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Abstract— Stochastic Flow Models (SFMs) are stochastic
hybrid systems that abstract the dynamics of complex discrete
event systems involving the control of sharable resources. SFMs
have been used to date to study systems with a single user
class or some multiclass settings in which performance metrics
are not class-dependent. In this paper, we develop a SFM
framework for multiple classes and class-dependent perfor-
mance objectives in which we can analyze new, occasionally
counterintuitive, phenomena and give rise to a new type of
“induced” events that capture delays in the SFM dynamics. In
the case of two classes, we derive Infinitesimal Perturbation
Analysis (IPA) estimators for their derivatives and use them as
the basis for on-line optimization algorithms that apply to the
underlying discrete event system (not the SFM). This allows us
for the first time in the use of SFMs to contrast system-centric
and user-centric objectives.

Keywords: Stochastic Flow Model, Perturbation Analysis,

Stochastic Hybrid System, Discrete Event System

I. INTRODUCTION

The study of Discrete Event Systems (DES) is based on

well-developed modeling frameworks in which the system

dynamics are driven by the occurrence of different events

defined over some given event set [2]. When event occur-

rence rates get extremely high, however, analysis becomes

prohibitively complex; even well-designed discrete event

simulations have impractically slow execution times. In this

case, one seeks alternative models through which the system

dynamics are abstracted to an appropriate level that retains

essential features enabling effective and accurate control and

optimization. This is often the case in systems where random

phenomena play different roles at different time scales and

typically gives rise to stochastic hybrid system models [3] in

which some event-driven dynamics are retained to capture

switches between different “modes” while the remaining

dynamics are abstracted into differential equations describing

the system state evolution within each such mode.

Fluid models are an example of this abstraction process

applied to a large class of DES, and especially useful in an-

alyzing communication networks with large traffic volumes

[8]. While in most traditional fluid models the flow rates
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involved are treated as fixed parameters, a Stochastic Flow

Model (SFM), as introduced in [5], has the extra feature

of treating flow rates as stochastic processes. With virtually

no limitations imposed on the properties of such processes,

a new approach for sensitivity analysis and optimization

was recently proposed, based on Infinitesimal Perturbation

Analysis (IPA). The essence of this approach is the on-line

estimation of gradients (sensitivities) of certain performance

measures with respect to various controllable parameters.

These estimates may be incorporated in standard gradient-

based algorithms to optimize parameter settings of the un-

derlying DES. However, IPA estimates become biased (hence

unreliable for control purposes) when dealing with aspects of

queueing systems such as multiple user classes, blocking due

to limited resource capacities, and various forms of feedback

control. The emergence of SFMs has rekindled the interest in

IPA because SFMs allow us to circumvent these limitations,

yielding simple unbiased gradient estimates of useful metrics

even in the presence of blocking and a variety of feedback

control mechanisms [1],[10]. When it comes to multiple user

classes, IPA has been applied to problems where flows are

differentiated in terms of admission to a system, but once

admitted all flows are treated alike [9]. IPA for SFMs that

can differentiate flow classes in terms of service processes

has been a challenge. More importantly, developing IPA

estimates for gradients of class-dependent metrics has been

elusive. Recently, Chen et al [6] have studied a multiclass

SFM to analyze a dynamic priority call center. This model

breaks new ground by differentiating among flow classes

even after they enter the system; however, the analysis is very

specific to the call center application and hard to extend to a

general multiclass SFM model. In addition, the IPA analysis

is limited to states but not general performance metrics, and

unbiasedness for the estimators derived is not established.

In this paper, a general multiclass SFM model is devel-

oped. Each flow class, indexed by i, is associated with a

threshold parameter θi based on which incoming flow is

allowed into the system as long as xi(t) ≤ θi, where xi(t)
is the flow content of class i, which is thus differentiated

from all other classes unlike earlier models such as in [9].

Moreover, each class is associated with its own performance

metrics, such as workload, throughput, or loss rate due to
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overflow. This is an important new element in the analysis

of SFMs, allowing us to study the difference between user-

centric and system-centric optimization, and place resource

contention problems in a game framework. From a mod-

eling and IPA standpoint, our approach introduces “induced

events” in our SFM which can result in a (potentially infinite)

event chain, a new phenomenon in the study of perturbation

analysis, which allows us to understand some counterintuitive

behavior observed in these multiclass environments.

II. MULTICLASS STOCHASTIC FLOW MODEL (SFM)

The systems we are interested in studying are those where

multiple users are competing for service at a single sharable

resource. Each user defines a “class” of tasks that are ran-

domly generated, placed in a common queue, and processed

on a FCFS basis across all such classes. This setting gives

rise to a number of interesting problems where it is essen-

tial to distinguish between user-specific and system-centric

performance metrics. We describe next a SFM abstraction

of such a system, limiting ourselves to two user classes. It

will become clear that our analysis directly applies to three

or more classes at the expense of added notation that does

not add to the basic ideas and results developed. Associated

with a two-class SFM abstraction (see Fig. 1 ) are several

real-valued and non-negative random processes which are

all defined on a common probability space (Ω,F , P ). The

arrival flow processes {ri(t)}, i = 1, 2, characterize the

arrival rates of tasks at time t and the service flow processes

{βi(t)}, i = 1, 2, characterize their service rates. The total

service capacity process is denoted by {C(t)} and, clearly,

C(t) = β1(t)+β2(t). The process {xi(t)}, i = 1, 2, defines

the (real-valued) fluid content of class i in the system. In

addition, a controllable parameter θi is associated with flow

class i; this is a threshold used in limiting the inflow or,

alternatively, a buffer capacity assigned to class i: When

xi(t) ≥ θi, some of the class i incoming flow is dropped,

giving rise to the overflow or loss process {li(t)} and the

input flow process {αi(t)}, i = 1, 2. Finally, the output

flow processes {vi(t)}, i = 1, 2, characterize departing flow

rates. We are interested in the behavior of this SFM over a

finite time interval [0, T ]. Regarding the arrival and service

processes, we will impose no restrictions on them as far as

the probability laws that characterize them are concerned,

but will make the following assumption:

Assumption 1: W.p. 1, the arrival ri(t) ≥ 0, i = 1, 2, and

service capacity C(t) ≥ 0 functions are piecewise constant

in the interval [0, T ].

A. SFM Dynamics

We define a vector x(t) = (x1(t), x2(t))
′

where xi(t) is

the class i queue content with the dynamics:

dxi(t)

dt+
=






0 xi(t) = 0 and ri(t) ≤ βi(t)
0 xi(t) = θi and ri(t) ≥ βi(t)
αi(t)− vi(t) otherwise

(1)

Fig. 1. A Two-Class Stochastic Flow Model (SFM)

where

αi(t) =

{
βi(t) xi(t) = θi and ri(t) ≥ βi(t)
ri(t) otherwise

(2)

vi(t) =

{
ri(t) xi(t) = 0 and ri(t) ≤ βi(t)
βi(t) otherwise

(3)

Thus, when 0 < xi(t) < θi we simply have dxi
dt+

= ri(t)−
βi(t). When xi(t) = 0 and ri(t) ≤ βi(t), the outflow rate

is limited by the external arrival flow rate; similarly, when

xi(t) = θi and ri(t) ≥ βi(t), the inflow rate is limited by

the service flow rate, leading to the loss rate, for i = 1, 2:

li(t) = ri(t)−αi(t) =





ri(t)− βi(t)

xi(t) = θi
and ri(t) ≥ βi(t)

0 otherwise
(4)

We will use x(t) =
∑2
i=1 xi(t) to denote the total system

content at t. The crucial difference between a single class

SFM, as in [4], and the two-class SFM is the behavior of

the service rate βi (t). Whereas in the single-class model

the service rate is independent of the system state, βi (t) in

the two-class SFM depends on the queue contents and the

inflow processes as explained next. Initially, the service rates

are allocated proportional to the inflow rates, i.e.,

βi(0) = C(0)
αi(0)∑
j αj(0)

(5)

This allocation is maintained until there is a change in

αi(t)/
∑
j αi(t) at some time t > 0. When that happens,

the total content x(t) is the unprocessed workload under the

initial service flow allocation. Let ω(t) denote the amount of

time required to process this workload, at which point the

new service rate allocation can take effect. Thus, the formal

definition of ω(t) is through the relationship:

t+ω(t)∫

t

C(τ)dτ = x(t) x(t) > 0

ω(t) = 0 x(t) = 0

(6)

Finally, at time t+ ω(t) the new allocation takes effect:

βi(t+ ω(t)) = C(t+ ω(t))
αi(t)∑
j αj(t)

(7)

Therefore, in this SFM any event at t that causes a change in

αi(t)/
∑
j αi(t) is critical in that it “induces” another event
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at t+ω(t) which results in a service rate allocation change.

In the next section, we will formally define all events that

can occur in the SFM. Here, we introduce the notation τk,

k = 1, 2 . . ., to denote event occurrence times in increasing

order of k. Using this notation, we define the set of inflow

change events in the interval [0, τk]:

�k = {m : ∃i ∈ {1, 2} s.t. αi(τ
−

m) 	= αi(τ
+
m), m ≤ k} (8)

To avoid degenerate cases where C(τ) = 0 for all τ > t,
we will assume, whenever (6) is used, that C(τ) > 0 for a

sufficiently long time interval to ensure that ω(t) <∞.

The service flow allocation mechanism in (5)-(7) captures

the FCFS nature of the underlying DES, as also noted in

[6]. We can formally establish this fact by showing that if

flow of both class types enters the SFM at time t, then it

leaves the SFM at the same time, t+ω(t), regardless of the

class type. This parallels the defining property of a FCFS

policy, i.e., the waiting time of a customer arriving at t in a

FCFS queue is the same regardless of its class. This result,

stated as Lemma 2 below, rests on a monotonicity property

expressed as Lemma 1. The proofs are fairly technical and

are omitted, but they may be found in [11].

Lemma1: If t1 ≤ t2 and x(t1) > 0, x(t2) > 0, then

t1 + ω(t1) ≤ t2 + ω(t2), where ω(t) was defined in (6).

Lemma 2: For ω(t) defined in (6),

∫ t+ω(t)

t

β1(s)ds = x1(t),

∫ t+ω(t)

t

β2(s)ds = x2(t)

Lemma 2 implies that any class i flow entering the SFM at

t leaves at the same time t + ω(t) for i = 1, 2. If r1(t) =
r2(t) = 0, x(t) > 0, then the lemma simply asserts that the

time to deplete the current content of each class is the same,

i.e., both class contents become zero simultaneously (unless

of course xi(t) = 0 for either i = 1, 2).
The presence of a delay ω(t) in the service flow allocation

mechanism (5)-(7) also implies the need for additional state

variables in the SFM dynamics. The role of these state

variables is to provide “timers” triggered when an inflow

change event occurs at t and then measure the amount of

time until the queue content x(t) is depleted. Thus, we define

state variables ym(t), m = 1, 2, . . ., associated with events

occurring at times τm, m = 1, 2 . . ., as follows:

dym(t)

dt
=

{
−C(t) τm ≤ t < τm + ω(τm), m ∈ �m
0 otherwise

(9)

ym(τ
+
m) =

{
x(τm) ym(τ

−
m) = 0, m ∈ �m

0 otherwise

Clearly, these state variables are only used for inflow change

events, so that ym(t) = 0 unless m ∈ �m. Intuitively, ym(t)
decreases from x(τm) at the rate of the service capacity C(t)
until this queue content is depleted, at which time ym(τm+
ω(τm)) = 0 and the associated induced event takes place.

Similar to prior work on SFMs (e.g., [1],[10]), the class i
queue content can be either empty, full, or neither. Accord-

ingly, an interval [τk, τl], k < l, over which xi(t) = 0 for

all t ∈ [τk, τl] corresponds to an empty period (EP) for this

class and an interval [τk, τl], k < l, over which xi(t) = θi
for all t ∈ [τk, τl] corresponds to a full period (FP). A

boundary period (BP) is either an empty or a full period;

a nonboundary period (NBP) is a supremal interval during

which 0 < xi(t) < θi.

B. Event Classification

There are three types of events that can occur in the SFM

of Fig. 1, as classified next.

1. Exogenous events. An event is exogenous if its oc-

currence time τk is independent of the controllable vector

θ. In the two-class SFM, exogenous events correspond to

changes (jumps, by Assumption 1) in the arrival flow rates

ri(t), i = 1, 2, or the service capacity C(t).
2. Endogenous events. An event occurring at time τk

is endogenous if there exists a continuously-differentiable

function gk(x, θ) (see also [10]) , such that

gk (x (θ, τk) , θ) = 0 (10)

In our model, the functions of interest are the boundaries

defined by xi(θ, t) = θi or xi(θ, t) = 0, i = 1, 2, so that

gk (x (θ, t) , θ) = xi(θ, t)− θi or gk (x (θ, t) , θ) = xi(θ, t).
3. Induced events. We will refer to these as ω-events

because they are all related to the definition of ω(t) in (6).

An event of this type occurring at time τk is “induced” by

an inflow change event at some time τm < τk, that is, any

event (exogenous, endogenous, or itself an ω-event) such that

some αi(t), i = 1, 2, changes value at t = τm, m ∈ �m as

defined in (8). Thus, an event at time τk is an ω-event if

there exists an event at τm, m ∈ �m, such that

τk(θ) = τm + ω(τm) > τm

and

∫ τm+ω(τm)

τm

C(τ)dτ = x(τm) > 0

It should be clear that an ω-event occurs at time τm+ω(τm)
when the workflow x(τm) present at the time the event was

induced becomes depleted and a service flow reallocation

must result. If, however, x(τm) = 0, by (6) we get ω(τm) =
0 and the event has no further effect on the SFM. We stress

once again that an inflow change event that induces an ω-

event may be exogenous, endogenous, or itself an ω-event; in

the latter case, a chain of ω-events may be induced. Details

and a description of counter-intuitive behavior resulting from

an ω-event chain can be found in [11].

III. SFM PERFORMANCE OPTIMIZATION

An optimization problem for our SFM is defined by

viewing θ = (θ1, θ2) as a controllable parameter vector and

seeking to optimize performance metrics of the form

J(θ;x(0), T ) = E [L(θ;x(0), T )]

where L(θ;x(0), T ) is a sample function of interest evaluated

in the interval [0, T ] with initial conditions x(0). In this pa-

per, we shall limit ourselves to the class-dependent loss vol-

umes, Li(θ;x(0), T ), and average workloads, Qi(θ;x(0), T ),
i = 1, 2, which will be explicitly defined in the sequel.
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Given that we do not wish to impose any limitations on

the defining processes {ri(t)} and {C(t)} (other than mild

technical conditions), it is infeasible to obtain closed-form

expressions for J(θ;x(0), T ). Therefore, we resort to iter-

ative methods such as stochastic approximation algorithms

(e.g., [7]), i.e. we seek to obtain θ∗ minimizing J(θ;x(0), T )
through an iterative scheme of the form

θi,n+1 = θi,n − ηnHi,n(θn;x(0), T, ωn), n = 0, 1, . . .
(11)

where Hi,n(θi,n;x(0), T, ωn) is an estimate of ∂J/∂θi eval-

uated at θ = (θ1,n, θ2,n) and based on information obtained

from a sample path denoted by ωn. In our work, we use the

IPA sample derivative ∂L/∂θi as an estimate of ∂J/∂θi. Let

NT be the total number of events observed in a sample path

over [0, T ]. The average workload of flow class i, i = 1, 2,
is

Qi(θ) =
1

T

∫ T

0

xi(t, θ)dt =
1

T

∑

k∈Ωi

∫ τk

τk−1

xi(t, θ)dt (12)

with τ0 = 0, and Ωi is the set of all non-empty periods

(NEPs) for class i, defined as

Ωi = {k : xi(t) > 0 for all t ∈ [τk−1, τk], k = 1, . . . , NT }

The average loss rate of flow class i , i = 1, 2, is

Li(θ) =
1

T

∫ T

0

li(t, θ)dt =
1

T

∑

k∈Ψi

∫ τk

τk−1

[ri(t)− αi(t)] dt

(13)

where we have used the fact that li(t) = ri(t) − αi(t) and

li(t) ≥ 0 only in FPs of class i, with the definition:

Ψi = {k : xi(t) = θi for all t ∈ [τk−1, τk], k = 1, . . . , NT }

In a single-class SFM, the average workload is an in-

creasing function of a scalar threshold θ, and the loss rate

is a decreasing function. Thus, we seek to strike a balance

between these two metrics by determining θ that minimizes

J (θ) = γE[Q(θ)]+E [L (θ)] with some γ > 0. In our two-

class SFM, however, we have a performance function that

also reflects differences between classes, such as

J (θ) = γ1E[Q1(θ)] · θ1 + γ2E [L1(θ)] (14)

+ γ3E [L2(θ)] + γ4E [Q2(θ)] · θ2

In addition, each class (user) may solve its own optimization

problem with a performance metric of the form Ji (θ) =
γE[Qi(θ)] + E [Li (θ)], in which case we face a non-

cooperative game setting.

Regardless of the optimization problem we choose to

address, the starting point is the availability of estimates

of ∂J/∂θi which we obtain through IPA. It is clear from

(12)-(13) that obtaining sample derivatives of Qi(θ) and

Li(θ) derivatives requires the sample derivatives of the states

xi(t, θ) and of the event times τk(θ) where the explicit

dependence on the parameter θ is included for emphasis.

IV. IPA ESTIMATION

To simplify notation in the sequel, we define the following

for all state and event time sample derivatives:

x′i,j(t) ≡
∂xi (t)

∂θj
, y′m,j(t) ≡

∂ym (t)

∂θj
, τ ′k,j ≡

∂τk
∂θj

(15)

for i, j = 1, 2, and k,m = 1, 2, . . .
In the following, we will first discuss how to obtain state

derivatives x′i,j(t), and then we will consider event time

perturbations for each event type. Finally combining these

two results will give us the IPA derivative estimation process.

The mathemtaical derivation details are omitted, but can be

found in [11].

A. State Derivatives

Let us rewrite the flow dynamics (1) over an interval

[τk−1, τk) as
dxi(t)
dt+

= fi,k(t) where either fi,k(t) = 0 or

fi,k(t) = ri(t)− βi(t). By studying the dynamics of x′i,j(t)
defined in (15) for all t ∈ [τk−1, τk) (see also [10]), we can

get

x
′

i,j(t) = x
′

i,j(τ
+
k ) t ∈ [τk, τk+1) (16)

that is, the IPA derivative x
′

i,j (t) remains fixed in between

consecutive events. In addition, taking advantage of the

continuity of the queue content xi(t) at event time τk, we

have

x
′

i,j(τ
+
k ) = x

′

i,j(τ
−

k ) + [fi,k(τ
−

k )− fi,k+1(τ
+
k )]τ

′

k,j (17)

Thus, the queue content derivatives are piecewise constant,

with jumps according to (17) at event times. It therefore

suffices to use (17) to track them on an event by event basis.

Along the same lines, for the state variables ym(t), we

have

y′m,j(t) = y′m,j(τ
+
k ) t ∈ [τk, τk+1), m ∈ �k

and

y′m,j(τ
+
k ) = y′m,j(τ

−

k ) + [C(τ
+
k )− C(τ−k )]τ

′

k,j (18)

If ym(τ
−

k ) = 0 and m ∈ �k−1, then, by definition, an

induced event occurs at τk, and τk = τm+ω (τm). Recalling

(9), ym (t) = 0 thereafter, so we also reset:

y′m,j(τ
+
k ) = 0 if τk = τm + ω (τm) (19)

Finally, if an inflow change event occurs at τk, recalling (9),

we have

y′k,j(τ
+
k ) =

2∑

i=1

x
′

i,j(τ
−

k ) +

[
2∑

i=1

fi,k(τ
−

k ) +C(τ+k )

]

τ ′k,j

(20)

In summary, (17) and (18)-(20) fully describe the propagation

of the state derivatives from one event to the next, provided

we can also evaluate all event time derivatives τ ′k,j , k =
1, 2, . . . as descibed next.
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B. Event Time Derivatives

Recalling the event classification in Section II-B, we

consider event time perturbations for each event type.

1. Exogenous events. By definition, all such events are

independent of θ, therefore:

τ ′k,j = 0, j = 1, 2 (21)

2. Endogenous events. In this case, (10) is in force and

taking derivatives with respect to θj gives:

∂gk(x, τk, θ)

∂θj
+
∂gk(x, τk, θ)

∂x

[
x
′(τ−k,j) + fk(τ

−

k ) · τ
′

k,j

]
= 0

(22)

In the two-class SFM, we have either gk (x (θ, t) , θ) =
xi(θ, t) − θi or gk (x (θ, t) , θ) = xi(θ, t) for i = 1, 2. For

convenience, we designate the corresponding endogenous

events as follows: (i) A ρi event at τk is an event that initiates

a FP for flow class i, i.e., xi(τ
−

k ) < θi, xi(τ
+
k ) = θi, and

(ii) A σ event at τk is an event that initiates an EP i.e.,

xi(τ
−

k ) > 0, xi(τ
+
k ) = 0, i = 1, 2.

In the case of a ρi event at τk, (22) yields:

τ ′k,j =






1−x′i,j(τ
−

k
)

fi,k(τ−k )
j = i

−x′i,j(τ
−

k
)

fi,k(τ−k )
j 	= i

(23)

In the case of a σ event at τk, (22) yields:

τ ′k,j =
−x′i,j(τ

−

k )

fi,k
(
τ−k
) (24)

3. ω-events. Suppose an ω-event occurs at τk induced by

an inflow change event at τm so that τk = τm + ω (τm).
Then, by definition, we must have ym(τ

−

k ) = 0, and taking

derivatives on both sides with respect to θj we get:

τ ′k,j =
y′m,j(τ

−

k )

C(τ−k )
(25)

In summary, (21) for exogenous events, (23) for ρi events,

(24) for σ events, and (25) for ω-events provide all the

necessary event time derivatives, updated at all τk.

C. IPA Derivative Estimation Process

We can now combine our results to provide a complete

description of the IPA derivative estimation process on an

event by event basis. We proceed again using our event

classification.

1. Exogenous events. Based on (21) in conjunction with

(17) and (18)-(20):

τ ′k,j = 0 (26)

x′i,j(τ
+
k ) = x′i,j(τ

−

k )

y′m,j(τ
+
k ) = y′m,j(τ

−

k ) m ∈ �k−1

2. Endogenous events. We consider the two types of

endogenous events defined in the previous section.

2.1. ρi events, i.e., a FP for class i starts at time τk. In

the case where j = i, (23) and (17)gives:

τ ′k,j =
1− x′ij(τ

−

k )

ri(τ
−

k )− βi(τ
−

k )
(27)

x′ij(τ
+
k ) = 1 (28)

In the case where j 	= i, we get

τ ′k,j =
−x′i,j(τ

−

k )

ri(τ
−

k )− βi(τ
−

k )
(29)

x′i,j(τ
+
k ) = x′i,j(τ

−

k ) (30)

Finally, using (18), we set

y′m(τ
+
k ) = y′m(τ

−

k ), m ∈ �k−1

2.2. σ events, i.e., an EP starts at time τk. Using (23) and

(17), we get

τ ′k =
−x′i,j(τ

−

k )

ri(τ
−

k )− βi(τ
−

k )
(31)

x′i,j(τ
+
k ) = 0 (32)

In addition, we have

y′m(τ
+
k ) = y′m(τ

−

k ), m ∈ �k−1

3. ω-events. Suppose an ω-event occurs at τk induced by

an inflow change event at τm so that τk = τm + ω (τm).
Using (25) gives

τ ′k,j =
y′m,j(τ

−

k )

C(τ−k )
(33)

Therefore, (17) becomes

x′i,j(τ
+
k ) = x

′

i,j(τ
−

k )+ (34)

[
αi(τ

−

k )− αi(τ
+
k ) + βi(τ

+
k )− βi(τ

−

k )
] y′m,j(τ

−

k )

C(τ−k )

In addition, we have

y′m(τ
+
k ) =

{
0 τk = τm + ω (τm)

y′m(τ
−

k ) otherwise
, m ∈ �k−1

Finally, if any event at τk is also an inflow change event,

then we use (20) for the state variable yk, where τ ′k,j is given

by (26), (27), (29), (31), or (33) depending on the type of

event that caused the inflow change.

Based on (26) through (34), we can evaluate all x′i,j (t) and

τ ′k,j along a given sample path. We can then return to (12)-

(13) and evaluate the performance metric derivatives
∂Qi(θ)
∂θj

,
∂Li(θ)
∂θj

as described next.

Starting with Qi(θ) in (12), we have for i, j = 1, 2:

∂Qi(θ)

∂θj
=
1

T

∑

k∈Ωi

x′i,j(τk−1) · (τk − τk−1) (35)

Similarly, for Li(θ) in (13), we have:

∂Li(θ)

∂θj
=
1

T

∑

k∈Ψi

[
[ri(τ

+
k−1)− αi(τ

+
k−1)](τ

′

k,j − τ ′k−1,j)
]

(36)
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Fig. 2. Simulation result of system-centric and user-centric optimization

The unbiasedness of the IPA derivatives ∂Qi(θ)/∂θj and

∂Li(θ)/∂θj can be ensured by Assumption 1 and the fol-

lowing additional assumption.

Assumption 2. (a) For every θ ∈ Θ, w.p. 1, two events

cannot occur at exactly the same time, unless one event

induces the other, (b) W.p.1, no two processes {ri(t)},
{βi(t)}, i = 1, 2, have identical values during any open

subinterval of [0, T ].
We can then establish the following result whose proof is

omitted but may be found in [11].

Theorem 1. Under Assumptions 1-2, the IPA estimators

∂Qi(θ)/∂θj and ∂Li(θ)/∂θj , i, j = 1, 2, are unbiased esti-

mates of dE[Qi(θ)]/dθj and dE[Li(θ)]/dθj , respectively.

V. DES OPTIMIZATION AND SIMULATION EXAMPLES

Recall that the SFM is used to derive performance sensi-

tivity estimates that would otherwise not be possible for the

actual DES. Let JDEST (θ) be some performance function of

the DES and we seek to determine an optimal θ∗ to minimize

the JDEST (θ) through a standard stochastic approximation

algorithm [7] as in (11):

θn+1 = θn − ηnHn(θn, ω
DES
n ) (37)

where Hn(θn, ω
DES
n ) is an estimate of dJDEST (θ) /dθ at

θn which is unavailable. Instead, we use the IPA estimator

dJSFMT (θ)/dθ from the SFM. This requires identifying all

events defined in the SFM with observable events in the real

DES. A description of how this is accomplished can be found

in [11].

Figure 2 shows an example of applying our IPA estimates

and (37) in optimizing a two-class FCFS queueing system

(not its SFM counterpart). The actual objective function

shown compressed in two dimensions is obtained by exhaus-

tive simulations of this DES over all (θ1, θ2) pairs, averaging

over multiple sample paths. This gives (approximately) θ∗ =
(40, 40). The three trajectories labeled “System-centric” are

all results of implementing (37) using gradient estimates

obtained by applying the IPA algorithm on a single sample

path with different starting points. We can see that each

converges to a point sufficiently close to the “true” optimal,

illustrating the effectiveness of our method.

As mentioned in the introduction, an interesting aspect of a

multiclass system is that one can expect differences between

a user-centric and a system-centric optimization approach.

In system-centric optimization, we use (14) as the objective

function. In the user-centric optimization, class 1 and class

2 take turns in optimizing their own performance metric

Ji (θ) = γ1,iE[Qi(θi)]θi+γ2,iE [Li (θi)]. In this game, each

class has no information on the other’s performance and has

no control over the threshold of the other flow. Figure 2

shows the difference in these two optimization perspectives.

The three trajectories labeled “User-centric” correspond to

the same objective function as the system-centric approach

but under user-centric optimization. One can see that the

trajectories also converge to a common point, but the cost

is larger than the point under the system-centric perspective.

This gap actually implies the inefficiency of “selfish play”

in such a resource-sharing system, sometimes referred to as

“the price of anarchy”.

VI. CONCLUSIONS AND FUTURE WORK

The two-class SFM we have studied opens up a spectrum

of possibilites for studying systems with multiple user-

specific objectives and reveals new perturbation dynamics not

previously seen in SFMs. The IPA process remains relatively

simple to implement, although it is no longer possible to

sum it up in simple expressions as in single-class SFMs.

We are currently studying extensions to a serial network of

multiclass SFMs.
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