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Abstract— We consider the problem of controlling the move-
ment of multiple cooperating agents so as to minimize an
uncertainty metric associated with a finite number of targets. In
a one-dimensional mission space, we adopt an optimal control
framework and show that the solution is reduced to a simpler
parametric optimization problem: determining a sequence of
locations where each agent may dwell for a finite amount of
time and then switch direction. This amounts to a hybrid system
which we analyze using Infinitesimal Perturbation Analysis
(IPA) to obtain a complete on-line solution through an event-
driven gradient-based algorithm which is also robust with
respect to the uncertainty model used. The resulting controller
depends on observing the events required to excite the gradient-
based algorithm, which cannot be guaranteed. We solve this
problem by proposing a new metric for the objective function
which creates a potential field guaranteeing that gradient values
are non-zero. This approach is compared to an alternative
graph-based task scheduling algorithm for determining an
optimal sequence of target visits. Simulation examples are
included to demonstrate the proposed methods.

I. INTRODUCTION

Systems consisting of cooperating mobile agents are of-
ten used to perform tasks such as coverage control [1],
surveillance, and environmental sampling. The persistent
monitoring problem arises when agents must monitor a
dynamically changing environment which cannot be fully
covered by a stationary team of agents. Thus, persistent
monitoring differs from traditional coverage tasks due to the
perpetual need to cover a changing environment [2], [3]. A
result of this exploration process is the eventual discovery
of various “points of interest” which, once detected, become
“targets” or “data sources” which need to be monitored.
This setting arises in multiple application domains ranging
from surveillance, environmental monitoring, and energy
management [4], [5] down to nano-scale systems tasked
to track fluorescent or magnetic particles for the study of
dynamic processes in bio-molecular systems and in nano-
medical research [6]. In contrast to [2], [3] where every
point in a mission space must be monitored, the problem we
address here involves a finite number of targets (typically
larger than the number of agents) which the agents must
cooperatively monitor through periodic visits.

Each target may be viewed as a dynamic system in
itself whose state is observed by agents equipped with
sensing capabilities (e.g., cameras) and which are normally
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dependent upon their physical distance from the target. The
objective of cooperative persistent monitoring in this case
is to minimize an overall measure of uncertainty about the
target states. This may be accomplished by assigning agents
to specific targets or by designing motion trajectories through
which agents reduce the uncertainty related to a target by
periodically visiting it (and possibly remaining at the target
for a finite amount of time). As long as the numbers of agents
and targets are small, it is possible to identify sequences that
yield a globally optimal solution; in general, however, this
is computationally intensive and does not scale well [7].

Rather than viewing this problem as a scheduling task
which eventually falls within the class of traveling salesman
or vehicle routing problems [8], in this paper we follow
earlier work in [2], [3] and introduce an optimal control
framework whose objective is to control the movement of
agents so as to collect information from targets (within agent
sensing ranges) and ultimately minimize an average metric of
uncertainty over all targets. An important difference between
the persistent monitoring problem in previous work [2] and
the current setting is that there is now a finite number of
targets that agents need to monitor as opposed to every point
in the mission space. In a one-dimensional mission space, we
show that the optimal control problem can be reduced to a
parametric optimization problem. As a result, the behavior of
agents under optimal control is described by a hybrid system.
This allows us to make use of Infinitesimal Perturbation
Analysis (IPA) [9], [10] to determine on-line the gradient of
the objective function with respect to these parameters and
to obtain a (possibly local) optimal trajectory. Our approach
exploits an inherent property of IPA which allows virtually
arbitrary stochastic effects in modeling target uncertainty.
Moreover, IPA’s event-driven nature renders it scalable in
the number of events in the system and not its state space.

A potential drawback of event-driven control methods is
that they obviously depend on the events which “excite” the
controller being observable. However, this is not guaranteed
under every feasible control: it is possible that no such events
are excited, in which case the controller may be useless. The
crucial events in our case are “target visits” and it is possible
that such events may never occur for a large number of fea-
sible agent trajectories which IPA uses to estimate a gradient
on-line. This lack of event excitation is a serious problem in
many trajectory planning and optimization tasks [11], [12].
We solve this problem using a new cost metric introduced in
[13] which creates a potential field guaranteeing that gradient
values are generally non-zero throughout the mission space
and ensures that all events are ultimately excited.
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II. PERSISTENT MONITORING PROBLEM FORMULATION

We consider N mobile agents moving in a one dimen-
sional mission space [0,L] C R. Let the position of the
agents at time ¢t be s;(t) € [0,L], j = 1,..., N, following
the dynamics:

5;(t) = u;(t),|u; ®)| <L,Vj=1,...,N (1)
An additional constraint may be imposed if we assume
that agents are initially located so that s; (0) < s;41 (0),
7 = 1,...,N — 1, and we wish to prevent them from
crossing each other over all ¢: s; (t) — sj+1 (t) < 0. The
ability of an agent to sense its environment is modeled by a
function p;(x, s;) that measures the probability that an event
at location x € [0, L] is detected by agent j. We assume that
pj(x,s;) =1if @ = s;, and that p;(z, s;) is monotonically
nonincreasing in the distance |z — s;|, thus capturing the
reduced effectiveness of a sensor over its range. We consider
this range to be finite and denoted by r;. Therefore, we set
pj(z,s;) =0 when |z — s;| > r;. Although our analysis is
not affected by the precise sensing model p;(x, s;), we will
limit ourselves to a linear decay model as follows:

pj(x,sj):max{l—w,O} 2)
J
Unlike the persistent monitoring problem setting in [2],
here we consider a known finite set of targets located at
z; € (0,L), i = 1,...,M (we assume M > N to
avoid uninteresting cases where there are at least as many
agents as targets, in which case every target can be assigned
to at least one agent). We can then set p,(x;,s; (t)) =
pij(s; (t)) to represent the effectiveness with which agent
Jj can sense target ¢ when located at s; (t). Accordingly, the
joint probability that z; € (0, L) is sensed by all N agents
simultaneously (assuming detection independence) is
N
Py(s(t)) =1 = [ T[L = pij(s;(1))] 3)
j=1

where we set s(t) = [s1(t),...,sn (t)]T. Next, we define
uncertainty functions R;(t) associated with targets i =
1,..., M, so that they have the following properties: (%)
R;(t) increases with a prespecified rate A; if P; (s(t)) =0
(we will later allow this to be a random process {4;(t)}),
(#9) R;(t) decreases with a fixed rate B; if P;(s(t)) = 1
and (97) R;(t) > 0 for all ¢. It is then natural to model
uncertainty dynamics associated with each target as follows:

(o0 if R;(t) =0, A; < B;P; (s(t))
R;(t) { A; — B;P,(s(t)) otherwise @)
where we assume that initial conditions R;(0),7=1,..., M,

are given and that B; > A; > 0.

Our goal is to control the movement of the N agents
through wu; (t) in (1) so that the cumulative average uncer-
tainty over all targets ¢ = 1, ..., M is minimized over a fixed
time horizon T'. Thus, setting u (£) = [uy (£),...,un (£)]"
we aim to solve the following optimal control problem P1:

> Ri(t)dt (5)

subject to the agent dynamics (1), uncertainty dynamics and
control constraint (4), and state constraints (e.g. no crossing).

u(t) T /o

III. OPTIMAL CONTROL SOLUTION

In this section, we derive properties of the optimal control
solution of problem P1 and show that it can be reduced
to a parametric optimization problem. This will allow us
to utilize an IPA gradient estimation approach [9] to find
a complete optimal solution through a gradient-based al-
gorithm. We begin by defining the state vector x(t) =
[R1(t),...Rp(t), s1(t)...sn(t)] and associated costate vector
A=[A(t), ey Aas(£), Asy (1), ...y Asy (1)]. Due to the discon-
tinuity in the dynamics of R;(¢) in (4), the optimal state
trajectory may contain a boundary arc when R;(t) = 0
for some 7; otherwise, the state evolves in an interior arc.
We first analyze such an interior arc. Using (1) and (4), the
Hamiltonian and costate equations are

N

M M
H(x, A\ u) = Z Ri(t) + Z AR (1) + ) A, (B)u(t)

j=1

(6)
Applying the Pontryagin Minimum Principle to (6) with
u*(t), t € [0,T), denoting an optimal control, a necessary
condition for optimality is

if A, (t) <0
if A, (t) >0

Note that there exists a possibility that A, (t) = 0 over some
finite singular intervals [14], in which case u}(t) may take
values in { —1,0,1}.

Similar to the case of the persistent monitoring problem
studied in [2], the complete solution requires solving the
state and costate equations, which in turn involves the
determination of all points where R;(t) =0,i=1,..., M.
This generally involves the solution of a two-point-boundary-
value problem. However, we will next prove some structural
properties of an optimal trajectory, based on which we show
that it is fully characterized by a set of parameters, thus
reducing the optimal control problem to a much simpler
parametric optimization problem.

We begin by assuming that targets are ordered accord-
ing to their location so that z; < < xp. Let
r = max;=1_ . n{r;} and ¢ = max{0,z1 — 1}, b =
min{L,zy + r}. Thus, if s;(t) < z1 —r or s;(t) >
xpr + 1, then it follows from (2) that p;;(s;(t)) = 0 for all
targets ¢ = 1,..., M. Clearly, this implies that the effective
mission space is [a, b]. We will show next that on an optimal
trajectory every agent is constrained to move within the
interval [z1, ps]. To establish this and subsequent results, we
will make a technical assumption that no two events altering
the dynamics in this system can occur at the exact same time.

Assumption 1: Suppose that an agent switches direction
atf € [a,b]. Forany j=1,...,N,i=1,...,M,t € (0,7),
and any € > 0, if s;(t) =6, s;(t —€) > 0 or if s;(t) = 0,
sj(t —€) < 6, then either R;(7) > 0 for all 7 € [t —¢,t] or
Ri(t) =0 forall 7 € [t — €, t].

Proposition 1: In an optimal trajectory, z; < s;‘(t) <z,
tel0,T),7=1,...,N.

Due to space limitations all proofs (some of which have
many technical details) are omitted but may be found in [15].

The next result excludes singular arcs from an agent’s
trajectory while this agent has no target in its sensing range.

Lemma 1: If |s;(t) —z;| > r; forany i =1,..., M, then

ui(t) # 0.

)
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The next lemma establishes the fact that if the agent is
visiting an isolated target and experiences a singular arc, then
the corresponding optimal control is u;‘(t) = 0. An isolated
target with position x; is defined to be one that satisfies |x; —
xj| > 2r, for all j # i where r was defined earlier as r =

max;—1,. n{7;}. Accordingly, the subset I C {1,..., M}
of isolated targets is defined as [ = {i : |z; — x| > 2r,j #
ie{l,...,M},r =max;j—y,.. n{rj

Lemma 2: Let |s}(t) — x| <r; for some j =1,...,N
and isolated target k € I. If A7 (t) = 0, t € [t1,1>], then
ui(t) = 0.

We can further establish the fact that if an agent j
experiences a singular arc while sensing an isolated target
k, then the optimal point to stop is such that s7(t) = xy.

Proposmon 2: Let |s%(t) — xk| < 75 for some j =

, IV and isolated target k € I. If \] (t) = 0, € [t1, 2],
and uj(tf) = u}(t3), then s%(t) = xp, t € [ty, 2]

Finally, we consider the case with the state constraint (no
agent crossing). We can then prove that this constraint is
never active on an optimal trajectory, i.e., agents reverse their
directions before making contact with any other agent.

Proposition 3: Under the constraint s;(t) < s;11(t), on
an optimal trajectory, s;(t) # s;41(¢) for all t € (0,T).

Based on this analysis, we can parameterize P1 so that
the cost in (5) depends on a set of (i) switching points
where an agent switches its control from wu;(t) = =1
to F1 or possibly 0, and (ii) dwelling times if an agent
switches from u;(t) = £1 to 0. In other words, the optimal
trajectory of each agent j is totally characterized by two
parameter vectors: switching points 6; = [6,1,0;2...0,7]
and dwelling times w; = [wj1,wj2...w;jr] where I' and I”
are prior parameters depending on the given time horizon.
This defines a hybrid system with state dynamics (1), (4).
The dynamics remain unchanged in between events, i.e., the
points §;1,...,0;r above and instants when R;(t) switches
from > 0 to O or vice versa. Therefore, the overall cost
function (5) can be parametrically expressed as J(6,w) and
rewritten as the sum of costs over corresponding inter-event
intervals over a given time horizon:

1 K e (@w) M
J(0,w) = —Z/ > Ri(t)dt (8)
=/ new I

where 75, is the k-th event time. This will allow us to
apply IPA to determine a gradient V.J(6,w) with respect
to these parameters and apply any standard gradient-based
optimization algorithm to obtain a (locally) optimal solution.

IV. INFINITESIMAL PERTURBATION ANALYSIS

As concluded in the previous section, optimal agent tra-
jectories may be selected from the family {s(0,w,t,s¢)}
with parameter vectors @ and w and a given initial condition
sg. Along these trajectories, agents are subject to dynamics
(1) and targets are subject to (4). An event (e.g., an agent
stopping at some target x;) occurring at time 7(60,w)
triggers a switch in these state dynamics. IPA specifies how
changes in 8 and w influence the state s(8,w, t, sp), as well
as event times 7(0,w), k = 1,2,..., and, ultimately the
cost function (8). We briefly review next the IPA framework
for general stochastic hybrid systems as presented in [9].

Let {7x(0)}, k = 1,..., K, denote the occurrence times
of all events in the state trajectory of a hybrid system with

dynamics & = fi(x,6,t) over an interval [74(0), T.41(6)),
where § € O is some parameter vector and © is a given
compact, convex set. For convenience, we set 79 = 0

and 7x11 = 7. We use the Jacobian matrix notation:
' (t) = % and 7/, = 375(59), for all state and event
time derivatives. It is shown in [9] that
d ’ afk(t) ’ afk(t)
— ! (t) = 2L (¢ , 9
it W= g T+ =5 ©
for t € [k, Tk+1) with boundary condition:
() = ' (7)) + [frea (7)) = fe(md)]mi (10)
for Kk = 0,...K. In order to complete the evaluation of

z (le ) in (10), we need to determine 7. If the event at 7y,
is exogenous, 7/, = 0. However, if the event is endogenous,
there exists a continuously differentiable function gj, : R™ x

© — R such that 7, = min{t > 7,1 : gr (2 (0,%),0) =
0} and
99k . 1, Ok 891@ -
v Y9k | YTk
as long as %fk (1, ) # 0. (details may be found in [9]).

In our setting, the time-varying cost along a given tra-
jectory is Zf\il R;(t) from (8), which is not an explicit

function of the state x(¢t) = [Ry (¢ ; Rar(t), s1(t)...sn (1)].
The gradient V.J(0, w) = [2L¢ 09“’ , a']éi“’ ]T reduces to

VR(t)dt  (12)

1 K M Tk+1(0w)
rryf

k=0 i=1 £ (6,w)

where VR;(t) = [BRM) BR (¢ )]T

Applying (9), (18) (11) we can evaluate VR;(t). I
contrast to [2], in our problem agents are allowed to dwell
on every target and IPA will optimize these dwelling times.
Therefore, we need to consider all possible forms of control
sequences: (i) £1 — 0, (4¢) 0 — +£1, and (4i7) £1 — F1.
We can then obtain from (4):

otherwise
(13)
where G(t)=, 141~ pia(sa(t))]dt and 22 — 4 1

or 0. A similar derivation applies to aw(t)'

ORi(t) _ ORi(r) {0 if Ri(t) = 0, A < BiPy(s(1))

ij(s;) 0s;(T
90;¢ ;e | Bl 5(§)G(t)

First, let us consider the events that cause switches in R; (t)
in (4) at time 7. For these events, the dynamics of s]( ) are
continuous so that Vs; (7, ) = Vs;(7;"). For target 1,

VRi(17) 1fR( . ) =0,
- R( ) A — P( ( ))
R( ) 0.
(14)

Second, let us consider events that cause switches in
5j(t) = u;(¢) at time 75. For these events, the dynamics of

R;(t) are continuous so that VR; (7, ) = VR;(7;). In order
to evaluate (13) and 2% (z), we need aba’o(T’f) and 630572)

Clearly, these are not affected by future events and we only
have to consider the current and prior control switches. Let
;¢ and wj¢ be the current switching point and dwelling time.
Again, applying (9), (10), (11), we have
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Case I: uj(r; ) = £1,uj(rf) =0
os; . 1 ifi=¢
—_— — 1
96, ") {0 if1<¢ (15
0s;
aw; (rF)=0 foralll <¢ (16)
Case 2: uj(t, ) = 0,u;(r;7) = £1
5 () = i () sgn (05 — 056 —)) if L =&
Js;
S ()= S5 0) = w7 [s9n(05 = O3-)
J .
—sgn(041) — Ojl)} ifl<¢
a7
0s;
3ij (1;7) = —uj(r;f) foralll <¢ (18)
Case 3: uj(; ) = £1,u;(r;7) = F1
8Sj o 2 if | = f
a6, ") { oy iti<e 19

Details of these derivatlons can be found in [2]. An
important difference arises in Case 2 above, where 7, =
10j1 — al + wji + ... +10¢ — 0jc—1)| + wjec. We eliminate
the constraints on the switching location that ;¢ < 0;(¢_1)
if £ is even and 0;¢ > 01y if £ is odd.

The event excitation problem. Note that all derivative
updates above happen exclusively at events occurring at
times 74 (0, w), k = 1,2, .. .. Thus, this approach scales with
the number of events characterizing the hybrid system, not
its state space. While this is a distinct advantage, it also
involves a potential drawback. In particular, it assumes that
the events involved in IPA updates are observable along
a state trajectory. However, if the current trajectory never
reaches the vicinity of any target so as to be able to sense
it and affect the overall uncertainty cost function, then any
small perturbation to the trajectory will have no effect on
the cost. As a result, IPA will fail as illustrated in Fig. 1:
here, the single agent trajectory s1 (6, w,t) is initially limited
(yellow segment) to include no event. Thus, if a gradient-
based procedure is initialized with such s; (6, w, t), no event
involved in the evaluation of VR;(t) is “excited” and the
cost gradient remains zero.

A3z

pra—

| s1() |
| S——
. == : &—o

X3 L

I — >
B>

=N ]

Fig. 1: An example of no event excitation.

In order to overcome this problem, we propose a modifi-
cation of our cost metric by introducing a function V'(-) with
the property of “spreading” the value of some R;(t) over all
points w € Q = [0, L]. Recalling Proposition 1, we limit
ourselves to the subset B = [z1, 2] C Q. Then, for all
points w € B, we define V(w,t) as a continuous density
function which results in a total value equivalent to the
weighted sum of the target values Zf\il R;(t). We impose
the condition that V' (w,t) be monotonically decreasing in
the Euclidean distance ||w — z;||. More precisely, we define

df (w) = max (||w — z;||,r) where r = min;j_;,
which ensures that d (w) > r. Thus, d (w) =
is fixed for all points within the target’s vicinity, w €
[x; — 7, z; + r]. We define

V(iw,t) =

M
Z O‘zﬁz(t) (20)
i=1 dz (w)

Note that V' (w, t) corresponds to the “total weighted reward
density” at w € B. The weight a; may be included to capture
the relative importance of targets, but we shall henceforth set
a; = 1 for all ¢ for simplicity. In order to differentiate points
w € B in terms of their location relative to the agents states
sj(t), j=1,...,N, we also define the travel cost function

N
D=3 llsy(t) ~wl

Using these definitions we introduce a new objective function
component, which is added to the objective function in (5):

- o

The significance of J5(¢) is that it accounts for the movement
of agents through Q(w,s(¢)) and captures the target state
values through V' (w, t). Introducing this term in the objective
function in the following creates a non-zero gradient even if
the agent trajectories are not passing through any targets. We
now incorporate the new metric J5(¢) into (8) as follows:

21

V(w, t)dw (22)

min J(0,w,T) =
6€0,w>0

T

;/0 [J1(8,w, t)+e Pt 1(0,w, t)]dt

(23)
where J1(0,w,t) = Zf\il R;(t) is the original uncertainty
metric. This creates a continuous potential field for the
agents which ensures a non-zero cost gradient even when the
trajectories do not excite any events. The factor e~#* with
B > 0 is included so that as the number of IPA iterations
increases, the effect of J5(@,w,t) is diminished and the
original objective is ultimately recovered. The IPA derivative

of J5(0,w,t) is
s _ [ 000000y,
B

00 00

+Q(w707w7s(t),t)W} dw  (24)
where the derivatives of Q(w, 0, w,s(t),t) and V(w, 0, w t)
are obtained following the same procedure described previ-
ously. Before making this modification, the lack of event
excitation in a state trajectory results in the total derivative
(12) being zero. In (24) we observe that if no events occur,
the second part in the integral, which involves ag{g») is
zero, since ZM a% i) _ = 0 at all t. However, the first
part in the integral does not depend on events, but only the
sensitivity of Q(w, 8, w,s(t),t) in (21) with respect to the
parameters 6, w. As a result, agent trajectories are adjusted
so as to eventually excite desired events and any gradient-
based procedure we use in conjunction with IPA is no longer
limited by the absence of event excitation.

IPA robustness to uncertainty modeling. Observe that
the evaluation of VR, (t), hence V.J(0,w), is independent
of A;,i=1,...,M, i.e., the parameters in our uncertainty
model. In fact, the dependence of VR; (t) on A; manifests
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itself through the event times 75, £ = 1,..., K, that do
affect this evaluation, but they, unlike A; which may be
unknown, are directly observable during the gradient evalu-
ation process. Thus, the IPA approach possesses an inherent
robustness property: there is no need to explicitly model how
uncertainty affects R;(¢) in (4). Consequently, we may treat
A; as unknown without affecting the solution approach (the
values of VR; (t) are obviously affected). We may also allow
this uncertainty to be modeled through random processes
{A;(t)}. Under mild technical conditions on the statistical
characteristics of {A4;(¢)} [9], the resulting VJ(0,w) is an
unbiased estimate of a stochastic gradient.

V. GRAPH-BASED SCHEDULING METHOD

While the IPA-driven gradient-based approach described
in Sec. IV offers several compelling advantages, it is not
guaranteed to find a global optimum. In addition, it has
been shown that in mission spaces of dimension greater than
one, optimal trajectories cannot be described parametrically
[3]. This motivates the use of an alternative approach where
the targets are viewed as discrete tasks, leading naturally
to a graph-based description of the problem [5], [16]-[19].
This higher level of abstraction allows one to guarantee an
optimal solution, though at the cost of a significant increase
in computational complexity.

Our approach to the discrete setting is to divide the overall
planning time horizon 7' for agent j into a sum of K

consecutive time steps {t}, 3, ...,tf"}, j=1,...,N, with

J 9
t} = (. The dependence on j indicates that each agent may
have a different discretization. We denote the end of the K-
th step as tf“ =T. Each step k € {1, ..., K;} begins with
a travel stage where the agent moves to a particular target
1. Under the assumption that during the transition between
targets each agent moves at its maximum speed, the travel
time is At? = \sf (tf) — x;|. Upon arriving at a target, the
agent dwells for a time Ad?. Due to the range-based nature
of the sensing, the uncertainty actually decreases before the
arrival of the agent at the target and after the agent has
departed until the target is out of the sensing range.

The problem of optimizing u; to minimize (5) can be
translated into a mixed integer programming (MIP) problem
to select the sequence of targets and the dwell time at each
target. Letting aé?i be a binary variable denoting whether

agent j is assigned to target 7 at time step k, this MIP is

1L T
min J = — R;(t)dt
ak, Adk T ;/o (*)

subject to a¥;e{1,0}, 2 ak=1,Vj, k, and 3, Atk +
Adf < T,Vj. Assuming that each agent is assigned to a
maximum of only one target at any one time, we break the
solution of this problem into three parts: enumeration of all
feasible trajectories, calculation of the cost of the feasible
trajectories, and selection of the optimal trajectory.

The first part is to determine feasible trajectories. Given
the fixed time horizon 7T, the target locations, the initial
locations of the agent, and the maximum speed, a feasible
trajectory is one where the sequence of targets can all be
visited within the time horizon.

In the second part, the cost of each feasible trajectory must
be determined. Suppose we have a given feasible trajectory

(25)

with K targets in its sequence. Note that K may be larger
than m (and may be much larger for large time horizons).
Let {i1,42,...,ix} denote the indices of the targets in the
sequence. From (25), the cost of this trajectory optimization
is then only constrained by Zszl At? + Adé? <T,Vj.

Our approach to solving this relaxed problem is to set up
a recursive calculation. The travel times At; are completely
determined by the sequence alone. Assume for the moment
that the switching times through ¢ 1 have been determined
(and thus the first K — 2 dwell times, Ad',..., Ad¥—2
are known). The two final dwell times are completely
determined by selecting the time tx at which to switch
the agent from target ix_; to target ¢x. This gives us a
simple single variable optimization problem minar, J =
A [ (Rige (1) + Ry (t))dt where AT = T — tg_1,
which allows the final switching time to be expressed as
a function of the previous time tx = f(tx_1). Repeating
this leads to an expression of the optimal switching times
as a nested sequence of optimization functions which can be
solved numerically.

This same optimization procedure can be generalized to
the case of multiple agents. The primary challenge is that
the set of feasible trajectories, and the calculation of the
cost of those trajectories, quickly becomes intractable since
all possible combinations of assignments of multiple agents
must be considered. In prior work on linear systems, it was
shown that an appropriately defined periodic schedule is
sufficient to ensure the system remains controllable [20],
[21]. In the current context, this implies keeping R;(t),i =
1,..., M, close to zero. Thus, we apply this approach over
short horizons and, if the resulting trajectories are periodic,
we repeat them over longer horizons.

VI. SIMULATION EXAMPLES

To demonstrate the performance of the gradient-based
algorithm using the IPA scheme described in Sec. IV, we
present two sets of numerical examples. The first set uses
deterministic target locations and dynamics. The results are
compared against the optimal found by the discrete schedul-
ing algorithm of Sec. V. The second set demonstrates the
robustness of the IPA scheme with respect to a stochastic
uncertainty model. Additional examples are included in [15].

The first example consists of a single agent performing
a persistent monitoring task on three targets over a time
horizon of 100 seconds. The targets are located at x; = 5,
x9 = 10, z3 = 15 and their uncertainty dynamics in (4) are
defined by the parameters A; = 1, B; = 5, and R;(0) = 1
for all 2. The agent has a sensing range of 2 and is initialized
with $(0) = 0, u(0) = 1. The results from the IPA gradient
descent approach are shown in Fig. 2. The corresponding
result based on the discrete setting of Sec. V is essentially
the same with the agent moving through the three targets in
a periodic fashion as shown in Fig. 3.

N
=

Agent position
o 8
AN
N
N
.

I I I I
0 10 20 30 40 50 60 70 80 920 100

Fig. 2: Optimal trajectory of a single agent monitoring three targets
using the IPA gradient descent. The final cost is 26.11.

1818



Position

4] 10 20 30 40 50 80 70 80 80 100
. . . Time (s) . X
Fig. 3: A single agent monitoring three targets using the optimal

discrete assignment and dwelling time. The final cost is 25.07.

The next example involves 2 agents and 5 targets over
a time horizon of 500 seconds. The targets are located at
1 =05, ="7,23 =9, x4 = 13, x5 = 15. The uncertainty
dynamics are the same as in the single agent, three target
case. All agents have a sensing range of 2 and are initialized
at s1(0) = s2(0) = 0, with u;(0) = u(0) = 1. The results
from the IPA gradient descent approach are shown in Fig. 4.

20~

. . . . . )
0 50 100 150 200 250 300 350 400 450 500
Time t

Fig. 4: Optimal trajectory of two agents monitoring five targets
using the IPA gradient descent algorithm. The final cost is 4.99.

As mentioned earlier, the IPA robustness property allows
us to handle stochastic uncertainty models at targets. We
show a one-agent example in Fig. 5 where the uncertainty
inflow rate A;(¢) is uniformly distributed over [0, 2] for all
targets. Additional examples are included in [15].
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Fig. 5: Example with stochastic uncertainty processes: A; ~
U(0,2), J*(0,w) = 42.46.

The event excitation issue is addressed in Fig. 6, where the
agent trajectory is initialized so that it is not close to any of
the targets. Using the original problem formulation (without
the inclusion of J2(6,w,t) in (23)), the initial trajectory
and cost remain unchanged. After event excitation, the cost
reduces to 30.24 which is close to the optimal cost.

VII. CONCLUSION

We have formulated a persistent monitoring problem with
the objective of controlling the movement of multiple coop-
erating agents so as to minimize an uncertainty metric asso-
ciated with a finite number of targets. We have established
properties of the optimal control solution which reduce the
problem to a parametric optimization one. A complete on-

line solution is given by Infinitesimal Perturbation Analysis
20 - 20
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Fig. 6: Left: a trajectory where IPA fails due to lack of event
excitation. Right: an optimal trajectory after event excitation.

(IPA) to evaluate the gradient of the objective function with
respect to all parameters. We also address the case when
IPA gradient estimation fails because of the lack of event
excitation. We solve this problem by proposing a new metric
for the objective function which creates a potential field
guaranteeing that gradient values are non-zero. This approach
is compared to an alternative graph-based task scheduling
algorithm for determining an optimal sequence of target
visits. Ongoing research is investigating how to extend these
methodologies to higher dimensional mission spaces.
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