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Abstract— We revisit, in the context of Stochastic Flow
Models (SFMs), a classic scheduling problem for optimally
allocating a resource to multiple competing users. For the
two-user case, we establish the optimality of the well-known
cµ-rule for arbitrary stochastic processes using calculus of
variations arguments as well as an Infinitesimal Perturbation
Analysis (IPA) approach. The latter allows us to derive an
explicit sensitivity estimate of the cost function with respect to a
controllable parameter and to further study the problem when
the cost function is nonlinear, deriving simple distribution-free
cost sensitivity estimates and analyzing why the cµ-rule may
fail in this case.

I. INTRODUCTION

The classic prototypical stochastic scheduling problem
involves a single resource whose service capacity is to be
optimally shared by N competing users. Each user submits
tasks which may have to wait for service in the user’s queue,
normally on a First Come First Served (FCFS) basis. In
a queueing theory framework, this problem is modelled as
a system of N parallel queues, each with its own arrival
process, connected to a single server. The server processes
tasks from the nth queue with rate µn, n = 1, . . . , N , and
uses a policy to select the next queue to serve from. Each
task requires a random amount of time to be processed, but
the server may preempt a task by interrupting its processing
to serve a new task from some other queue. This basic model
applies to a large spectrum of applications in communication
networks, manufacturing, and computer processing.

The usual objective in the scheduling problem is to
minimize the overall average holding cost of tasks in the
system with cn denoting the cost per unit waiting time in
the nth queue. When the holding cost is a linear combination
of the number of tasks in the competing queues, the well-
known cµ-rule has been shown, under certain conditions, to
give the optimal allocation sequence. Following this rule,
the queues are ordered according to the value of the product
cnµn, from largest to smallest, and the server always selects
a task from the first queue (the one with largest cnµn value)
unless it is empty; in that case, the server selects the second
queue and so on. The optimality of the cµ-rule seems to
have been first suggested in [1] under a deterministic and
static setting, i.e., all tasks are present at time 0 with fixed
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service times. Relaxing these assumptions, Cox and Smith
[2] later proved the optimality of the cµ-rule for a multi-
class M/G/1 system. The cµ-rule is very attractive in that
it is essentially static, except for the knowledge of whether
a queue is empty or not. Thus, establishing its optimality
in the most general possible setting is a goal that has been
actively pursued through many years.

Using classical queueing models in a discrete time setting,
the cµ-rule was shown to be optimal for general arrival
processes and geometrically distributed service times in
[3] and [4]. There have since been various attempts to
extend these results. For example, it is shown in [5] that
for a discrete time G/G/1 model with a non-idling and
non-preemptive server the cµ-rule is still optimal. Along a
different direction, the scheduling problem above has been
studied using a fluid flow abstraction in both a deterministic
context [6], [7] and a stochastic setting where the optimality
of the cµ-rule can be obtained using heavy traffic (fluid limit)
arguments [8],[9],[10]. A “generalized” cµ-rule can then be
shown to be asymptotically optimal [11] not only for the
linear but also for convex cost objectives.

In this paper, we revisit the basic stochastic scheduling
problem using a Stochastic Fluid Model (SFM). Unlike a
deterministic fluid model or a stochastic model that makes
use of heavy traffic assumptions, an SFM treats the arrival
and service rates as stochastic processes of arbitrary gener-
ality (except for mild technical conditions), even under light
traffic. Clearly, finding “appropriate” rate processes to ap-
proximate the behavior of the system to any arbitrary degree
of accuracy is far from trivial. However, the emphasis in
using SFMs is not in deriving approximations of performance
measures of the underlying discrete event system, but rather
studying sample paths from which one can derive structural
properties and optimal policies. SFMs were introduced in
[12] to carry out Infinitesimal Perturbation Analysis (IPA) for
a queueing system with finite capacity to estimate derivatives
of performance measures such as workload and loss with
respect to controllable parameters and, therefore, solve per-
formance optimization problems using stochastic gradient-
based algorithms. In this case, the derivative estimates are
independent of the probability laws of the stochastic rate
processes and require minimal information from the observed
sample path as shown in [12]. Extensions to serial networks
[13], systems with feedback control mechanisms [14], and
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some multi-class models [15], [16], [17] have also been
obtained.

Our purpose in this paper is to take a first step in studying
general scheduling problems using SFMs. For the specific
scheduling problem described above, we view the arrival
processes as flows with arbitrary time-varying rates that
behave as random processes. On the processing side, we
associate a maximal rate µn with each flow class and control
its actual service rate un(t) so that

∑
n un(t)/µn ≤ 1. In

this paper, we restrict ourselves to the case of two classes.
Using simple calculus of variations arguments on an arbitrary
sample path of the SFM, we show that, if c1µ1 > c2µ2, the
optimal solution is the cµ-rule. We then obtain the same
result using IPA by deriving a sample derivatives of the
total holding cost metric with respect to a fixed parameter θ
such that u1(t) = µ1θ as long as queue 1 is not empty; we
show that if c1µ1 > c2µ2, this derivative is always negative,
thereby proving the optimality of the cµ-rule independent of
stochastic characteristics or traffic load.

Although this result is pleasing, it comes as no major
surprise since it merely formalizes the known fact that the
cµ-rule is a property of the underlying system dynamics and
not its stochastic characteristics (e.g., [6]). However, this
raises some interesting questions, such as “at what exact
point does the cµ-rule break down?”, “if not optimal, when
can it provide a good approximation of the optimal policy?”,
and “how do we proceed to solve problems where it no
longer applies and an optimal solution might depend on the
unknown stochastic characteristics of the model?” Thus,the
contributions of this paper are to (i) provide insight through
IPA into the properties of a sample path that enable the cµ-
rule to hold and obtain an explicit derivative estimator which
can be readily extended to more general scheduling prob-
lems, and (ii) consider an extension of the basic scheduling
problem where the cost function is nonlinear in the queue
contents.

In Section II of the paper, the basic scheduling problem
is formulated in a SFM setting and calculus of variations
methods are used to derive the cµ-rule on a sample path
basis. In Section III, IPA is carried out to derive the sample
derivative of the cost function with respect to a scheduling
policy parameter. In Section III, the monotonicity of the IPA
derivative is proved and, therefore, the optimality of the cµ-
rule. In Section IV, we study the case of nonlinear costs and
conclude with Section V where we outline ongoing work.

II. PROBLEM FORMULATION

In the context of SFM, the basic scheduling problem we
consider is depicted in Fig.1 which consists of a single
resource and two parallel queues competing for service.
The queues hold different types of fluids and are indexed
by n = 1, 2. The maximum rate at which the resource
processes fluid from the nth queue is denoted by µn. The
system involves a number of stochastic processes which all
are defined on a common probability space (Ω,F , P ). The
external inflow rate process to the nth queue is denoted by
{αn(t)} capturing the instantaneous rate of arriving tasks.

The process describing the service flow rate from the nth
queue to the resource at any time t is denoted by {un(t)}.
These flow rates are subject to the capacity constraint:

u1(t)
µ1

+
u2(t)
µ2

≤ 1 (1)

where the rate un(t) is controllable provided it also satisfies
0 ≤ un(t) ≤ µn. The outflow rate from the resource is
denoted by {β(t)}. Note that β(t) = u1(t) + u2(t) for all t.
Finally, the process describing the content of the nth queue is
denoted by {xn(t)}, where xn(t) ≥ 0. We will be studying
this SFM over a finite time interval [0, T ].

Fig. 1. Stochastic Fluid Model (SFM) for a scheduling problem.

The inflow rate processes {αn(t)}, n = 1, 2, are al-
lowed to be arbitrary except for the following condition.
However, all subsequent results are readily extendable to
piecewise continuously differentiable and bounded-variation
inflow rates.
Assumption 1. W.p.1, the inflow processes {αn(t)} are
continuously differentiable in [0, T ].

The queue content dynamics follow the one-sided differ-
ential equations, for n = 1, 2,

dxn(t)
dt+

=
{

0 xn(t) = 0, un(t) ≥ αn(t)
αn(t)− un(t) otherwise.

(2)
A typical sample path of the nth queue content is shown
in Fig. 2. There are two types of events associated with
this SFM, one which initiates a non-empty period (NEP)
at queue n and one that terminates it and initiates an empty
period (EP). Let ξn,k denote the kth time in the sample path
of queue n when this queue becomes non-empty. Similarly,
ηn,k denotes the kth transition time of queue n into an
EP. Accordingly, an EP is a maximal interval [ηn,k, ξn,k+1],
over which xn(t) = 0 and an NEP is a supremal interval
(ξn,k, ηn,k) with xn(t) > 0. Let Ln,k = ηn,k − ξn,k be the
length of the kth NEP of queue n in [0, T ].

Fig. 2. A typical sample path of the system

It follows from (2) that un(t) = αn(t) during an EP of the
nth queue, since the case un(t) > αn(t) would correspond
to the resource devoting more of its capacity than is needed
to meet the demand rate αn(t). Conversely, an NEP starts as
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soon as αn(t) > un(t); this may arise because the external
inflow rate exceeds the currently allocated service flow un(t)
or because the controllable flow un(t) is selected to be below
the current inflow rate.

The controllable service flow rate un(t) defines the
scheduling policy adopted in the system. We set un(t) =
µnθn(t) with θn(t) ∈ [0, 1] to allocate a fraction of the
maximal allowable service rate µn to the nth queue. This
fraction may depend on x1(t), x2(t), assuming they are
observable (this may not always be the case, as in a wireless
network where a channel is allocated to two upstream links
whose queues may not be known instantaneously). In the
sequel, we let θn(t) be time-varying but show that for the
specific class of optimal scheduling problems considered, it
is constant or at most switches between its feasible limits 0
and 1. Formally, we set:

u1(t) =
{

min{α1(t), µ1θ(t)}, x1(t) = 0,
µ1θ(t), x1(t) > 0. (3)

Thus, by (2), an event at time t such that x1(t) = 0 and
α1(t) > µ1θ(t) defines the start of an NEP at queue 1. Using
(1), u2(t) ≤ µ2(1 − u1(t)

µ1
). Therefore, if at time t queue 2

is empty and α2(t) ≤ µ2(1 − u1(t)
µ1

), then u2(t) = α2(t),
otherwise u2(t) = µ2(1− u1(t)

µ1
), i.e.,

u2(t) =

{
min{α2(t), µ2(1− u1(t)

µ1
)} x2(t) = 0,

µ2(1− u1(t)
µ1

) x2(t) > 0.
(4)

We consider a total holding cost performance objective
defined for any sample path denoted by ω ∈ Ω as

Q(ω) =
1
T

∫ T

0

2∑
n=1

cnxn(t, ω)dt (5)

where cn is a cost rate associated with queue n. Moreover,
for each queue n = 1, 2 we define a sample function
Qn(ω) =

∫ T
0
cnxn(t, ω)dt.

We can immediately observe that since xn(t, ω) = 0 during
EPs at queue n, we can rewrite this in the form

Qn(ω) =
Mn∑
k=1

∫ ηn,k

ξn,k

cnxn(t, ω)dt (6)

where Mn ≥ 0 is the number of NEPs for the nth queue,
n = 1, 2, including a possibly incomplete NEP at T .

The optimization problem we aim to solve is:

min
θ(t)∈[0,1]

E [Q(ω)] , (7)

subject to (1), (2), (3) and (4).

Let us first consider a specific sample path ω so that the
problem above involves the minimization of (5). Let the
right-hand-side of (2) be fn(x1, x2, θ), n = 1, 2. Then,
viewed as an optimal control problem, we may write the
Hamiltonian function after some regrouping as

H(θ, x1, x2, λ1, λ2) = c1x1 + c2x2 + λ1α1(t) + λ2α2(t)
− λ2µ2 − (µ1λ1 − µ2λ2)θ(t)

where λn(t), n = 1, 2, are the costate variables. We have
focused on the case where u1(t) = µ1θ(t) and x2(t) > 0;
otherwise the Hamiltonian is independent of one or both
costate functions. The remaining cases do not add any insight
and are omitted. By simple application of Pontryagin’s
principle, we can see that

θ∗(t) = sgn[µ1λ1(t)− µ2λ2(t)] (8)

where sgn[x] = 1 if x ≥ 0 and 0 otherwise. Thus, aside from
the case µ1λ1(t)−µ2λ2(t) = 0, when µ1λ1(t)−µ2λ2(t) > 0
the Hamiltonian is minimized by θ(t) = 1, otherwise it
is minimized by θ(t) = 0. Observe that this result holds
regardless of α1(t), α2(t) or the form of the integrand in (6)
as long as it does not depend on θ(t). This fact is consis-
tent with the analysis of a similar deterministic scheduling
problem in [6], where it is aptly pointed out that the nature
of an optimal policy in such problems is determined by the
underlying dynamics and not the stochastic characteristics.

One can subsequently proceed to study the costate equa-
tions given by

dλn
dt

= − ∂H
∂xn

= −cn, λn(T ) = 0 (9)

to determine the behavior of sgn[µ1λ1(t) − µ2λ2(t)] or
sgn[µ1λ1(t)]. It is easy to see that λ1(t) = c1(T − t) > 0
and λ2(t) = c2(T − t) > 0 for at least some interval (t, T ],
therefore, if c1µ1 > c2µ2 we get µ1λ1(t) − µ2λ2(t) > 0
for all t < T . In other words, as long as u1(t) = µ1θ(t)
according to (3), the queue 1 flow is served at its maximal
feasible rate µ1 and is, therefore, prioritized (unless it is
empty and α1(t) < µ1); this is precisely the cµ-rule.

Next, we proceed with an IPA approach that recovers
the same result. We set θ(t) = θ to be a fixed parameter
and analyze the sample derivative dQ/dθ. The behavior
of this derivative will show us whether θ∗ = 0 or 1 or
whether it switches under certain conditions. This approach
has the benefit of providing us with an explicit form of this
derivative which allows us to study solutions of problem
(7) over the class of policies parameterized by θ. While
for this problem we can show that the optimal solution is
the simple cµ-rule, it paves the way for considering more
general scheduling problems where one often resorts to such
parametric families of policies. We henceforth omit ω in
the expressions to simplify the notation. We also use θ as
argument in (4) through (6) and use xn(t; θ), n = 1, 2 to
stress their dependence on it; we sometimes keep this implicit
in ξn,k and ηn,k to save space.

III. INFINITESIMAL PERTURBATION ANALYSIS (IPA)
In the sequel, we denote the derivative of any function

g(t, θ) with respect to θ by g′(t; θ). Using this notation for
(6) we obtain

Q′n(θ) =
Mn∑
k=1

{
[η′n,kcnxn(ηn,k; θ)− ξ′n,kcnxn(ξn,k; θ)]

+
∫ ηn,k

ξn,k

cnx
′
n(t; θ)dt

}
.
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At the start and end of NEPs, xn(ξn,k; θ) = xn(ηn,k; θ) = 0.
The only possible exception is if ηn,Mn

= T , in which case
obviously η′n,Mn

= 0. Therefore, for n = 1, 2 we get

Q′n(θ) =
Mn∑
k=1

∫ ηn,k

ξn,k

cnx
′
n(t; θ)dt. (10)

Thus, the first step in derivation of Q′n(θ) is to find
x′n(t; θ) for t ∈ [ξn,k, ηn,k) over the index range. Let
fn(t; θ) = αn(t) − un(t; θ) be the net flow func-
tion for each queue. Then, for t ∈ [ξn,k, ηn,k) we
have xn(t; θ) =

∫ t
ξn,k

fn(τ ; θ)dτ . Consequently, we have

x′n(t; θ) = −ξ′n,k(θ)fn(ξn,k) +
∫ t
ξn,k

f ′n(τ ; θ)dτ . The first
term in this expression is nil thanks to the lemma bellow. In
the sequel, proofs are omitted due to space limitations.

Lemma 1. If ξn,k(θ), n = 1, 2 is the start time of an NEP
in a sample path of xn(t; θ), then ξ′n,k(θ)fn(ξn,k; θ) = 0.

Using Lemma 1, we can write

x′n(t; θ) =
∫ t

ξn,k

f ′n(τ ; θ)dτ, t ∈ [ξn,k ηn,k) (11)

and ξ′n,k(θ) is not needed in our analysis; however, we
will need η′n,k(θ). For the kth NEP of queue n, we have
xn(ηn,k; θ) =

∫ ηn,k

ξn,k
fn(τ ; θ)dτ = 0. Using (11) and Lemma

1, we obtain η′n,k(θ)fn(η−n,k; θ) + x′n(η−n,k; θ) = 0 where
fn(η−n,k; θ) = limt↑ηn,k

fn(t; θ) and x′n(η−n,k; θ) is simi-
larly defined. Note that, by (2), fn(η−n,k; θ) 6= 0 (in fact,
fn(η−n,k; θ) < 0 since an NEP ends at ηn,k) and we conclude
that

η′n,k(θ) =
−x′n(η−n,k; θ)

fn(η−n,k; θ)
, n = 1, 2, k = 1, . . . ,Mn (12)

In what follows we consider a typical NEP (ξn, ηn),
n = 1, 2, dropping the index k for simplicity. Regarding the
relative positioning of NEPs on the time line, there are six
possible cases that can arise as shown in Figs. 3(a) through
3(f) in which d is the length of an overlapping interval (if one
exists) between NEPs of two queues. The case where ξ1 = ξ2
can be accommodated within Cases 3 through 6. Moreover,
multiple NBPs of one queue in the NBP of another can be
constructed using superposition of these 6 cases. We consider
each of the cases in Figs. (3(a)) through (3(f)) and derive the
associated derivatives in (10).

A. Determining Q′1(θ)

Looking at (3), note that for all t ∈ [ξ1, η1) we have
u1(t; θ) = µ1θ, therefore f1(t; θ) = α1(t) − µ1θ and
f ′1(t; θ) = −µ1. Thus, using (11),

x′1(t; θ) = −µ1(t− ξ1), t ∈ [ξ1, η1). (13)

It follows that∫ η1

ξ1

c1x
′
1(t; θ)dt = −c1µ1

∫ η1

ξ1

(t−ξ1)dt = −c1µ1

2
(η1−ξ1)2

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Fig. 3. Relative positioning of NEPs for the two SFM queues.

and, using (10) and recalling that L1,k = η1,k − ξn,k, gives

Q′1(θ) = −c1µ1

2

M1∑
k=1

L2
1,k. (14)

It is worth noting that Q′1(θ) ≤ 0, as expected.

B. Determining Q′2(θ)

Based on the SFM dynamics (2) and service flow rates
(3),(4), f2(t; θ) can be expressed as

f2(t; θ) =


α2(t)− µ2(1− θ) if x1(t; θ) > 0,

x2(t; θ) > 0,
α2(t)− µ2(1− α1(t)

µ1
) if x1(t; θ) = 0,

x2(t; θ) > 0,
0 otherwise,

(15)
where the first row has used the fact that when x1(t) > 0,
u1(t) = µ1θ. Upon differentiation with respect to θ, we get

f ′2(t; θ) =
{
µ2 if x1(t; θ) > 0, x2(t; θ) > 0,
0 otherwise. (16)

Referring to Figs. (3(a)) through (3(f)), note that in Case 1,
Q2(θ) = 0, hence Q′2(θ) = 0, and in Case 2, (10) and (16)
imply also that Q′2(θ) = 0. For other cases Q′2(θ) 6= 0.

Let us consider case 3, in particular, each of the intervals
[ξ1, ξ2), [ξ2, η1), and [η1, η2), respectively.
a) t ∈ [ξ1, ξ2) : In this case x2(t) = 0, therefore,

x′2(t) = 0, t ∈ [ξ1, ξ2). (17)
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b) t ∈ [ξ2, η1) : Using (11) and (16) we obtain

x′2(t) =
∫ t

ξ2

µ2dτ = µ2(t− ξ2), t ∈ [ξ2, η1). (18)

c) t ∈ [η1, η2) : We have

x2(t) =
∫ η1

ξ2

f2(τ ; θ)dτ +
∫ t

η1

f2(τ ; θ)dτ.

By (15), f2(τ ; θ) = α2(τ)− µ2(1− θ) for τ ∈ [ξ2, η1) and
f2(τ ; θ) = α2(τ)− µ2(1− α1(τ)

µ1
) for τ ∈ [η1, t). Therefore,

differentiating with respect to θ and using Lemma 1 we get:

x′2(t) = µ2(η1 − ξ2) + η′1

[
µ2

µ1
(µ1θ − α1(η1))

]
.

Using (12), we have η′1 = µ1(η1−ξ1)
α1(η1)−µ1θ

Following some
algebraic manipulations, we obtain:

x′2(t; θ) = −µ2(ξ2 − ξ1), t ∈ [η1, η2) (19)

Combining the results (17), (18), and (19) and using (10),
Q′2(θ) = c2µ2

2 d2−c2µ2∆ where ∆ = (ξ2−ξ1)(η2−η1) > 0
is called drift and d = (η1 − ξ2).

The analysis in the remaining three cases is similar.
Therefore, omitting details, in all cases: Q′2(θ) = c2µ2

2 d2

with d = η2 − ξ1, d = η1 − ξ1 and d = η2 − ξ2 for cases
4, 5 and 6, respectively. In summary, Q′2(θ) = c2µ2

2 d2 > 0
with the exception of Case 3 in which the final result has an
extra negative term. It is also easy to see that every sample
path of the SFM over [0, T ] can be partitioned into intervals
that are either EPs or NEPs that fall into one of the six cases
in Figs. 3(a) through 3(f). To obtain a general expression for
Q′2(θ), let the jth NEP of queue 2 include Dj overlapping
intervals with lengths dj,k, k = 1, . . . , Dj . Let

j∗ = arg max
i=1,2,...

{i : ξ1,i ≤ ξ2,j}

if it exists, i.e., (ξ1,j∗ , η1,j∗) is the last NEP of queue 1 which
starts before (ξ2,j , η2,j). Define

∆j = (ξ2,j − ξ1,j∗)(η2,j − η1,j∗) (20)

where ξ2,j−ξ1,j∗ ≥ 0 by the definition of j∗ and observe that
∆+
j (where a+ = max{0, a}) is precisely the term associated

with d2
j,k whenever Case 3 arises. Then, collecting all the

results above for the six cases, we get

Q′2(θ) =
c2µ2

2

M2∑
j=1


Dj∑
k=1

d2
j,k − 2∆+

j

 .

Alternatively, all overlapping intervals can also be indexed
according to NEPs of queue 1. Thus, let the ith NEP of queue
1 include Di overlapping intervals with lengths di,k, k =
1, . . . , Di, and define ∆i = (ξ2,i∗ − ξ1,i)(η2,i∗ − η1,i) to be
the obvious analog of ∆j above, with i∗ being the index
of the last NEP of queue 2 which starts within (ξ1,i, η1,i).
Then, the last equation can also be written in the form

Q′2(θ) =
c2µ2

2

M1∑
i=1

{
Di∑
k=1

d2
i,k − 2∆+

i

}
. (21)

Combining (14), (21) and letting Di be the number of
overlapping intervals in queue 1’s ith NBP, we obtain:

Q′(θ) =
1
T

M1∑
i=1

−c1µ1L
2
1,i +

∑Di

k=1 c2µ2d
2
i,k

2
− c2µ2∆+

i .

(22)
We can now establish our main result as follows.

Theorem 1. If c1µ1 ≥ c2µ2, then Q′(θ) ≤ 0. Moreover,
if c1µ1 > c2µ2, then Q′(θ) < 0.

The optimality of the cµ-rule in this case is a direct
implication of the theorem. If c1µ1 > c2µ2, then Q′(θ) < 0
and the minimum of Q(θ) is attained at θ∗ = 1, the
maximum feasible value of the parameter θ.

IV. EXTENSION TO NONLINEAR COSTS

In this section, we replace
∑2
n=1 cnxn(t, ω) in (5)

by q(x1(t;ω), x2(t;ω)) = c1g1(x1(t;ω)) + c2g2(x2(t;ω))
where g1(·) and g2(·) are nonlinear functions such that,
gn(0) = 0 and dgn(xn)

dxn
exists and is positive for 0 ≤

xn < ∞ and n = 1, 2. Determining the optimal switching
structure and times requires explicitly solving a multipoint
boundary value problem which is notoriously hard to solve.
To use the IPA approach instead, consider the cost function
Q(θ) = 1

T

∫ T
0

[c1g1(x1(t; θ)) + c2g2(x2(t; θ))]dt. We can
interpret θ as the average amount of time during which
θ(t) = 1 in a schedule which switches between 1 and 0,
or, in the case of the actual underlying queueing system,
as the probability of allocating the resource to queue 1. If,
for example, we find that θ∗ is close to 1 when c1µ1 >
c2µ2, we can conclude that the the cµ-rule is near-optimal.
Now let Qn(θ) =

∫ T
0
cngn(xn(t; θ))dt for n = 1, 2 and

hn(xn(t; θ)) = dgn(xn(t;θ))
dxn

where we assume this derivative
is a known function. The sample derivative, then is

Q′n(θ) =
Mn∑
i=1

∫ ηn,i

ξn,i

cnx
′
n(t; θ)hn(xn(t; θ))dt. (23)

Starting with n = 1, we have x′1(t; θ) = −µ1(t − ξ1) by
(13). Recall that the actual sample paths we can observe
are those of the underlying queueing system so that an
NEP [ξ1,i, η1,i) can be partitioned into intervals [ei,p−1, ei,p),
with p = 1, . . . , Ni, ei,0 = ξ1,i and ei,Ni

= η1,i, defined
by all queue 1 task arrival and departure events. In other
words, in the pth interval [ei,p−1, ei,p) the queue content
is fixed and given by xi,p ∈ {1, 2, . . .} and the associated
values of h1(xi,p) can be pre-computed for them. Using this
information in (23) and after simplifying terms, we get

Q′1(θ) = −c1µ1

M1∑
i=1

Ni∑
p=1

h1(xi,p)ai,p (bi,p − ξ1,i) (24)

where ai,p = ei,p+1 − ei,p and bi,p = ei,p+1+ei,p

2 .
Observe that this IPA derivative, with pre-computed values
h1(1), h1(2), . . ., is evaluated with minimal computation. It
depends only on the event times ei,0, . . . , ei,Ni

within each
of the M1 NEPs of queue 1. Moreover, Q′1(θ) does not
depend on the inflow rates or any probabilistic parameter
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of the model and provides an extremely simple sensitivity
estimate to be used in standard gradient-based schemes.

The derivation of Q′2(θ) is similar, but we first need
to partition the NEP of queue 2 into overlapping intervals
[νj,k, υj,k), k = 1, . . . , Dj (if any exist) and then partition
the kth such interval into intervals [ek,p−1, ek,p), based on
queue 2 task arrival and departure events at times ek,p,
p = 1, . . . , Nj,k. Omitting details, we get

Q′2(θ) = c2µ2

M2∑
j=1

Dj∑
k=1

Nj,k∑
p=1

h2(xk,p)ak,p(bk,p − νj,k)−∆+
j

where ak,p = ek,p+1− ek,p, bk,p = ek,p+1+ek,p

2 , and ∆j was
defined in (20).

Finally, let us take a closer look at why and how the cµ-
rule may fail when the holding cost function is nonlinear.
For n = 1, using (13) and integration by parts, (23) gives

Q′1(θ) = −c1µ1

M1∑
i=1

{[(
t2

2
− ξ1,it

)
h1(x1(t; θ))

]η1,i

ξ1,i

−
∫ η1,i

ξ1,i

(
t2

2
− ξ1,it

)
dh1(x1(t; θ))

dt
dt

}
. (25)

Applying the mean value theorem for integration [18] and
doing some algebraic manipulations we get

Q′1(θ) =
−c1µ1

2

M1∑
i=1

L2
1,ih1(x1(σi; θ))

for some σi ∈ [ξ1,i, η1,i]. The same method can be applied
to find Q′2(θ). We state here the final result for Q′(θ):

Q′(θ) =
1

2T

M1∑
i=1

{
− c1µ1L

2
1,ih1(x1(σi; θ))

+
Di∑
k=1

c2µ2d
2
i,kh2(x2(τi,k; θ))− 2c2µ2∆+

i

}
(26)

for some τi,k in an overlapping interval of length di,k and

∆i = (ξ2,i∗ − ξ1,i)
∫ η2,i∗

η1,i

h2(x2(t; θ))dt

where i∗ is defined as before. One can easily see that when
gn(xn(t; θ)) = xn(t; θ) for n = 1, 2, (26) reduces to (22)
since hn(t; θ) = 1. A closer look at (26) suggests that when∑M1
i=1

[
−L2

1,ih1(x1(σi; θ)) +
∑Di

k=1 d
2
i,kh2(x2(τi,k; θ))

]
is

large enough, even having c1µ1 > c2µ2 cannot guarantee
the negativity of Q′(θ) thereby violating the cµ-rule. Such
a situation may arise when h2(τi,k; θ) becomes very large
for some non-overlapping interval. This typically may occur
when θ = 1 since it may cause queue 2 to build-up a large
content before queue 1 becomes non-empty (consider Fig.
3 for θ = 1), thereby having x2(τi,k; θ) � x1(σi; θ) which
may lead to having h1(x1(σi; θ)) � h2(τi,k; θ) for some
choices of h1(.) and h2(.). Aside from this, it is worth
noting that operating at θ = 1 makes the possibility of
having a drift smaller which can even make the probability
of Q′(θ) > 0 larger.

V. CONCLUSIONS

We have considered a classic scheduling problem with
a single resource shared by two competing queues in the
context of SFMs and shown that the cµ-rule is optimal
using simple calculus of variations arguments on a sample
path basis as well as through IPA, which also provides
explicit sample derivatives of the cost function with respect
to a controllable parameter in the scheduling policy. When
the cost function is nonlinear in the queue contents, IPA
provides a simple, distribution-free estimate of the cost
function with respect to a controllable parameter. Further, it
provides insights to why the cµ-rule no longer applies. The
use of SFMs and IPA opens up a spectrum of possibilities
for studying complex stochastic scheduling problems without
having to resort to explicit probabilistic models.
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