
Asynchronous Distributed Optimization with Minimal Communication

and Connectivity Preservation

Minyi Zhong and Christos G. Cassandras
Division of Systems Engineering

and Center for Information and Systems Engineering
Boston University, mzhong@bu.edu, cgc@bu.edu

Abstract—We consider problems where multiple agents co-
operate to control their individual state so as to optimize a
common objective while communicating with each other to
exchange state information. Since communication costs can be
significant, we seek conditions under which communication
of state information among nodes can be minimized while
still ensuring that the optimization process converges. In prior
work, an asynchronous (event-driven) optimization scheme was
proposed that limits communication to instants when some state
estimation error function at a node exceeds a threshold. It was
shown that convergence is guaranteed under no communication
delays. In this paper, we first prove that convergence is still
guaranteed under bounded communication delays. Next, we
propose a decentralized mechanism which provably preserves
network connectivity by using each node’s routing information.
We apply the optimization scheme to a sensor network coverage
control problem where the objective is to maximize the prob-
ability of detecting events occurring in a region and show that
the proposed asynchronous approach significantly reduces com-
munication costs, hence also prolonging the system’s lifetime,
without any performance degradation.

Keywords: Cooperative Control, Distributed Systems,
Distributed Optimization, Sensor Networks

I. INTRODUCTION

The need for distributed optimization arises in settings
which involve multiple controllable agents cooperating to-
ward a common objective without a central controller to
coordinate their actions. The cooperating agents define a
dynamic system which may be thought of as a network with
each agent corresponding to a node maintaining its own state
vl, l = 1> = = = > Q . The goal of each node is to control its state
so as to optimize some system-wide objective expressed as
a function of s = [v1> = = = > vQ ] and possibly the state of the
environment. Clearly, to achieve such a goal, the nodes must
share, at least partially, their state information. However,
this may require a large amount of information exchange
and becomes a critical issue when the system consists
of wirelessly communicating nodes which are often small,
inexpensive devices with limited resources (e.g., a sensor
network). Aside from energy required to move (if nodes are
mobile), communication is known to be by far the largest
consumer of the limited energy of a node [1], compared to
other functions such as sensing and computation. Therefore,

The authors’ work is supported in part by NSF under Grants DMI-
0330171 and EFRI-0735974, by AFOSR under grant FA9550-07-1-0361
and FA9550-09-1-0095, and by DOE under grant DE-FG52-06NA27490.

it is crucial to reduce communication between nodes to
the minimum possible. Standard synchronization schemes
require that nodes frequently exchange state information,
which is clearly inefficient and, in fact, unnecessary since
often the state of a node may not have changed much or may
have only changed in a predictable way. This motivated the
work in [2] to seek asynchronous optimization mechanisms
in which a node communicates with others only when it
considers it indispensable and only as a last resort.
The general setting described above applies to problems

where the nodes may be vehicles seeking to maintain some
desirable formation [3]. The system may also be a sensor
network whose nodes must be placed so as to ensures high-
quality monitoring in a given region, e.g., [4],[5]; this is often
referred to as a “coverage control” problem. In some cases,
the state of a node may be its perception of the environment
which changes based on data directly collected by that node
or communicated to it by other nodes, e.g., [6],[7]; consensus
problems fall in this category.
In [2] we considered a network of Q cooperating nodes,

whose goal is to minimize an objective function K(s) known
to all nodes with every node controlling its individual state
vl 5 R

ql , l = 1> = = = > Q . The synchronous state update
scheme employed by the lth node is of the general form

vl (n + 1) = vl (n) + �lgl (s (n)) > n = 0> 1> = = = (1)

where �l is a constant positive step size and gl (s (n)) is an
update direction evaluated at the nth update event (see also
[8]). We view vl (n + 1) as the desired state determined at the
nth update event and assume that local control is capable of
reaching vl (n + 1) from vl (n) within a time interval shorter
than the time between update events.
A key difficulty in (1) is that s(n) is in fact not fully

known to node l. Thus, gl (s (n)) has to be evaluated by
synchronizing all nodes to provide their states to node l at
the time its nth update event takes place. This is extremely
costly in terms of communication and assumes no delays so
that the state information is accurate. Alternatively, node l
can evaluate gl (·) using estimates of vm for all m 6= l relying
on prior information from node m and possibly knowledge of
its dynamics. Our concern is with determining instants when
a node m may communicate its state to other nodes through
what we term communication events. We note that such
communication events occur at different times for each node,

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

ThC05.2

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 5396



as do each node’s state update events, so that the resulting
mechanism is fully asynchronous. The scheme proposed in
[2] is based on each node m maintaining an error function
of its actual state relative to its state as estimated by other
nodes (which node m can evaluate). The node then transmits
its actual state at time w only if this error function at w exceeds
a given threshold �m . Assuming negligible communication
delays, it was proved in [2] that by varying this threshold
appropriately the resulting optimization scheme converges
and leads to a local minimum of K(s).
This paper contains two contributions that extend the

results of [2]. First, we allow communication delays to
be non-negligible but bounded and show that the resulting
optimization mechanism still converges to a minimum of
K(s). Our analysis is based on the distributed optimization
framework in [8], but our emphasis is on controlling the
asynchronous occurrence of communication events through
the threshold-based scheme. Second, we study how mo-
bile nodes carrying out distributed optimization algorithms
can preserve connectivity of the underlying communication
network. Since connectivity is a global network property,
distributed connectivity preservation which allows both link
addition and deletion is a challenging task. In [9], decen-
tralized power iteration is used to estimate the algebraic
connectivity of a graph. In [10], each node locally estimates
the network graph and a market-based auction mechanism
is proposed so that deletion of a communication link will
not disconnect the graph. The approach we take utilizes the
information from a wireless routing algorithm [11] running
in parallel with the optimization process. Finally, in case the
network is disconnected, we include a simple scheme for
re-establishing connectivity.

II. ASYNCHRONOUS DISTRIBUTED OPTIMIZATION
FRAMEWORK WITH COMMUNICATION DELAYS

We first review the asynchronous distributed optimization
framework developed in [2]. In a setting where Q cooper-
ating nodes seek to optimize a common objective function,
there are two processes associated with each node: a state
update process and a state communication process. We begin
with the former.
Let wn, n = 1> 2> = = =, denote the time when any one node

performs a state update, e.g., using (1). Such update events
can occur at a node either periodically or according to some
local node-based policy. However, we will assume that every
node performs an update with sufficient frequency relative
to the updates of other nodes (this assumption will be stated
precisely later).
Let Cl be the set of indices in {wn} corresponding to update

events at node l. As an example, in Fig. 1, where nodes 1
and 2 perform state updates at {w1> w4> w5} and {w2> w3> w6}
respectively, we have C1 = {1> 4> 5} > and C2 = {2> 3> 6} =
We will set gl (s (n)) = 0 in (1) for all n @5 Cl, i.e.,
vl (n + 1) = vl (n) if n @5 Cl. We refer to any state update at
such n @5 Cl as a null step at node l. Consider some wn with
n 5 Cl> we let sl (n) be a vector with node l’s estimates of
all node states at that time, i.e., an estimate of s (n). With

1

2

t1

t3t2

t4

t6

t5

1
1W

1
2W

1
3W

2
1W

Fig. 1. State update and communication processes for two nodes. Red dots
represent state update events at a node and black triangles represent state
communication events.

sl (n) available at each node, it no longer has to perform
the state synchronization as required by (1) and can use the
following asynchronous distributed state update scheme,

vl (n + 1) = vl (n) + �gl
¡
sl (n)

¢
for n = 0> 1> = = = (2)

Next, let us discuss the state communication process. Let
� lmq be the qth time when node l sends its true state to node
m, q = 1> 2> = = = Let us also set � lm0 = 0 for all l> m=We assume
that at all communication event times the state information
sent by node l can reach its destination node with a bounded
delay. For the range of applications that motivate our work,
we view it as a system requirement that the communication
network is connected and we will discuss mechanisms to
ensure such connectivity in Section IV.
Now let us consider what criterion a node l might use

to generate its communication events, recalling that we aim
to reduce communication costs. If node l knows that node
m uses a specific method to estimate its state, then node l
can evaluate that estimate and hence the error in it. We use
{l(w) to denote a node state at any time w and observe that
vl (n) = {l(wn)= Let {

m
l (w) be the estimate of {l(w) evaluated

by node m 6= l at time w, we can define an estimation error
function j({l (w) > {

m
l (w))> which measures the quality of the

state estimate of node l with the requirement that

j({l (w) > {
m
l (w)) = 0 if {l (w) = {

m
l (w) (3)

Examples of j({l (w) > {
m
l (w)) include k{l (w)� {

m
l (w) k1 and

k{l (w) � {
m
l (w) k2. Let �l (n) be an error threshold, deter-

mined by node l after the nth state update event such that
n 5 Cl. Thus, �l (n) = �l (n � 1) if n @5 Cl. Let ñlw be the
index of the most recent state update time of node l up to w,
i.e.,

ñlw = max
©
q : q 5 Cl> wq � w

ª
(4)

In [2], where negligible communication delay is assumed,
the communication event policy at node l with respect to
node m is determined by

� lmq = inf
n
w : j({l (w) > {

m
l (w)) � �l(ñ

l
w)> w A �

lm
q�1

o
(5)

In other words, node l communicates its state to another
node m only when it detects that its true state deviates from
that node’s estimate of it by at least the threshold �l(ñlw).
The black curve in Fig. 2 illustrates what the trajectory of
j({l (w) > {

m
l (w)) would look like when communication delay

is negligible and (5) is applied (for clarity of presentation, the
error bound �l (n) is treated as constant and the error function
is continuous over all intervals (� lmq�1> �

lm
q ), q = 1> 2> = = =)

ThC05.2

5397



Red curve:

Black curve: � �jii xxg
~,

� �jii xxg ,

� �kiG

0
tij

3W
ij

1W
ij

2W
ij

0W
ij

1V
ij

2V

Fig. 2. Example of error functions trajectories with non-negligible
communication delays.

Note that the negligible communication delay assumption
allows the value of j({l (w) > {

m
l (w)) to be instantaneously

reset to 0 at � lmq , q = 1> 2> = = =
When the communication delay is non-negligible, after a

communication event originates from node l to node m at � lmq ,
node m will not receive it immediately. Therefore, the error
function j({l (w) > {

m
l (w)) continues to grow until the message

containing {l(� lmq ) is received by node m. Let �
lm
q denote the

time when a message sent by node l at � lmq is received at node
m. The communication delay is assumed to be bounded. In
particular, �lmq � �

lm
q for q = 1> 2> = = = is bounded, which is

crucial to limiting the state estimation error j({l (w) > {
m
l (w)).

If we still use the policy in (5), then between � lmq and �lmq
the value of j({l (w) > {

m
l (w)) generally remains above �l (as

shown in Fig. 2). As a result, node l will continuously trigger
communication events until �lmq . To suppress this redundancy
over the interval [� lmq > �

lm
q ], we need to modify (5). Doing so

requires carefully differentiating between the way in which
node m estimates the state of node l in the presence of
communication delays as opposed to no delays. Thus, let
us express such a general-purpose estimate as follows:

{ml (w) =

½
kml (w; �

lm
q ) �q ? w ? �q+1> q = 0> 1> 2> = = =

{q w = �q> q = 0> 1> 2> = = =
(6)

where kml (·) denotes the specific functional form of the
estimator used by node m to estimate the state of node l and
� lmq is viewed as a parameter of the estimator. The estimate
is defined over an interval (�q�1> �q) and �q is the qth
time when the estimate is reset to a given value {q. This
provides a formal representation of the estimation process in
our optimization framework: At instants �q, q = 1> 2> = = =,
node m resets its estimate of node l’s state to some value {q
and then repeats the estimation process with this new initial
condition over the next interval (�q> �q+1). In the case of
negligible communication delays ([2]), we have

�q = �
lm
q > {q = {l(�

lm
q ) (7)

that is, the qth reset time is the instant when a communica-
tion event is generated from node l to m, and the reset value
is the corresponding actual state of l at that time. However,
in the presence of communication delays, we must set

�q = �
lm
q > {q = k

m
l (�

lm
q ; �

lm
q ) (8)

where �lmq A � lmq and the reset value depends on the
estimation method used by node m. In view of this discussion,
we define the new communication event policy

� lmq = inf
n
w : j({l (w) > k

m
l (w; �

lm
q�1)) � �l(ñ

l
w)> w A �

lm
q�1

o

(9)
with the initial condition � lm0 = 0= Next we introduce a new
variable {̃ml (w), defined as:

{̃ml (w) =

½
kml (w; �

lm
q�1) � lmq�1 ? w ? �

lm
q > q = 0> 1> 2> = = =

{l(�
lm
q ) w = � lmq > q = 0> 1> 2> = = =

(10)
In other words, {̃ml (w) is the estimate of node l’s state used by
node m as if there were no communication delays, consistent
with (7). This variable is maintained by node l.
Figure 2 illustrates the difference between a trajectory of

j({l (w) > {̃
m
l (w)) (black) and a trajectory of j({l (w) > {

m
l (w))

(red) under (9). Note that if the communication delay is zero,
then j({l (w) > {̃

m
l (w)) and j({l (w) > {

m
l (w)) will obviously

follow the exact same trajectory.
Regarding the possible forms that kml (w; �

lm
q ) can take, we

will discuss two cases. First, node m can use a static state
estimation method, i.e., kml (w; �

lm
q ) = {l(�

lm
q ). At �

lm
q > it

simply sets its estimate of l to the value contained in the
received message:

{ml (�
lm
q ) = {l(�

lm
q ) (11)

In this case, {̃ml (w) = {l(�
lm
q ) for all w 5 [� lmq > �

lm
q+1), in

accordance with (10). On the other hand, if node m uses
a dynamic state estimation method, the value of {ml (�

lm
q )

depends on � lmq as well. For example, node m could uses
a linear projection, i.e., kml (w; �

lm
q ) = {l(�

lm
q ) +

¡
w� � lmq

¢
·

�l · gl>�lmq @�l, where �l is an estimate of the average time
between state updates at node l (e.g., a known constant if
node l performs periodic updates) and g

l>�
lm
q
is the update

direction communicated by node l at time � lmq along with its
state. Then we have

{ml (�
lm
q ) = {l(�

lm
q ) + (�

lm
q � �

lm
q ) · �l · gl>�lmq @�l (12)

Note that in this case evaluating the state estimate in (12)
requires knowledge of � lmq , i.e., the message sent by node
l must be time-stamped (otherwise, in the presence of
random delays, node m cannot infer the value of � lmq when
it receives a message at �lmq ). This, in turn, requires a clock
synchronization mechanism across nodes.
Finally, we discuss the way in which the threshold �l (n)

should be selected. The basic idea is to use a large value at
the initial stages of the optimization process and later reduce
it to ultimately ensure convergence. One of the difficulties is
in selecting an appropriate initial value for �l (n) which, if
too large, may prevent any communication. The approach we
follow is to control �l (n) in a manner which is proportional
to
°°gl

¡
sl (n)

¢°°
2
, the Euclidean norm of the update direction

at the nth update event henceforth denoted by k·k. Thus, let

�l (n) =

½
N�

°°gl
¡
sl (n)

¢°°
�l (n � 1)

if n 5 Cl

otherwise
(13)

ThC05.2

5398



where N� is a positive constant. We also impose an initial
condition such that

�l (0) = N�

°°gl
¡
s
l (0)

¢°° > l = 1> = = = > Q (14)

where vlm(0) = {m(0). Clearly, the computation in (13)
requires only local information.

III. CONVERGENCE ANALYSIS

In this section, we study the convergence properties of (2).
For simplicity, a common step size � is used, but each node
may easily adjust its step size by incorporating a scaling
factor into its own gl

¡
sl (n)

¢
. Assumptions 1-4 below were

discussed in greater detail in [2], while Assumption 5 is an
additional one regarding communication delays.
Assumption 1. There exists a positive integer E such that

for every l = 1> = = = > Q and n � 0 at least one of the elements
of the set {n �E + 1> n �E + 2> ===> n} belongs to Cl=
This assumption ensures that each node updates at least

once in a period where E state update events take place.
Assumption 2. The objective function K (s), where s 5

R
p, p =

PQ
l=1 ql, satisfies the following:

(a) K (s) � 0 for all s 5 Rp

(b) K (·) is continuously differentiable and uK (·) is Lip-
schitz continuous, i.e., there exists a constant N1 such that
for all x>y 5 Rp, kuK (x)�uK (y)k � N1 kx� yk =
In what follows, we shall take all vectors to be column

vectors and use 0 to denote a transpose. For simplicity, we
will henceforth write gl (n) instead of gl(sl (n)) and let
g(n) = [g1 (n)

0
> = = = > gQ (n)

0
]0=

Assumption 3. There exist positive constants N2 and N3

such that for all l = 1> = = = > Q and n 5 Cl, we have
(a) gl (n)

0
ulK

¡
sl (n)

¢
� � kgl (n)k

2
@N3

(b) N2
°°ulK

¡
sl (n)

¢°° � kgl (n)k
Here ulK

¡
sl (n)

¢
denotes a vector with dimension ql.

This assumption is immediately satisfied with N2 = N3 = 1
when we use an update direction gl (n) = �ulK

¡
sl (n)

¢
.

Assumption 4. There exists a positive constant N4

such that the error function satisfies k{l (w) � {
m
l (w) k �

N4j({l (w) > {
m
l (w)) for all l, m, w

In the common case where j({l (w) > {
m
l (w)) =°°°{l (w)� {ml (w)

°°° > this is obviously satisfied with N4 = 1.
Assumption 5. There exists a non-negative integer G such

that for all l> m> q and n> if � lmq ? wn�G> then �lmq ? wn.
In other words, we assume that at most G state update

events can occur between a node sending a message and all
destination nodes receiving this message.
In Theorem 1, we consider only the static estimation case

which is the least costly in terms of estimation complexity.
Moreover, static estimation does not require a time synchro-
nization mechanism which (12), for example, does. Due to
space limitations, all proofs in this paper are omitted.
Theorem 1: Under Assumptions 1-5, the communica-

tion event policy (9), the state update scheme (2), and
the static estimation method (11), if the error threshold
�l (n) controlling communication events is set by (13)-(14),
then there exist positive constants � and N� such that
limn$4uK (s (n)) = 0.

IV. CONNECTIVITY PRESERVATION

We have thus far assumed that nodes communicate over
a connected network. However, with wireless mobile nodes,
this assumption is often violated unless connectivity is ex-
plicitly preserved. For example, in coverage control missions,
sensor nodes tend to spread out to cover remote regions; this
increases hop distance and often disconnects critical links. In
this section, we address the issue of connectivity preservation
in conjunction with the proposed distributed optimization
framework. In particular, we seek to ensure the following two
requirements: (l) The distance between two communicating
nodes is less than a certain threshold F. This is to maintain
link quality (i.e., a sufficiently high SNR). We define the
following Boolean variable to indicate whether two nodes
l and m satisfy this requirement (vl denotes node l’s 2D
location):

f1 (vl> vm) =

½
1> kvl � vmk � F
0> otherwise

(ll) In the presence of obstacles, line-of-sight between two
communicating nodes is maintained. We define:

f2 (vl> vm) =

½
1> dvl + (1� �) vm 5 I for all � 5 [0> 1]
0> otherwise

where I denotes the free portion of the mission space unoc-
cupied by obstacles. Links satisfying (l) and (ll) are termed
strong links and we define f (vl> vm) = f1 (vl> vm) ·f2 (vl> vm),
so that l and m form a strong link if and only if f (vl> vm) = 1.
Let us represent the network of mobile nodes by a graph

G (s) = (N > E (s)) > where N = {0> 1> ===> Q} is the set of
node indices including the base station denoted by 0, and
E (s)={(l> m) : l> m 5 N , l 6= m, f (vl> vm) = 1}> which is the
set of all strong links. Over G (s), let �l be the set of all
possible loop-free paths from node l to 0. If �l 6= > for all
l 5 {1> ===> Q}, the graph G (s) is connected. Our goal is to
preserve this property.
We assume that the network operates with a distributed

routing algorithm in parallel with our distributed
optimization algorithm. The routing algorithm proactively
generates and maintains a set of paths, denoted by b�l, for
each node l to forward data to 0. Note that the routing
algorithm is not restricted to use only links in E (s) = Let
�l = �l _ b�l be the set of paths in b�l which contains
only strong links. Denote the nth path in �l by �l>n>
represented by a sequence (ordered set) which contains
all the nodes on this path from l and 0 (including l and
0) ordered by their hop counts. If we use �ml>n to denote

the mth element in �l>n, node �
m
l>n is m � 1 hops away

from node l on the path �l>n. We require that the path be
loop-free, thus �l>n cannot contain duplicate elements, i.e.,
�ml>n 6= �ol>n, if m 6= o. Since �l only uses links in E (s),

f(�ml>n> �
m+1
l>n ) = 1, for all l> m> n. For example, in Fig. 3, �5 =

{{5> 4> 2> 0} > {5> 3> 1> 0} > {5> 3> 1> 2> 0} > {5> 4> 2> 1> 0}} and
depending on the result of the routing algorithm, �5 is
some subset of �5. The routing algorithm also maintains at
node l its upstream (further from the base station 0) node

ThC05.2

5399



1

600

2

4

55

3

Fig. 3. Base station is labeled 0. Desired communication range is marked
for node 0 and 5. Strong links are indicated by lines between nodes.

set, denoted by Ul = ^m>n$l (�m>n) where

$l (�m>n) =

½
�o�1m>n > if l 5 �m>n> l 6= m and l = �om>n
>> else

In addition, it maintains the downstream node set Dl =
{m : l 5 Um > m 5 {0> ===> Q}}.
The information in �l, Ul and Dl is essential to our

connectivity preservation algorithm. By piggybacking on the
routing algorithm, nodes reduce the communication cost
incurred for connectivity preservation. Before proceeding,
we also define a projection of { 5 R

2 on a set S �

R
2 as SS ({) = argmin|5S k{� |k. Next, let X (v) =©
{ : { 5 R2> f ({> v) = 1

ª
be the region where a strong link

with v can be established. Finally, for simplicity, henceforth
vm stands for vm (n) unless expressly specified otherwise,
where n indexes state update times wn.
Algorithm 1: When node l makes a state update at wn,

n 5 Cl, using (1), it takes the following steps:
S1) Using (1), generate a candidate of the next state: v̂l =

vl (n) + �l · gl (s (n)).
S2) If for all m 5 Dl> f (v̂l> vm) = 0> $ S3; else, $ S5.
S3) If there exists a node m 6= l such that vm 5 X (v̂l) and

there exists a path �m>o 5 �m , such that l @5 �m>o, go to S5;
else, go to S4.
S4) Select some m 5 Dl and project v̂l on X (vm). Redefine

the result SX (vm) (v̂l) as v̂l.
S5) If for all m 5 Ul> f (v̂l> vm) = 1> $ S7; else, $ S6.
S6) If for all m 5 Ul such that f (v̂l> vm) = 0 there exists

a path �m>o 5 �m , such that either l @5 �m>o or l 5 �m>o and
f (v̂l> vu) = 1 with u = $l (�m>o) > go to S7; else vl (n + 1) =
vl (n) and skip S7.
S7) vl (n + 1) = v̂l.
It should be pointed out that in S3 and S5, node l has

to communicate with nodes in X (v̂l) and Ul respectively.
In S4, when the set X (vm) is a disk, the projection is
straightforward. When X (vm) is nonconvex due to obstacles,
the projection involves finding the closest point to v̂l on some
line segments and some circular arcs=
Theorem 2: Assuming only one node performs a state

update at any given time and �m 6= > for all m 5 {1> ===>Q}
before the state update, an iteration of Algorithm 1 preserves
the connectivity of G (s).
Asynchronous iterations:With the asynchronous method

in Section II, node l cannot accurately evaluate f (v̂l> vm)
because l only has an estimate, vlm , of node m’s state.
However, based on our analysis in previous sections, the
error between vlm and vm always has an upper bound known

to m= Let us denote this upper bound of
°°vlm � vm

°° by �m
and assume that node m includes �m in its communication
messages to l. Based on �m and vlm , node l can conclude that
vm 5

©
{ :
°°vlm � {

°° � �m
ª
= �lm and use

f0
¡
vl>�

l
m

¢
=

½
1> f (vl> {) = 1 for all { 5 �lm
0> otherwise

(15)

to replace f (vl> vm) in Algorithm 1. The test in (15) is
rather conservative as f0(vl>�lm) might be 0 when a strong
link actually exists between l and m. However, note that in
Algorithm 1, node l needs to communicate with neighboring
nodes when some Boolean variables are 0. The information
obtained from these communications may help node l detect
those false positives.
Fault recovery: When two or more nodes update their

states at the same time, Algorithm 1 does not guarantee
connectivity, thus a fault recovery mechanism is required.
Connectivity loss may also be caused by bad initial con-
ditions, excessive communication delays, or node failure.
When a node detects that the base station is unreachable,
a connection can be re-established by navigating back to
the base station (a known position). As soon as that node
establishes a communication link with the base station or
any other node with a path to the base station, it can use
Algorithm 1 to maintain connectivity.

V. APPLICATION TO COVERAGE CONTROL

In this section, we apply the asynchronous distributed
optimization framework and the connectivity preservation al-
gorithm to the class of coverage control problems mentioned
in Section I. We will show how an asynchronous algorithm
significantly reduces the energy expended on communication
with no adverse effect on performance and the effectiveness
of the connectivity preservation algorithm.
Following the formulation in [5], we define an event

density function U ({) over the mission space  � R
2,

which captures the frequency of random event occurrences
at { 5 = U ({) satisfies U ({) � 0 for all { 5  andR

U ({) g{ ? 4= We assume that when an event takes

place, it will emit some signal which may be observed by
some sensor nodes. The cooperative system consists of Q
mobile sensor nodes deployed into  to detect the random
events. Their positions are denoted by s = (v1> ===> vQ ) =
The probability that node l detects an event at { 5 ,

denoted by sl ({> vl), is a monotonically decreasing differ-
entiable function of k{� vlk. Since multiple independent
sensor nodes are deployed, the joint probability that an event
occurring at { is detected, denoted by S ({> s), is given by

S ({> s) = 1�
QY

l=1

[1� sl ({> vl)]

and the optimization problem of interest is

max
s

K (s) =

Z



U ({)S ({> s) g{

ThC05.2

5400



0 2.5 5 7.5 10 12.5 15 17.5 20
0

1000

2000

3000

4000

5000

6000

7000

8000

Time

N
u

m
b

e
r 

o
f 

c
o

m
m

u
n

ic
a

ti
o

n
s

 

 

Asynchronous kδ =0.1

Asynchronous fixed δ =1

Synchronous

0 2.5 5 7.5 10 12.5 15 17.5 20

800

1000

1200

1400

1600

1800

2000

Time

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

 

 

Asynchronous kδ =0.1

Asynchronous fixed δ =1

Synchronous

Fig. 4. Communication cost (left) and objective function trajectories (right)
of 3 distributed optimization alogrithms with communication delays.

in which we use the locations of the sensor nodes as decision
variables to maximize the event detection rate in .
A synchronous gradient-based solution was obtained in [5]

in which node l’s next way point is determined by

vl (n + 1) = vl (n) + �
CK (s)

Cvl
> n = 0> 1> = = = (16)

The evaluation of the gradient CK (s) @Cvl needs the exact
locations of nearby nodes and the communication involved
to ensure such state synchronization has a high cost, which
is often unnecessary because the locations of neighboring
nodes may be accurately estimated, see (11), (12).
Next, we apply the asynchronous method developed in

Section II to this problem in a simulated environment
(http://codescolor.bu.edu/simulators.html) and compare the
results with the synchronous approach. The simulation setup
is identical to that described in [2] except that non-negligible
communication delays are now included.
In Fig. 4, four nodes are deployed in a rectangular empty

mission space. Every time a node broadcasts its state, the
number of communications is increased by 1. This figure
shows that the asynchronous method can substantially reduce
the communication cost (hence, the energy consumption
at all nodes) while convergence performance is virtually
indistinguishable from that of the synchronous method. The
asynchronous algorithm with fixed �l (n) has the added
advantage that it usually stops incurring communication cost
earlier than the other two methods. However, it does not
guarantee convergence to stationary points.
In Fig. 5, we compare the results of coverage control

with or without connectivity preservation. The base station
is located at the upper-left corner and all nodes initially start
from that location. Blue rectangles represent obstacles and
the navigable areas are color-coded to indicate the quality
of coverage (green means good coverage and white means
no coverage). When Algorithm 1 is applied to the coverage
control problem (right figure), no communication link vio-
lates the range limit F = 10 or line-of-sight constraints. As a
price for guaranteed connectivity, the final objective function
value reached is lower.

VI. CONCLUSIONS AND FUTURE WORK

We have addressed the extent to which communication
among agents can be minimized in a cooperative opti-
mization setting. Extending the results of [2], we have
shown that a scheme limiting communication events to “last

1

3

9

2

7

13

14

12

0

8

11

5

6

4

15

10

6

1

3

9

2
8

7

5

4

10

11
13

14

12

15

0

Fig. 5. Final node deployment after applying coverage control without
(left) and with (right) connectivity preservation. The lines between nodes
indicate communication links. In left, K (s) = 1642=1. In right, Algorithm
1 is applied with F = 10 and K (s) = 1449=4=

resort only” when some state estimation error function at
a node exceeds a threshold guarantees the convergence of
a gradient-based fully asynchronous distributed algorithm
under bounded communication delays. Further, to ensure
network connectivity while optimization takes place, we
have proposed a mechanism which utilizes each node’s local
routing information to limit the location a node is allowed to
move to. We have applied this approach to a coverage control
problem for wireless sensor networks and confirmed through
numerical examples that limited asynchronous (event-driven)
communication results in substantial energy savings with no
compromise in performance. Future work aims at allowing
multiple nodes to update at the same time and at generalizing
the connectivity condition to include transmission power and
angle constraints.

REFERENCES

[1] V. Shnayder, M. Hempstead, B. R. Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in In Sensys. ACM Press, 2004, pp. 188–200.

[2] M. Zhong and C. G. Cassandras, “Asynchronous distributed optimiza-
tion with minimal communication,” in Proc. of 47th IEEE Conf. on
Decision and Control, 2008, pp. 363–368.

[3] P. Ögren, E. Fiorelli, and N. E. Leonard, “Cooperative Control of
Mobile Sensor Networks: Adaptive Gradient Climbing in a Distributed
Environment,” IEEE Trans. Automatic Control, vol. 49, no. 8, pp.
1292–1302, 2004.

[4] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. on Robotics and Automation,
vol. 20, no. 2, 2004.

[5] C. G. Cassandras and W. Li, “Sensor networks and cooperative
control,” European Journal of Control, vol. 11, no. 4-5, pp. 436–463,
2005.

[6] A. Jadbabaie, J. Lin, and S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE Trans.
Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[7] L. Moreau, “Stability of multi-agent systems with time-dependent
communication links,” IEEE Trans. Automatic Control, vol. 50, no. 2,
pp. 169–182, 2005.

[8] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, 1997.

[9] P. Yang, R. Freeman, G. Gordon, K. Lynch, S. Srinivasa, and R. Suk-
thankar, “ Decentralized estimation and control of graph connectivity
in mobile sensor networks,” in Proc. of American Control Conference,
2008, pp. 2678 – 2683.

[10] M. Zavlanos and G. Pappas, “ Distributed connectivity control of
mobile networks,” IEEE TRANSACTIONS ON ROBOTICS, vol. 24,
no. 6, pp. 1416–1428, 2008.

[11] J. Al-Karaki and A. Kamal, “Routing techniques in wireless sensor
networks: a survey,” IEEE Wireless Communications, vol. 11, no. 6,
pp. 6 –28, 2004.

ThC05.2

5401


