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Abstract— We consider the problem of controlling vehicles to
visit multiple targets and obtain rewards associated with each
target with the added requirement that two or more vehicles
are required to be present in the vicinity of each target in order
to collect the associated reward. The environment is uncertain
and targets may appear or disappear in real time. In view of the
problem complexity, we focus on an optimization-based algo-
rithm that makes decisions driven by available information. We
develop a cooperative receding horizon controller to maximize
the total reward obtained in a finite mission time horizon. We
control the motion so as to maximize the expected rewards over
a planning window, and show that the resultant trajectory is
stationary in the sense that vehicles converge to targets without
explicit target assignment.

I. INTRODUCTION

Multi-agent cooperative control and coordination has be-
come an important and growing field in recent years. Ad-
vances in robotics, communication, sensors and computer
hardware have fueled this trend, and provide the enabling
technologies for achieving cooperative control in multiple-
vehicle systems. Cooperation among vehicles (more gen-
erally, agents) allows complex tasks to be solved more
efficiently by a team, and generally results in a more robust
solution for vehicles operating in an uncertain environment.
Heterogeneity in terms of capability among agents allows
a team to complete tasks otherwise impossible for a single
agent, and is key to success for many unmanned missions
(see, for example, [4], [6], [8])

One class of problems in cooperative control involves M
vehicles which must visit NV targets and collect the rewards
that are associated with each target. The rewards are time-
varying, and targets may emerge or disappear in real time.
One can treat this problem as a stochastic optimal control
problem [15], which leads to dynamic programming based
approaches [5], [18]. Since this approach quickly becomes
computationally intractable, it is common to separate the
problem into two sub-problems: target assignment which
assigns targets to vehicles, and path planning which generates
trajectories for individual vehicles. The first problem can be
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viewed as a version of the vehicle routing problem, which is
prominent in operations research [16]. This problem is NP-
complete, and as such, there is much ongoing research to
address it in an uncertain environment where information is
provided in real time (for a survey, see [7]). The second
problem involves cooperative path planning, which is an
important problem in motion planning of robotic agents (see
for example, [2], [12]).

A different approach was proposed in [10] (with a dis-
tributed version in [11]). Instead of “functional decompo-
sition” by separating the problem into sub-problems, “time
decomposition” was used. This approach aims at developing
an optimization-based controller that maximizes the total
expected reward accumulated by the agents over a planning
window, then continuously extending this window forward.
This method constitutes a receding horizon (RH) approach,
and is similar to approaches used in the model predictive
control community [13]. It avoids the combinatorial explo-
sion in other approaches because there is never explicit
vehicle-to-target assignment. Rather, in order to deal with
random events, the controller employs a “hedge-and-react”
strategy, in contrast to the traditional “estimate-and-plan”.
An interesting advantage of this approach is that the optimal
headings generated by the receding horizon controller were
shown in [11] to drive vehicles to targets without explicit
assignments.

The previous setting does not model cooperation of vehi-
cles that might be required to jointly achieve collection of
reward. In many applications, reward collection translates
to accomplishing some tasks at a fixed location, such as
providing surveillance, servicing a customer or destroying
a target. In many cases, due to heterogeneous capabilities
among the vehicles, these tasks require multiple vehicles to
be present near a location at the same time. From a resource
point of view, each vehicle may carry different resources, and
achievement of the task depends on resources from different
vehicles. For example, in a search and rescue mission,
Unmanned Aerial Vehicles (UAVs) may provide aerial views
of the terrain and interact with Unmanned Ground Vehicles
(UGVs) that traverse the terrain and complete the mission.

To address this problem, in this paper we aim to control
a team of agents to collect rewards associated with targets,
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and each target requires two vehicles to be within a certain
range from the target when the “reward harvesting” action is
performed. This problem is called “multi-agent rendezvous”
because agents are required to rendezvous at targets. We can
again decompose this problem into sub-problems consisting
of an assignment problem that requires rendezvous and
a trajectory planning problem that achieves simultaneous
meeting at a target point (addressed in [1],[14],[17]). When
the information of the rewards becomes uncertain due to
randomly emerging targets, computational complexity as-
sociated with the assignment problem quickly drives this
approach infeasible.

To counter this, we use a similar idea as in [10],[11]. In
this framework, we propose a cooperative receding horizon
controller that computes the optimal headings of the ve-
hicles at the end of each planning horizon, such that the
total expected reward obtained by the team is maximized
(assuming no target emerges on the way during the planning
horizon.) This heading is then executed for a shorter action
horizon, unless a new target is detected, in which case the
optimization is performed again. If there is no new target,
then the optimal headings will be recomputed at the end of
the action horizon. Even though no explicit task assignment
is performed, we show in this paper that the proposed
controller drives vehicles to targets. Hence, the trajectory
generated by the controller is “stationary” in the sense that
the vehicles converge to some targets even though the control
decision is made in real time with no explicit assignment
involved. Furthermore, this controller integrates the problems
of task assignment and trajectory generation, both in an
uncertain environment. In this paper we prove the stationarity
property for the case of 2-vehicles and 1-target, leaving the
general case for future work.

The rest of the paper is structured as follows. Section II
formulates the setting and presents the cooperative receding
horizon controller for the rendezvous problem. Section III
provides some simulation results of the controller in action,
and compares them to an approximate reward upper bound
achieved by solving the assignment problem. Section IV
defines a stationarity property and proves the stationarity of
the CRH controller. Section V concludes the paper.

II. COOPERATIVE RECEDING HORIZON (CRH)
CONTROLLER FOR THE RENDEZVOUS PROBLEM

We consider vehicles to be operating in a two-dimensional
mission space. Assume that the mission is to collect rewards
from N targets using M vehicles. Let z; € R% i =
1,2,...,M, and y; € R?,5 =1,2,..., N denote the positions
of vehicles and targets respectively. Note that a target may
change its location during operation of the system, or new
targets may show up, hence N and y; may not be constant.
At the same time, a vehicle may malfunction, and thus M
may also change in time.

We assume that the vehicles operate with constant velocity
following the dynamics:

5O =vi| ) | =m0 )

sin w; (¢)

Each vehicle is controlled by the heading w;(t), and V; is
the velocity.

A. Model of Reward Collection for Rendezvous

Each target is associated with a reward function, which
takes the form R}***¢; (t), where R}*** is the initial amount
of reward and ¢; (t) is a non-increasing discounting function
taking values from [0, 1]. The reward function captures the
time-varying aspect of the mission. We say that vehicle @
visits target point j at time ¢ if ||z;(¢) — y;|| < s; (||-]| is the
usual Euclidean norm), forall¢ =1,...,.M and 5 =1,..., N,
where s; > 0 can be viewed as the size of a target.

One example of reward function is given below:

Rwax(] — 24¢ t< D,
Rj(t)Z{ rm =

R (1 — a;)e’ﬁj(t’Dﬂ') t> D;,
in which D; represents a deadline. When the deadline passes,
the reward drops exponentially. R"** is the initial reward for
target j, and o € (0,1], B; > 0 are discounting parameters
that modulate the speed of decrease.

Now we describe our model for target reward acquisition.
Let lﬁé(t) be the index of the [th closest vehicle to target j
at time ¢, based on the time it takes to reach the target if the
vehicle used the maximum velocity, i.e., forall  =1,.... M

2)

wb(0) = argunin {3 = s =yl 51 7 e},
(3)
We then define a proximity set Zg (t) for target j as the closest
b vehicles from target j at time ¢, i.e.,

Z5(t) = {kj(t), -, K5(8) } €

To simplify notation, we use dj; (t) to denote the distance
between vehicle k& and vehicle [ at time ¢. With a slight
abuse of notation, we also use dy, ; () to denote the distance
between vehicle k£ and target j. When there is no possibility
of confusion, we omit the ¢ dependencies in the né—(t)
function.

For the rendezvous problem, the reward collection requires
two vehicles to be close to the target. We assume that the
closest two vehicles to the target (i.e., vehicles in the set
Z?(t)) are the vehicles performing the reward collection
task. Furthermore, vehicles could be heterogeneous, and each
one may have a varying amount of success cooperating
with other vehicles to achieve reward collection. To capture
this, we define p;'“ as the probability of the reward being
captured, if vehicles k and [ are both close enough to the
target. Furthermore, we define d,";) ; as the minimum distance
required for vehicles k and [ to achieve maximum likelihood
(probability p'j*) of successfully acquiring the reward. If
the distance between either k or [ to the target is below
this threshold, then the probability decreases as a function
of distance between the target and the vehicle further from
the target, until a minimum probability of success pﬁ"
Generally, these two values defined above also depend on
the target being visited, i.e., for target j, the maximum and
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Fig. 1. A Typical Reward Capture Probability Function

minimum reward capture probabilities by vehicles £ and !
should be written as p;'; and p”‘"‘- respectively.

Suppose at time ¢, Vehlcle K (t) is at location y; trying
to collect the reward of target j. The probability of it
successfully capturing the reward depends on the distance of
other vehicles from the target at time ¢. Specifically, we let
the probability of the reward captured by «} (t) for target j
be a function of distance between the second closest vehicle
#5(t) and the target j, which is dyz ;(t):

Pl ()12 (8),5 <dm?(t) ‘(t)) = 5)
pmf?x> w0 e () < diag )
( (t)) dﬁ?, ( ) > d*l(t 2(t)

where ¢g(-) is a monotonically non-increasing  function,

g(d* 1), N2(t)) plil s pE and g(o0) = p?{“ﬁz e . An example
of such a function is shown in Fig. 1, and typlcally we want
to approximate the step function obtained by replacing ¢g(-)

in (5) by the fixed value pm‘“’i . For simplicity, we will omit

the dependencies on vehicles it 1n the reward capture probabil-
ity and only write p; (dﬁg(t),j( )) when no confusion arises.

In previous work on CRH [10],[11], a relative proximity
function ¢;; (t) is defined for every pair of targets and
vehicles, indicating the probability of assigning vehicle i
to target j at time ¢. This function partitions the mission
space into responsibility regions with respect to vehicles,
and targets in the “cooperative region” of two vehicles will
“attract” both vehicles toward them instead of committing
vehicles explicitly to assignments. However, in the problem
setting of this paper, where each target requires a team of
vehicles to collect its reward, it is impossible to have similar
partitions since each individual vehicle may be in several
teams that are responsible for different targets. In addition,
the reward capture function in (5) actually encompasses the
¢i; (t) function in the way that it implicitly creates “attraction
forces” between each target and a team of vehicles in its
proximity set. Therefore, we will not use the ¢;; (t) function
in the CRH controller for the rendezvous problem.

B. Cooperative Receding Horizon (CRH) Controller

Now we propose the Cooperative Receding Horizon
(CRH) control mechanism for the rendezvous problem. In
this CRH framework, control is applied at time points tg,
k =1,2,... during mission time, and control headings uy =
[u1 (tx) ..., ups (1 )] are assigned by solving an optimization

problem Pjy. Then, the vehicles move according to the
headings assigned until time ¢y, when either the current
action horizon expires or a new event occurs, and then this
process is repeated. It is apparent that the key element in the
CRH mechanism is how we define the optimization problem
Py, which we will describe below.

Suppose vehicles are assigned headings u; =
[ur (tk),...,uns (tr)] at time tg, which are intended to
be maintained over [tg,tx + Hy|. We denote Hj as the
planning horizon. We will elaborate on how we choose Hj,
later in this section.

At time t; + Hj, the projected positions of the vehicles
are

X (ty + Hy) = [v1 (tp + Hy) oo was (e + Hy)]
where x; (tx, + Hj) is determined by x; (¢)) and the heading
u; (t). Denote by F i the set of all feasible projected
positions x (ty + Hy,) given the current location at ¢y, i,.e.,

Fro = {w=[wi,..,wn]: ||lw; —x; ()| = ViH,
i=1,.., M) ©)

We would like to maximize the total expected reward over
the projected position set f j, given our definition of proba-
bility of capturing the reward. Now we explain how we define
the expected reward. First, at t;, + Hy, for given projected
positions x € F i, and target j, vehicles in the set Z2 (tx+Hyg)
are identified, i.e., vehicles /@] (ty + Hy) and K5 (tk + Hy).
Next, we assume Vehlcle K Lty + Hy) goes dlrectly towards
target j and vehicle x; (t;c + H},) also moves towards it to
increase the reward capture probability A reward capture
event occurs as soon as vehicle r; Mt + H, k) reaches target

kI (ty+Hy)

=t +Hi+ ﬁ In
this case, the reward capture event is binary, w1th outcomes
as either successfully capturing all the reward of target j at
time Tl (te+Hi),j OF failing to get any reward from target
j. The probability of success is determined by the reward
capture probability Pit (tr+ i) w2 (t+ Hi) defined in (5),
which depends on the location of the vehicle m (tx + Hy)
at that time. Then, we define the expected reward for target
j as the expectation of reward collected from the reward
capture event at time T, KL (tx-H), . The timeline clarifying
the expected reward evaluation is shown in Fig. 2. Notice that
the definition of expected reward depends on the assumed
behaviors (strategies) of vehicles after ¢, + Hj. We can also
consider strategies other than the one adopted here, such
as driving the closest vehicle to the target, and attempt to
wait (by driving around the target) for the second vehicle to
arrive. An interesting problem we leave for future research
is to compare strategies and optimize expected rewards over
them.

7, which is at time T, K (tk+Hy),j

Let J ; be the expected reward of target j which depends
on the locations of members of the set Z3(ty + H},). We also
let Ji be the total expected reward, and it is the sum over
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Fig. 2. Timeline of Expected Reward Evaluation

all targets, i.e.,

N
Ty, (x) = Z Tij (%) (7

Using the definition of expected reward above, for target j,
at time t; + Hj, the two closest vehicles /@} (tx + Hy) and
/@? (tx + Hy) both move directly towards target j with their
maximum speed, and a reward capture event occurs when
vehicle njl (tx + Hy) reaches target j at time Tl (bt Hy)j =

dm}(tk+Hk),.7‘

tr+Hp+ ATAR while the vehicle ISJ? (tx + Hy) is now

at a distance

A or s (Tt one1005) ®)

it (ty+ Hy)
- d Sty + Hy) —V, —
it g (b Hi) = Vig e Vil (bt Hi)

away from the target. Then, based on (5), the reward capture
probability is p; (dez(e, - 1), (Tt 1, +Hk),j)) at this time.
With this probability, the reward capture event succeeds and
gives the full reward of target j at that time, otherwise it fails
with no reward captured. Therefore, for any given x € [,
the expected reward Jj ; is given by

Jk,j (%) (©))
= R; <Tn;(tk+Hk),j) Py (dr-i?(tk—&-Hk),j(ijl.(tk-i-Hk),j))

We would like to maximize the total expected reward
summed over all agents, and use the solution as the control
we apply to agents for the time horizon [, tx1). Therefore,
we solve the following optimization problem

Py: max Jj (x)

XEF (10)

at the beginning ¢ of time horizon [ty,tx + Hy]. Once
we have solved problem Pj, for an optimal x* among all
possible planned positions in F i, the optimal heading uj
that corresponds to x* will be obtained and applied to all
vehicles for a time hy < Hj, which we define as the action
horizon, unless an event occurs. This event can be either the
detection of a new target, or malfunction of an agent. In
either case, the sets of targets and agents are updated, and
the optimization problem is solved again.

Clearly, the solution of Pj, depends on the choice of Hy
and this choice is critical for obtaining desired properties
for the CRH controller. It seems natural to choose Hj as
the smallest time required for any agent to reach any target

gt 2
o ds

Targer )

Fig. 3. A Two-Vehicle, Four-Target Example

point. Hence, we set

(.
o, — s {Iyy i k)l} (11
k=1,..,M Vi
j=1,.,N

In section IV we show that this choice of Hy, is appropriate
for the stationarity property to be established later.

Finally, the performance of the CRH controller depends on
the choice of the action horizon hj. This parameter affects
how often we re-evaluate the optimization problem Pj,. High
frequency evaluations provide smoother vehicle trajectories
at the cost of computational burden.

III. SIMULATION STUDY
A. Simulation Examples

In this section, we will give some simulation examples
using a MATLAB-based simulation environment. Figure 3
shows a mission problem example and the solution based on
the CRH controller we developed in the previous sections.

In this example, there are 2 vehicles, and 4 targets. Each
target is associated with an initial reward R;“a",i =1,.,4,
and a deadline D;, with the discounting function given in (2).
All 4 targets in this example are present from the beginning,
and the mission time 7' is 60sec. For simplicity, d; ; and
pﬁ"‘;j‘ in (5) are all set to be constant, i.e., d;‘yj = d* =
2, i =p™ =1 forall 4,5 = 1,2,k = 1,..,4, and
g(dn?’j) in (5) is given by

a-(d, 2

__ . max - K2,

—d*
g(dniaj) =D e ’ )

(12)
where « is a discounting rate parameter which is set to o = 2
in this case. The planning horizon Hj, is given by (11), and
the action horizon is specified through

hy — %Hk ifHkZ’I“
= H, ifH,<r

where r is a constant range for all targets. If a vehicle is
within that range from a target, then it will commit to that
target and, in our example, » = 0.3. As we can see in Fig. 3,
two vehicles start far away from each other, then they move
closer together towards and finally rendezvous at target 3,
and vehicle 2 leads to collect the reward. Then, as vehicle 2
moves towards target 1, vehicle 1 follows it in order to make

(13)
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sure when vehicle 2 reaches target 1 it is within the range d*
from target 1. These observations confirm that, although our
CRH algorithm does not explicitly involve any procedures
that drag vehicles together, vehicles under the algorithm
do rendezvous at target points whenever there is reward
collecting action at the target. Another important observation
is that all targets are successfully visited, although vehicles
do not usually follow straight lines toward target points.
This can be both advantageous and disadvantageous: the
advantage of not going straight toward targets is the ability to
deal with potential uncertainties, e.g., new targets emerging,
target location not being accurate, etc.; the disadvantage is
that vehicles might oscillate in certain areas when there are
multiple local optima in solving (10), thus causing delays
in mission completion time. For example, in Fig. 3, the two
vehicles oscillate at the upper right corner, because they are
attracted to targets on both right and left side and, as the
deadline of target 3 approaches, the two vehicles decide to
visit target 3 first and then turn around to visit other targets.
One way to avoid such oscillatory behavior (instabilities), is
to introduce a direction-change cost [10], which will improve
the time efficiency of our algorithm. However, we do not
want this cost to be too large to influence our algorithm’s
ability to handle uncertainties, as shown in the next example.

Figure 4 shows another example, which involves 2 vehicles
and 8 targets. What is interesting in this example is that
there are two targets that emerge during the mission, and
we can see that the vehicles adapt very well with respect
to these random events. The two vehicles are on their
way to target 4 after they finish collecting the reward of
target 1, when target 7 emerges. Then, the vehicles turn
right from their original path to target 7, which has larger
reward. After they have collected the reward from target 7,
they go back to their original path towards target 4. This
example illustrates the robustness of our CRH algorithm in
an uncertain environment, which is based on the fact that
vehicles under our algorithm do not make early commitment
to targets and is also the reason that we do not want the
direction-change cost to be too large. Note that in both
simulation examples all targets are eventually visited by
vehicles, which shows the “stationarity” property of our CRH
controller. We will analyze this property in detail in Section
Iv.

B. Comparison to an Approximate Reward Upper Bound

To evaluate the quality of our CRH algorithm as to the
objective of reward collection maximization, it is compared
to an upper bound on the maximal reward collected as in
[9]. However, in our problem setting, even the exhaustive
search method used in [9] will not work. For example,
suppose we have specified a visiting sequence, and assume
target j is set to be the kth target in the visiting sequence,
and is visited by vehicle 1; however, since the behavior of
vehicle 2 is not specified by the visiting sequence, we do not
know where vehicle 2 is at the time when vehicle 1 visits
target j, therefore the reward capture probability at this time
is unknown and it is impossible to obtain a reward upper

ctal rward callcted 2310223

Total tme used 1126 2073

Fig. 4. A Two-Vehicle, Eight-Target Example

ES Reward ES Time .
Case Upper Bound CRH Reward Lower Bound CRH Time
1 199.2561 190.1775 55.1065 65.9
2 213.0371 197.3149 58.2331 65.3
3 158.0684 143.9583 70.5232 82.3
4 185.5948 174.7964 62.1479 70.6
5 183.0943 172.6958 64.8794 75.4
TABLE I
COMPARISON BETWEEN CRH ALGORITHM AND APPROXIMATE
BOUNDS

bound in this way. Hence, we can only have an approximate
reward upper bound, by assuming that the reward capture
probability is a step function. Under this assumption, for
the case where N = 4, M = 2 (the exhaustive search will
become intractable for large N, M, see [9]) and a given
visiting sequence, the best way to collect reward of a target
is obviously to let the vehicle that is not specified to visit the
target also move straight towards the target, in order to get
close enough when the reward of the target is collected and to
increase the reward capture probability. Based on the analysis
above, and using a similar exhaustive search algorithm as
in [9] to search over all possible visiting sequences in a
fully deterministic environment, we can obtain approximate
reward upper bounds as shown in Table I

In Table I, for five different cases (different targets lo-
cations, initial rewards, vehicle starting points, etc.), we
compare the reward obtained through the CRH algorithm and
the approximate upper bound obtained through exhaustive
search, and also the mission completion time between the
two methods. The reward collected based on the CRH
algorithm is close to the approximate upper bound in all
cases, while the mission completion time is longer. This is
expected, since the CRH controller is designed to hedge
against uncertainty by not following straight line paths to
targets.

IV. STATIONARITY OF THE CRH CONTROL SCHEME

In this section, we will study in detail the stationarity
property mentioned in the introduction and illustrated in
simulation examples, i.e., the fact that vehicle trajectories
generated by the CRH controller will converge to the target
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points even though there is no explicit mechanism forcing
them to do so. To facilitate the analysis, let us first define
a stationary trajectory for a setting involving a fixed set of
vehicles and targets. Recall that associated with every target
J is its size s;, and when vehicle 7 visits target j at time ¢
we have [|z;(t) — y;|| < sj.

Definition 1: For a trajectory x(t) = [x1(t)...zpr(t)]
generated by a controller, if there exists some ¢y < 0o, such
that ||z;(ty) — y;|| < s;, for some ¢ = 1,...,M and some
j=1,...,N, then x(t) is a stationary trajectory, and we say
that the trajectory x;(¢) converges to target j. Otherwise,
x(t) is a nonstationary trajectory.

In the following, we will prove that for the two-vehicle
one-target case, the vehicle trajectory under CRH control
is stationary. The proof can be naturally extended, at the
expense of more complicated notation, to the multiple-
vehicle one-target case, because only the two closest vehicles
are selected to join the mission. The proof of stationarity for
the general case where we have M vehicles and N targets
is still the subject of ongoing research. Nevertheless, all
simulation results support the stationarity property, including
the multiple vehicle and target scenarios shown in Fig. 3-4.

A. 2 Vehicle, 1 Target Analysis

In this section, we prove the stationarity property of the
CRH controller for the two-vehicle one-target case, i.e. M =
2, N = 1. First, we make the following assumptions.

Assumption 1: Both vehicles have the same maximum
speed, i.e. V; =V fori=1,2.

Assumption 2: The maximum reward capture probabili-
ties for all vehicles are equal to 1, i.e., p;“f‘x =1,fori=1,2,
and the threshold values in (5) are also the same for both
vehicles i.e., dj , =d5, =d*, i =1,2.

Assumption 3: The action horizon is the same as the
planning horizon, i.e., Hy = hy, for all k =1,2.....

Under these assumptions, the solution of the optimization
problem Py will be the positions of the vehicles at 5.

Next we give a Lemma to characterize the solutions of
the optimization problem in (10), and we use x* = (%, 2%)
to represent the locations of vehicles at t, and set d¥ =
||xiC — 1|, ¢ = 1,2, where y; is the location of the target.

Lemma 1: If at time ¢;, neither vehicle is visiting the
target, i.e., d¥ = fo —y1|| > s1,i = 1,2, then at tj1,
we either have =¥ = y; for some i, or [d}T! — d5T™| <
|db — db| — s1.

The stationarity property of the two-vehicles one-target
case can be proved based on Lemma 1.

Theorem 1: If there are only two vehicles and one
target, the vehicle trajectories under the CRH controller are
stationary.

All proofs are omitted here due to space limitations, and
can be found in [3].

V. CONCLUSIONS

We have developed a cooperative receding horizon con-
troller to drive a team of vehicles to a set of targets,
assuming that at each target there is a (possibly time-varying)

reward that can be collected. We have focused on the case
where only two vehicles are required to achieve the reward
collection. For two vehicles and one target, we show that the
controller provides stationary trajectories in the sense that it
drives vehicles to discrete target points despite no explicit
vehicle-to-target assignment process. In future work, we will
study the generalization of the stationarity result and explore
broader strategy-based algorithms.
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