Rn × Θ → R such that τk =
min{t > τk−1 : gk (x (θ, t) , θ) = 0} and

τ ′k = −[
∂gk
∂x

fk(τ−k )]−1(
∂gk
∂θ

+
∂gk
∂x

x′(τ−k )) (13)

as long as ∂gk
∂x fk(τ−k ) 6= 0 (details may be found in [10]).

In our setting, following (10) the gradient for each agent
j denoted by ∇jJ(θ,w) = [∂J(θ,w)

∂θj
, ∂J(θ,w)

∂wj
]T is

∇jJ(θ,w) =
1

T

K∑
k=0

M∑
i=1

∫ τk+1(θ,w)

τk(θ,w)

∇jRi(t)dt (14)

where ∇jRi(t) = [∂Ri(t)
∂θj

, ∂Ri(t)
∂wj

]T.
We begin by deriving the gradient within any inter-event

interval [τk, τk+1) when the dynamics of both agent j and
target i remain unchanged. We proceed with the derivation
of ∂Ri(t)

∂θj
, since ∂Ri(t)

∂wj
can be derived in a similar way.

It follows from (11), observing that the first term vanishes
since fk(t) = Ṙi(t) is not an explicit function of Ri(t), that
d
dt
∂Ri(t)
∂θj

= ∂Ṙi(t)
∂θj

. Then, in view of (4), we have for all
t ∈ [τk, τk+1):

∂Ri(t)

∂θj
=



∂Ri(τ
+
k )

∂θj
if Ṙi(t) = 0

∂Ri(τ
+
k )

∂θj
−Bi

∫ t

τk

∂Pi(s(τ))

∂θj
dτ

if Ṙi(t) = Ai −BiPi(s(t))

(15)

The integrand in (15) is obtained from (6):
∂Pi(s(τ))

∂θj
=
∂pij(sj(τ))

∂sj

∂sj(τ)

∂θj

∏
g∈Bi(τ)
g 6=j

[1− pig (sg(τ))] (16)

Note that ∂pij(sj(τ))
∂sj

is piece-wise constant and takes values
in {0,± 1

rj
} depending on |sj(t) − xi| and rj (see agent

sensing mode (2)). We can, therefore, factor the constant
∂pij(sj(τ))

∂sj
out of the integral in (15). As for the term ∂sj(τ)

∂θj
,

we apply (11) and (1) to obtain d
dt
∂sj(τ)
∂θj

= 0. Therefore,

∂sj(τ)

∂θj
=
∂sj(τ

+
k )

∂θj
(17)

which is also a constant. The product term in (16) captures
the contributions from all agents other than j in monitoring
target i. It can be restricted to the set Nij(t) defined in
(7), since for any agent g 6∈ Nij(t), pig(sg(t)) = 0. For
notational simplicity, we define the integral of this term over
[τk, t), t < τk+1, as:

Gij(t) =

∫ t

τk

∏
g∈Nij(τ)

[1− pig (sg(τ))] dτ (18)

which can be interpreted as a “collaboration factor” involving
all agents in Nij(τ). This is affected by an agent leaving or
joining the neighbor set Nij(τ) which motivates defining an
event associated with such changes in Section IV-A.

Through the above analysis, the derivative ∂Ri(t)
∂θj

, i =

1, . . . ,M , over any inter-event interval [τk, τk+1) becomes:

∂Ri(t)

∂θj
=
∂Ri(τ

+
k )

∂θj
−

{
0 if Ri(t) = 0, Ai ≤ BiPi(s(t))
Bi

∂pij(sj(τ+
k ))

∂sj

∂sj(τ+
k )

∂θj
Gij(t) otherwise

(19)
A similar derivation can be applied to ∂Ri(t)

∂wj
and gives:

∂Ri(t)

∂wj
=
∂Ri(τ

+
k )

∂wj
−

{
0 if Ri(t) = 0, Ai ≤ BiPi(s(t))
Bi

∂pij(sj(τ+
k ))

∂sj

∂sj(τ+
k )

∂wj
Gij(t) otherwise

(20)
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TABLE I: Events in agent-target system

Event Name Description
ρ0i Ri(t) hits 0
ρ+i Ri(t) leaves 0
π0
ij pij(sj(t)) hits 0
π+
ij pij(sj(t)) leaves 0

ν
(1,0)
j uj(t) switches from 1 to 0

ν
(−1,0)
j uj(t) switches from −1 to 0

ν
(0,1)
j uj(t) switches from 0 to 1

ν
(0,−1)
j uj(t) switches from 0 to −1

ν
(1,−1)
j uj(t) switches from 1 to −1

ν
(−1,1)
j uj(t) switches from −1 to 1

∆+
ij Nij(τ+) = Nij(τ−) ∪ {k}, k 6∈ Nij(τ−)

∆−
ij Nij(τ+) = Nij(τ−) \ {k}, k ∈ Nij(τ−)

Note: events in the table include all i = 1, . . . ,M and j = 1, . . . , N

A. Events in the hybrid system
We now define as “events” all switches in the hybrid

system which can result in changes in the derivatives in
(19) and (20) so we can apply (12) to determine the initial
conditions ∂Ri(τ

+
k )

∂θj
and ∂Ri(τ

+
k )

∂wj
at t = τk, as well as the

terms ∂sj(τ+
k )

∂θj
and ∂sj(τ+

k )

∂wj
.

We classify events into four categories. In what follows,
we define all events types and their corresponding effects on
(19) and (20) and summarize them in Table I.

Event type I: switches in target dynamics Ṙi(t). Refer-
ring to (4), when Ri(t) either reaches zero or leaves zero,
the IPA derivative switches between the two branches in (15).
We denote the former event as ρ0

i and the latter as ρ+
i for

all i = 1, . . . ,M (see Table I). When such events occur, the
dynamics of sj(t) in (1) remain unchanged, so it follows
from (12) that ∇jsj(τ−k ) = ∇jsj(τ+

k ). However, the target
dynamics switch between Ṙi = Ai−BiPi(s(t)) and Ṙi = 0
and cause discontinuities in ∇jRi(t) as follows.

Event ρ0
i : This event causes a transition from Ṙi(t) = Ai−

BiPi(s(t)), t < τk to Ṙi(t) = 0, t ≥ τk. It is an endogenous
event because its occurrence depends on the parameters θ,w
which dictate switches in s(t). We first evaluate τ ′k from (13)
with gk(Ri(t), t) = Ri(t) = 0 to get τ ′k = − ∇jRi(τ

−
k )

Ai−BiPi(s(τ−k ))

and then apply (12) to obtain ∇jRi(τ+
k ) = ∇jRi(τ−k ) +[

Ai −BiPi(s(τ−k ))− 0
]
τ ′k. Replacing τ ′k, we get

∇jRi(τ+
k ) = 0 if event ρ0

i occurs at τk (21)

Event ρ+
i : This event causes a transition from Ṙi(t) = 0,

t < τk to Ṙi(t) = Ai − BiPi(s(t)), t ≥ τk. It is easy to
see that the dynamics in both (1) and (4) are continuous
when this happens and since Ai − BiPi(s(τk)) = 0 we
have Ṙi(τ

−
k ) = Ṙi(τ

+
k ) = 0. It follows from (12) that

∇jRi(τ+
k ) = ∇jRi(τ−k ). Moreover, since Ri(t) = 0,

Ṙi(t) = 0, t < τk, we have ∇jRi(τ−k ) = 0 and we get

∇jRi(τ+
k ) = 0 if event ρ+

i happens at τk (22)

Remark 1: Combining (21) and (22) with (19) and (20),
we conclude that a ρ0

i event occurring at t = τk resets the
value of ∇jRi(t) to ∇jRi(t) = 0 for all j = 1, . . . , N
regardless of the value ∇jRi(τ−k ) and the state of the agents.
Moreover, Ri(t) = 0 and ∇jRi(t) = 0 for t > τk until the
next ρ+

i event occurs.

Event type II: switches in agent sensing pij(sj(t)).
These events trigger a switch in ∂pij(sj(t))

∂sj
from ± 1

rj
to 0 or

vice versa in (19) and (20). We denote the former event as
π0
ij and the latter as π+

ij . The dynamics in both (1) and (4)
remain unchanged when this happens (due to the continuity
of the sensing function pij (sj(t))) and it follows from (12)
that ∇jRi(τ+

k ) = ∇jRi(τ−k ) and ∇jsj(τ+
k ) = ∇jsj(τ−k ).

Event type III: switches in agent dynamics ṡj(t). Refer-
ring to (1), these are events that cause a switch in the optimal
control values u∗j (τk): (i) ±1 → 0, (ii) 0 → ±1, and (iii)

±1 → ∓1. We denote these events as ν(1,0)
j , ν

(−1,0)
j , ν

(0,1)
j ,

ν
(0,−1)
j , ν

(−1,1)
j , ν

(1,−1)
j using the general notation ν

(∗,∗)
j

with the superscript corresponding to the six total possible
control switches. The effect of these events in (19) and (20) is
through possible discontinuities in the terms ∂sj(t)

∂θj
and ∂sj(t)

∂wj

at t = τk. Clearly, the gradient cannot be affected by future
events, so we consider all prior and current control switches
indexed by l = 1, 2..., ξ where ξ is the current control switch
and θjl, wjl are the l-th switching point and dwelling time
respectively. These agent control switches are endogenous
events with switching functions gk(sj(t), t) = sj − θjl = 0.
We can now apply (12) and (13) to (1), similar to the
derivation for type I events. We omit the details and present
the final results.

Events ν
(1,0)
j , ν

(−1,0)
j : These are switches such that

uj(τ
−
k ) = ±1, uj(τ+

k ) = 0 and we get

∂sj
∂θjl

(τ+
k ) =

{
1 if l = ξ
0 if l < ξ

(23)

∂sj
∂ωjl

(τ+
k ) = 0 for all l ≤ ξ (24)

Events ν
(0,1)
j , ν

(0,−1)
j : These are switches such that

uj(τ
−
k ) = 0, uj(τ

+
k ) = ±1 and we get

∂sj
∂θjl

(τ+
k )=


∂sj
∂θjl

(τ−k )−uj(τ+
k )sgn

(
θjξ − θj(ξ−1)

)
if l = ξ

∂sj
∂θjl

(τ−k )− uj(τ+
k )
[
sgn(θjl − θj(l−1))

−sgn(θj(l+1) − θjl)
]

if l < ξ

(25)

∂sj
∂wjl

(τ+
k ) = −uj(τ+

k ) for all l ≤ ξ (26)

Events ν
(−1,1)
j , ν

(1,−1)
j : These are switches such that

uj(τ
−
k ) = ±1, uj(τ

+
k ) = ∓1 so that a dwell time is not

involved and we get

∂sj
∂θjl

(τ+
k ) =

{
2 if l = ξ

− ∂sj
∂θjl

(τ−k ) if l < ξ
(27)

Remark 2: Observe that ∇jsj(t) is independent of the
states of other agents k 6= j.

Event type IV: changes in neighbor sets Nij(t). These
events change the topology of the agent-target network by
altering the neighbors of agent j, hence affecting the value
of Gij(t) in (18) which in turn affects (19) and (20). We
denote by ∆+

ij the event causing the addition of an agent to
the neighbor set Nij(t) and by ∆−ij the event causing the
removal of an agent from the neighbor set Nij(t). However,
the dynamics of both Ri(t) and sj(t) remain unchanged
when these events occur. Due to the continuity of the sensing
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function pig (sg(τ)) in (18), the addition/removal of an agent
g to/from the set Nij(τ) does not affect the continuity of
Gij(t), which implies ∇jRi(τ+

k ) = ∇jRi(τ−k ) as well as
∇jsj(τ+

k ) = ∇jsj(τ−k ).
The set of all events defined above and summarized in

Table I is denoted by E . Furthermore, we define the set of
all type III events of the form ν

(∗,∗)
j as the agent event set

EA and the set of all other events (type I, III, and IV) as
the target event set ET . The subset of EA that contains only
events related to agent j is denoted by EAj . Similarly, the
subset of ET that contains only events related to target i is
denoted by ETi . We then have:

Definition 4. The local event set of any agent j is the union
of agent events EAj and target events ETi for all i ∈ Tj(t):

Ej(t) = EAj
⋃

i∈Tj(t)

ETi (28)

In contrast, the global event set for agent j includes all
non-neighboring target events in ETi for all i 6∈ Tj and non-
neighboring agent events EAk , for all k 6∈ Aj .
Definition 5. The local information set of any agent j is
the union of its local event set and those of its neighbors in
Nij(t) for all i ∈ Tj(t):

Ij(t) = Ej(t)
⋃

k∈Nij(t),i∈Tj(t)

Ek(t). (29)

This includes all local information necessary for agent j to
evaluate the IPA gradient∇jRi(t) for i ∈ Tj(t). Observe that
agent j does not need to communicate with all its neighbors
in Aj(t), but only a subset which includes those neighbors
sharing the same target(s) as j since

⋃
i∈Tj(t)Nij(t)⊆ Aj(t).

Remark 3: It is clear from the analysis thus far, that IPA
is entirely event-driven, since all gradient updates happen
exclusively at events occurring at times τk(θ,w), k =
1, 2, . . .. Thus, this approach scales with the number of events
characterizing the hybrid system, and not its (generally much
larger) state space.

V. DECENTRALIZED GRADIENT EVALUATION AND
OPTIMIZATION

We begin with the following lemma which asserts that
the gradient ∇jRi(t) takes a very simple form as long as
i /∈ Tj(t), i.e., while target i cannot be sensed by agent j.

Lemma 1. Let t ∈ [t1, t2] such that i 6∈ Tj(t). Then,
1) If Ri(t) > 0 for all t ∈ [t1, t2], then

∇jRi(t) = ∇jRi(t+1 ) (30)

2) If there exists an event ρ0
i at τ ∈ (t1, t2), then

∇jRi(t) =

{
∇jRi(t+1 ) t ∈ [t1, τ)
0 t ∈ [τ, t2]

(31)

Due to space limitations all proofs (some of which have
technical details) are omitted and can be found in [16].

Corollary 1. ∇jRi(t) is independent of events ρ+
i for i 6∈

Tj(t).

Lemma 1 and its Corollary imply that agent j does not
need any knowledge of non-neighboring target events except
for ρ0

i with i 6∈ Tj(t) in order to evaluate its gradient. We
can further establish that the gradient ∇jJ(θ,w) along the

agent trajectory is affected by only local events in Ij(t), as
defined in (29), and a small subset of global events.

Lemma 2. A sufficient event set to evaluate ∇jJ(θ,w) is
Ij(t) ∪ {ρ0

i : i 6∈ Tj(t)}.
Remark 4: Although an event ρ0

i for i 6∈ Tj(t) is non-local
to agent j, it must be observed by at least one agent k 6= j
such that i ∈ Tk(t). This is because ρ0

i at some time τk can
only take place if one or more agents in its neighborhood
cause a transition from Ri(τ

−
k ) > 0 to Ri(τk) = 0 in

(4). Therefore, such events can be communicated to agent j
through the agent network, possibly with some delays. The
implication of Lemma 2 is an “almost decentralized” algo-
rithm in which each agent optimizes its trajectory through
the gradient ∇jJ(θ,w) using only agent local information;
the only exception is occasional target uncertainty depletion
events transmitted to it from other agents.

Returning to the parametric optimization problem (10),
a centralized solution was obtained in [9] using the IPA
gradients in (19) and (20) and a standard gradient descent
scheme to optimize the parameter vector [θ,w]T as follows:[

θl+1,wl+1
]T

=
[
θl,wl

]T − [αlθ, α
l
w]∇J(θ,w) (32)

where l = 0, 1, . . . is the iteration index and αlθ and αlw
are diminishing step-size sequences satisfying

∑∞
l=0 α

l
θ =

∞, liml→∞ αlθ = 0 and
∑∞
l=0 α

l
w =∞, liml→∞ αlw = 0. A

decentralized version of (32) is[
θl+1
j ,wl+1

j

]T
=
[
θlj ,w

l
j

]T − [αlθ, α
l
w]∇jJ(θ̄, w̄) (33)

where θ̄ and w̄ are agent j’s estimates based on the limited
information provided in Lemma 2.

Theorem 1. Any centralized solution of (10) through (32)
can be recovered by (33) in which each agent j optimizes
its trajectory given the following conditions:

1) Initial parameters [θ0
j ,w

0
j ];

2) The local information set Ij(t);
3) The subset of the global information set {ρ0

i , i 6∈ Tj(t)}.
It is important to point out that Theorem 1 relies on the

gradient ∇jRi(t) for i 6∈ Tj(t) and not on Ri(t). In fact,
there is no attempt by agent j to reconstruct or estimate the
states of targets i 6∈ Tj(t); the only information from such
targets is provided through the occasional ρ0

i events.
While the event-driven nature of IPA has several computa-

tional advantages (see Remark 3), the optimization process
depends on these events being observed so as to “excite”
algorithms such as (32) and (33). To resolve this event
excitation issue, potential field methods were proposed in
[17] and [9].

VI. SIMULATION EXAMPLES

We present two simulation examples to demonstrate the
performance of the proposed decentralized scheme.

In the first example, three homogeneous agents are allo-
cated to monitor seven targets in the 1D mission space for
T = 300 seconds. The targets are located at xi = 5i for
i = 1, . . . , 7. The uncertainty dynamics in (4) are defined
by the parameters Ai = 1, Bi = 5, with initial values
Ri(0) = 1 for all i. Each agent has a sensing range of
r = 3 and is initialized with sj(0) = 0.5(j − 1), uj(0) = 1,
θ0

1 = [5, 10, 15, 10, 5, . . .], θ0
2 = [15, 20, 25, 20, 15, . . .],

θ0
3 = [25, 30, 35, 30, 25, . . .], and w0

j = [0.5, 0.5, 0.5, . . .] for
j = 1, . . . , 3. Results of the method in Theorem 1 are shown
in Fig. 2. The top plot depicts the optimal trajectories of
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each agent determined after 200 iterations of (33), while the
bottom plot shows the overall cost J(θ,w) as a function of
iteration number. The exact same results (not shown here) as
in Fig. 2 were also obtained through the centralized scheme
(32) where all information is available to every agent.

As pointed out earlier, the method of Theorem 1 does not
involve any knowledge by agent j of the states of targets
i 6∈ Tj(t). This is illustrated in Fig. 3 which shows (in blue)
the fraction of time that agent 1 has any information on the
state of target 3 because it happens that 3 ∈ T1(t). The rest
of the time (shown in red) agent 1 is unable to accurately
estimate the state of this target, but such information is
unnecessary. The agent only needs a small subset of is non-
local information, as illustrated by the green dots in Fig. 3.

Fig. 2: “Almost decentralized” optimization using Theorem 1. Top
plot: optimal agent trajectories. Bottom plot: cost as a function of
number of iterations with final cost J? = 37.38.

Fig. 3: Red curve: R3(t), the state of target 3. Blue segments:
R3(t) known to agent 1 when target 3 in its neighborhood. Green
dots: instants when agent 1 receives non-local events ρ03.

The second example uses the same environment as the
first one and agents start with the same initial trajectories.
However, we eliminate the non-local information (condition
3 in Theorem 1) and each agent calculates its own IPA-based
gradient using only local information in set Ij(t). Figure
4 shows the results after 200 of iterations of (33). Even
though the gradient estimate for agent j is no longer accurate
without the ρ0

i event information when i 6∈ Tj(t), the cost
still decreases and converges as shown in Fig. 4, illustrating
the robustness of the IPA-based gradient descent method.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that in 1D an optimal centralized solution
can be recovered by an event-driven “almost decentralized”
algorithm which significantly reduces communication costs
while yielding the same performance. In particular, each
agent uses only local information except for one event

Fig. 4: Fully decentralized optimization without any non-local
information. Top plot: optimal agent trajectories. Bottom plot: cost
as a function of number of iterations with J? = 41.66.

requiring communication with a non-neighbor agent when
it occurs. The extension of this approach to the 2D case is
the subject of ongoing research. The derivation in this paper
holds if agents move in straight-lines under graph-limited
mobility constraints as shown in [18].
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