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Abstract—We consider problems where multiple agents must
cooperate to control their individual state so as to optimize
a common objective while communicating with each other to
exchange state information. Since communication costs can be
significant, especially when the agents are wireless devices with
limited energy, we seek conditions under which communication
of state information among nodes is asynchronous and can be
minimized while still ensuring that the optimization process
converges. We propose a scheme that limits communication to
instants when some state estimation error function at a node
exceeds a threshold and prove that, under certain conditions,
such convergence is guaranteed. We apply this approach to a
sensor network coverage control problem where the objective
is to maximize the probability of detecting events occurring in
a given region.

Keywords: Cooperative Control, Distributed Systems,

Distributed Optimization, Sensor Networks

I. INTRODUCTION

The need for distributed optimization arises in settings

which involve multiple controllable agents cooperating to-

ward a common objective without a central controller to

coordinate their actions. The cooperating agents define a

dynamic system which may be thought of as a network with

each agent corresponding to a node maintaining its own state

si, i = 1, . . . , N . The goal of each node is to control its state

so as to optimize some system-wide objective expressed as

a function of s = [s1, . . . , sN ] and possibly the state of the

environment. Clearly, to achieve such a goal, the nodes must

share, at least partially, their state information. However, this

may require a large amount of information Âow. Moreover,

we are interested in systems with wirelessly communicating

nodes which are frequently small, inexpensive devices with

limited resources. Aside from energy required to move (if

nodes are mobile), communication is known to be by far the

largest consumer of the limited energy of a node [1], com-

pared to other functions such as sensing and computation.

Therefore, it is crucial to reduce communication between

nodes to the minimum possible. This in turn imposes a

constraint on the optimization task performed by each node,

since it requires that actions be taken without full knowledge

of other nodes’ states. Standard synchronization schemes

require that nodes periodically exchange state information

which is clearly inefficient and, in fact, unnecessary since
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often the state of a node may not have changed much or

may have only changed in a predictable way. This motivates

us to seek asynchronous optimization mechanisms in which

a node communicates with others only when it considers it

indispensable; in other words, each node tries to minimize

the cost of communication by transmitting state information

only under certain conditions and only as a last resort. This

poses questions such as “what should the conditions be for

a node to take such communication actions?” and “under

what conditions, if any, can we guarantee that the resulting

optimization scheme possesses desirable properties such as

convergence to an optimum?”

This general setting applies to problems where the nodes

may be vehicles controlling their locations and seeking to

maintain some desirable formation [2], [3] while following

a given trajectory. The system may also be a sensor network

whose nodes must be placed so as to achieve objectives such

as maximizing the probability of detecting events in a given

region or maintaining a desired distance from data sources

that ensures high-quality monitoring [4],[5],[6],[7],[8]; this is

often referred to as a “coverage control” problem. In some

cases, the state of a node may not be its location but rather

its perception of the environment which changes based on

data directly collected by that node or communicated to it

by other nodes; consensus problems fall in this category

[9],[10],[11],[12].

In this paper, we consider a system viewed as a network

of N cooperating nodes. The system’s goal is to minimize

an objective function H(s) known to all nodes with every

node controlling its individual state si ∈ Rni , i = 1, . . . ,N .

The control mechanism used by the ith node is a state update

scheme of the form

si (k + 1) = si (k) + αidi (s (k)) , k = 0, 1, . . . (1)

where αi is a constant positive step size and di (s (k))
is an update direction evaluated at the kth update event;

we often use di (s (k)) = −∇iH (s (k)) where ∇H (s (k))
is the gradient of H (s (k)) and ∇iH (s (k)) ∈ R

ni . In

general, each state is characterized by dynamics of the form

ṡi(t) = fi(si, ui, t) where ui ∈ R
l is a control vector;

however, we do not consider such dynamics and treat si as a
directly controllable vector. Thus, in (1) we view si (k + 1)
as the desired state determined at the kth update event and

assume that the control ui is capable of reaching si (k + 1)
from si (k) within a time interval much shorter than the time
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between update events. A key difficulty is that s(k) is in

fact not fully known to node i. Thus, di (s (k)) has to be

evaluated by synchronizing all nodes to provide their states

to node i at the time its kth update event takes place. This is

extremely costly in terms of communication and assumes no

delays so that the state information is accurate. Alternatively,

node i can evaluate di (s (k)) using estimates of sj for all

j �= i relying on prior information from node j and possibly

knowledge of its dynamics. Our concern is with determining

when a node j may communicate its state to other nodes

through what we term communication events. We note that

such communication events occur at different times for each

node, as do each node’s update events, so that the resulting

mechanism is fully asynchronous.

We propose a scheme through which a node j maintains

an error function of its actual state and its estimated state

by other nodes (which node j can evaluate). The node then

transmits its actual state at time t only if this error function

at t exceeds a given threshold δj . In other words, a node

does not incur any communication cost unless it detects that

the deviation of its state from the other nodes’ estimate of its

state becomes too large; this may happen due to the normal

state update (1) accumulating noise or through unexpected

state changes (e.g., if a mobile node encounters an obstacle).

We prove that by varying this threshold appropriately and

under certain rather mild technical conditions the resulting

optimization scheme converges and leads to a minimum of

H(s); this minimum may be local or global depending on

the nature of the objective function. Our analysis is based

on the distributed optimization framework in [13], but our

emphasis is on controlling the asynchronous occurrence of

communication events through the threshold-based scheme

outlined above in a way that drastically reduces the number

of such events while still guaranteeing convergence.

Further, we apply this approach to a coverage control prob-

lem we have studied in prior work [8] in which a distributed

optimization scheme based on (1) was used. However, it was

assumed in [8] that all nodes have perfect state information

by synchronizing update events with communication events

for all nodes. This imposed significant communication costs.

Here, we relax this synchronization requirement and limit

communication events to occur according to the policy

described above. We demonstrate that convergence to the

optimum is attained with only a fraction of the original

communication costs.

The remainder of the paper is organized as follows. Sec-

tion II describes our asynchronous distributed optimization

framework and the proposed scheme for communication

events. The convergence analysis is presented in Section

III. In Section IV we show how our approach applies to

a coverage control problem for sensor networks and we

conclude with Section V.

II. ASYNCHRONOUS DISTRIBUTED OPTIMIZATION

FRAMEWORK

In the framework of N cooperating nodes that seek to op-

timize a common objective function, there are two processes
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Fig. 1. State update and communication processes for two nodes.

associated with each node: a state update process and a state

communication process. We begin with a discussion of the

state update process.

Let tk, k = 1, 2, . . ., denote the time when any one node

performs a state update, i.e., it takes an action based on (1).

We impose no constraint on when precisely such an update

event occurs at a node and allow it to be periodic or accord-

ing to some node-based policy. However, we will assume

that every node performs an update with sufficient frequency

relative to the updates of other nodes (this assumption will

be stated precisely later).

Let Ci be the set of indices in {tk} corresponding to update
events at node i. As an example, in Fig. 1 we have C1 =
{1, 4, 5} , and C2 = {2, 3, 6} .We assume that di (s (k)) = 0
for all k /∈ Ci, i.e.,

si (k + 1) = si (k) if k /∈ Ci

We refer to any state update at such k /∈ Ci as a null step at

node i.
Next, let us discuss the state communication process. Let

τ jn be the nth time when node j broadcasts its true state

to all other nodes, n = 1, 2, . . . and τ j0 = 0. Depending
on the network connectivity at that time, it is possible that

only a subset of nodes is reached. We assume that at all

times the state information broadcast by node j can reach

any other node with negligible communication delay either

directly or indirectly (in the latter case, through a sequence of

transmissions), i.e., we assume that the underlying network

is connected. Consider a state update time tk with k ∈ Ci.
We are interested in the most recent communication event

from a node j �= i and define

τ j(k) = max{τ jn : τ jn < tk, n = 1, 2, . . .} (2)

as the time of the most recent communication event at node

j prior to a state update event at tk. As an example, in Fig.

1 we see that node 1 communicates its state to node 2 twice
in the interval (t2, t3); in this case, τ1(3) = τ12 . However, no
further communication event takes place from node 1 until

after the next state update event at node 2 at time t6, so that

τ1(6) = τ1(3) = τ12 . Regarding the policy used by node j
to determine its communication events, we shall discuss this

issue later in this section but emphasize that it is in no way

constrained to be synchronized with update events or with

the communication events of any other node.

In order to differentiate between a node state at any time

t and its value at the specific update times tk, k = 0, 1, . . .,
we use xi(t) to denote the former and set

si (k) = xi(tk)
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Thus, the state of node j communicated to other nodes at

time τ j(k) is written as xj(τ
j(k)).

Returning to the state update process, consider some tk
with k ∈ Ci, and let si (k) be a vector with node i’s estimates

of all node states at that time, i.e., an estimate of s (k). There
are various ways for node i to estimate the state sj of some

j �= i. The simplest is to use the most recent state information

received at time τ j(k) as defined in (2), i.e.,

sij(k) = xj(τ
j(k)) (3)

Alternatively, node i may use a linear estimate of the form

sij (k) = xj(τ
j(k)) +

tk − τ j(k)
∆j

· αi · dj
(
xj(τ

j(k))
)

(4)

where ∆j is an estimate of the average time between state

updates at node j (e.g., a known constant if node j performs

periodic updates) and dj
(
xj(τ

j(k))
)
is the update direction

communicated by node j at time τ j(k) along with its state.

Note that [tk − τj(k)]/∆j is an estimate of the number of

state updates at j since its last communication event. More

generally, if the precise state dynamics of j are known to

i, then i can evaluate sij (k) using this information with

initial condition xj(τ
j(k)). In this case, the estimate is error-

free except for noise that may have affected the actual state

evolution of node j in the interval [τ j(k), tk].
Now let us consider what criterion a node i might use

in determining its communication events, recalling that our

objective is to reduce communication costs. Certainly, if

node i’s state remains unchanged, there is no reason to

communicate it. Moreover, if node i knows that node j uses a
specific method to estimate its state, then node i can evaluate

that estimate and hence the error in it at any time. If xji (t)
is the estimate of xi(t) evaluated by node j �= i at time t,
we can define an estimation error function g(xi (t) , x

j
i (t)),

which measures the quality of the state estimate of node i.
We require that g(xi (t) , x

j
i (t)) is continuous and satisfies

g(xi (t) , x
j
i (t)) = 0, if xi (t) = x

j
i (t) (5)

Examples of g(xi (t) , x
j
i (t)) include ‖xi (t)− x

j
i (t) ‖1 and

‖xi (t) − xji (t) ‖2. Let δi (k) be an error threshold, deter-

mined by node i after the kth state update event such that

k ∈ Ci. Thus, δi (k) = δi (k − 1) if k /∈ Ci. Let k̃it be the

index of the most recent state update time of node i up to t

k̃it = max
{
n : n ∈ Ci, tn ≤ t

}

If different nodes use different means to estimate i’s state,

then generally xji (t) �= xki (t) for nodes j �= k and

communication may be limited to a node-to-node process.

Let τ ijn be the nth time when node i sends its true state

to node j, n = 1, 2, . . ., i.e., xji (τ
ij
n ) = xi(τ

ij
n ) assuming

negligible communication delay. Let us also set τ ij0 = 0 for

all i, j. Then, the communication event policy at node i with
respect to node j is determined by

τ ijn = inf
{
t : g(xi (t) , x

j
i (t)) = δi(k̃

i
t), t > τ

ij
n−1

}
(6)

If, on the other hand, all nodes use the exact same estimation

method, then we may set x̂i(t) = xji (t) for all j �= i and

replace τ ijn in (6) by τ in. In other words, node i communicates

its state to all other nodes only when it detects that its true

state deviates from the other nodes’ estimate of it by at least

the threshold δi(k̃
i
t). In view of (5)-(6), we have, for all i, j, t,

g(xi (t) , x
j
i (t)) ≤ δi(k̃it) (7)

Next, we discuss the way in which the threshold δi (k)
should be selected. The basic idea is to use a large value at

the initial stages of the optimization process and later reduce

it to ultimately ensure convergence. One of the difficulties is

in selecting an appropriate initial value for δi (k) which, if
too large, may prevent any communication. The approach we

follow is to control δi (k) in a manner which is proportional

to
∥∥di

(
si (k)

)∥∥
2
, the Euclidean norm of the update direction

at the kth update event henceforth denoted by ‖·‖. Thus, let

δi (k) =

{
Kδ
∥∥di

(
si (k)

)∥∥

δi (k − 1)
if k ∈ Ci
otherwise

(8)

where Kδ is a positive constant. We also impose an initial

condition such that

δi (0) = Kδ
∥∥di

(
si (0)

)∥∥ , i = 1, . . . , N (9)

where sij(0) = xj(0). Clearly, the computation in (8)

requires only local information.

III. CONVERGENCE ANALYSIS

In this section, we study the convergence properties of

the asynchronous distributed state update scheme, for k =
0, 1, . . . ,

si (k + 1) = si (k) + αdi
(
si (k)

)
(10)

used by nodes i = 1, . . . , N , where di
(
si (k)

)
is an update

direction which satisfies di
(
si (k)

)
= 0 for all k /∈ Cj . For

simplicity, a common step size α is used, but each node

may easily adjust its step size by incorporating a scaling

factor into its own di
(
si (k)

)
. Recall that si(k) is the state

estimate vector evaluated by node i at the kth update event

using the most recent state updates from other nodes at times

τ j(k) defined by (2). We will follow the framework in [13].

The distinctive feature in our analysis is the presence of

the controllable state communication process defined by (6),

(8) and (9) which imposes a requirement on the constant

Kδ in order to guarantee convergence. Further, our analysis

gives us means to select this constant in conjunction with

the step size parameter α in (10) in a way that can ensure

the minimum number of communication events while still

guaranteeing convergence.

We begin with a number of assumptions, most of which

are the ones commonly used in the analysis of distributed

asynchronous algorithms [13].

Assumption 1. There exists a positive integer B such that

for every i = 1, . . . , N and k ≥ 0 at least one of the elements

of the set {k −B + 1, k −B + 2, ..., k} belongs to Ci.
This assumption imposes a bound on the state update

frequency of every node. It does not specify a bound in time

units but rather ensures that each node updates its state at

least once during a period in which B state update events
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take place. We point out that an update event time tk may

correspond to more than one nodes performing updates.

Assumption 2. The objective function H (s), where s ∈
R
m, m =

∑N
i=1 ni, satisfies the following:

(a) H (s) ≥ 0 for all s ∈ Rm
(b) H (·) is continuously differentiable and ∇H (·) is Lip-

schitz continuous, i.e., there exists a constant K1 such that

for all x,y ∈ Rm, ‖∇H (x)−∇H (y)‖ ≤ K1 ‖x− y‖ .
In what follows, we shall take all vectors to be col-

umn vectors and use ′ to denote a transpose. Let d(k) =
[d1(s

i (k))′, . . . , dN(s
i (k))′]′. For simplicity, we will hence-

forth write di (k) instead of di(s
i (k)).

Assumption 3. There exist positive constants K2 and K3

such that for all i = 1, . . . , N and k ∈ Ci, we have

(a) di (k)
′∇iH

(
si (k)

)
≤ −‖di (k)‖2 /K3

(b) K2
∥∥∇iH

(
si (k)

)∥∥ ≤ ‖di (k)‖
Here ∇iH

(
si (k)

)
denotes a vector with dimension ni.

Its jth component, denoted by ∇i,jH
(
si (k)

)
, is the partial

derivative of H with respect to the jth component of si.
This assumption is very mild and is immediately satisfied

with K2 = K3 = 1 when we use an update direction given

by di (k) = −∇iH
(
si (k)

)
.

Assumption 4. There exists a positive constants K4

such that the error function satisfies ‖xi (t) − xji (t) ‖ ≤
K4g(xi (t) , x

j
i (t)), for all i, j, t.

In the common case where g(xi (t) , x
j
i (t)) = ‖xi (t) −

xji (t) ‖, this is obviously satisfied with K4 = 1.
Theorem 1: Under Assumptions 1-4 and the state update

scheme (10), if the error threshold δi (k) controlling com-

munication events is set by (8)-(9), then there exist positive

constants α and Kδ such that limk→∞∇H (s (k)) = 0.
The proof of Theorem 1 can be found in [14]. We

will present some key steps of the proof here. First, we

apply the “descent lemma” (Prop. A.32 in [13]) and get

H (s (k + 1)) ≤ H (s (k)) + α
∑N
i=1 di (k)

′∇iH (s (k)) +
K1

2 α
2 ‖d (k)‖2. After using the conditions in the assumptions

and policy (8), we obtain the following inequality

H (s (0)) ≥ (11)

α

(
1

K3
− K1

2
α− (1 +B)

2
K1K4Kδ

√
m

) k∑

r=0

‖d (r)‖2

We can always select positive α and Kδ such that 1/K3 −
K1α/2 − (1 +B)K1K4Kδ

√
m/2 > 0. Consequently, we

have:
∞∑

r=0

‖d (r)‖2 ≤ H (s (0))

α
(
1
K3

− K1

2 α−
(1+B)
2 K1K4Kδ

√
m
) <∞

and finally limk→∞ ‖d (k)‖ = 0
Corollary 1. If 0 < α < 2/K1K3, then

Kδ <
1

(1 +B)K4
√
m

(
2

K1K3
− α

)
(12)

guarantees that limk→∞∇H (s (k)) = 0.
Proof: This follows directly from (11) by ensuring that the

term 1/K3−K1α/2−(1 +B)K1K4Kδ
√
m/2 is positive.�

Note that (12) provides an upper bound of Kδ that

guarantees convergence and, therefore, the smallest possible

number of communication events under the conditions of

Theorem 1. Obviously, there may be larger values of Kδ

under which convergence is still possible.

As already mentioned, we often set di
(
si (k)

)
=

−∇iH
(
si (k)

)
in (10) and use g(xi (t) , x

j
i (t)) = ‖xi (t)−

xji (t) ‖, in which case Assumption 3 is satisfied with K2 =
K3 = 1 and Assumption 4 with K4 = 1. It follows that the
choice of α is α < 2/K1 and (12) leads to a Kδ arbitrarily

close from below to (2/K1 − α) [(1 + B)
√
m]−1. Observe

that this value is inversely proportional to
√
m =

√
N if

node states are scalar. Thus, large networks require a smaller

value of Kδ, implying that convergence is less tolerant

to a node’s state estimates evaluated by other nodes and

communication needs to be more frequent. For vector node

states the same is true since m =
∑N
i=1 ni. Along the same

lines, note that Kδ is inversely proportional to B, which
means that when there is a larger difference in the state

update frequency between the fastest node and the slowest

node (larger B), more communication is necessary in order

to preserve convergence. Finally, smaller step size α (slower

change of states) allows us to choose a larger Kδ, which

means greater tolerance to estimation error.

IV. ASYNCHRONOUS DISTRIBUTED COVERAGE

CONTROL

In this section, we apply the proposed asynchronous

distributed framework to the coverage control problem en-

countered when a sensor network is called upon to determine

the optimal positions of sensor nodes in order to maximize

the probability of detecting events occurring in a given two-

dimensional mission space.

A. Problem Formulation

Here we follow the coverage control problem formulation

in [8] and brieÂy review it. We define an event density

function R (x) over the mission space Ω ⊂ R
2, which

captures the frequency of random event occurrences at some

point x ∈ Ω. R (x) satisfies R (x) ≥ 0 for all x ∈ Ω and∫
Ω
R (x) dx < ∞. We assume that when an event takes

place, it will emit some signal which may be observed by

some sensor nodes. The cooperative system consists of N
mobile sensor nodes deployed into Ω to detect the random

events. Their location is denoted by a 2N -dimensional vector

s = (s1, ..., sN) .
The probability that sensor node i detects an event oc-

curring at x ∈ Ω (assuming a clear line-of-sight between

them), denoted by pi (x, si), is a monotonically decreasing

differentiable function of ‖x− si‖ , the Euclidean distance

between the event and the sensor. Since multiple sensor

nodes are deployed to cover the mission space, the joint

probability that an event occurring at x is detected, denoted

by P (x, s), is given by

P (x, s) = 1−
N∏

i=1

[1− pi (x, si)]
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and the optimization problem of interest is

max
s

H (s) =

∫

Ω

R (x)P (x, s) dx

in which we use the locations of the sensor nodes as decision

variables to maximize the probability of event detection in

Ω. A synchronous gradient-based solution was obtained in

[8] in which the next way point on the ith mobile sensor’s

trajectory is determined through

si (k + 1) = si (k) + α
∂H (s)

∂si
, k = 0, 1, . . . (13)

The gradient can be evaluated by

∂H (s)

∂si
=
∫

Ωi

R(x)
∏

k∈Bi

[1− pk(x, sk)]
dpi (x, si)

ddi(x)

si − x
di(x)

dx

(14)

where di (x) ≡ ‖x− si‖ and Ωi = {x : di(x) ≤ D} is the

node i’s region of coverage where D denotes the sensing

radius of node i. In addition, Bi = {k : ‖si − sk‖ < 2D, k =
1, . . . , N, k �= i} is the set of neighbor nodes of i.
The state update rule (13) allows a fully distributed imple-

mentation based on local information only. This eliminates

the communication burden of transferring information to and

from a central controller and the vulnerability of the whole

system which would be entirely dependent on this controller.

However, (14) shows that node i needs the exact locations

of all nodes in Bi in order to carry out (13) in a state

update. As already mentioned, the communication involved

in such state synchronization has a high energy cost which

is often unnecessary because the locations of neighboring

nodes may be accurately estimated due to minor changes in

their locations or update directions (see (3) and (4)).

Next, we will apply the asynchronous method developed

above to this problem and compare the results with the syn-

chronous approach in terms of communication cost, perfor-

mance, and convergence behavior. The asynchronous method

is also applied to a nonsmooth version of the coverage

control problem recently developed in [15] when the mission

space contains obstacles.

B. Asynchronous vs Synchronous Coverage Control

We present numerical results based on simulations of the

coverage control setting that may be found in an interactive

Java-based simulation environment (along with instructions)

at http://codescolor.bu.edu.We compare three versions of the

coverage control solution:

1. Synchronous iterations where all nodes perform state

updates using state information from all other nodes.

2. Asynchronous iterations performed by node i with fixed

error threshold δi (k) , i.e., δi (k) = δi for all k, where δi is
a positive constant.

3. Asynchronous iterations performed by node i using (8).

The coverage control problem considered involves four

nodes deployed into a rectangular mission space with uni-

form event density from the lower left corner. All nodes

update their states at approximately the same frequency
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algorithms
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Fig. 3. Objective function trajectories of three distributed optimization
algorithms

using the same step size in all three schemes. For the

asynchronous versions, (3) is used for state estimation and

g(xi (t) , x
j
i (t)) = ‖xi (t)− x

j
i (t) ‖.

In Figs. 2 and 3, we compare these three algorithms. In

Fig. 2, every time a node broadcasts its state information,

the total number of communications is increased by one. By

looking at these figures, it is clear that the asynchronous

method can substantially reduce the communication cost

while performance convergence is virtually indistinguishable

from that of the synchronous method. The asynchronous al-

gorithm with fixed δi (k) has the added advantage that it usu-

ally stops incurring communication cost earlier than the other

two methods. However, it does not guarantee convergence to

stationary points. Figure 4 shows the node trajectories for

these three methods. Methods 1 and 3 converge to the same

node configuration which is indicated by the black squares,

while method 2 converges to a configuration close to it.

Next, in Figs. 5 and 6 we compare the performance of the

asynchronous method with different values of the constant

Kδ in (8) under the same coverage control setting as before.

We can see the clear trend that a larger Kδ leads to fewer

communication events. But we also notice in Fig. 6 that when

Kδ = 5, the objective function curve exhibits considerable

oscillations before it converges. This suggests that Kδ is

set too high and some “necessary” communication events

between nodes have been omitted. In other words, when Kδ

is increased, although convergence to a local optimum may
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Fig. 4. Node trajectory comparison of three distributed optimization
algorithms in a coverage control mission. See Fig. 3 for the legend.
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Fig. 5. Communication cost comparison of asynchronous distributed
algorithm with differnt Kδ

still be guaranteed, so is the risk of slower convergence.

V. CONCLUSIONS AND FUTURE WORK

The main result of this paper is showing that synchronized

or asynchronous frequent communication among cooperating

agents (nodes in a network) seeking to optimize a common

objective is not necessary in order to guarantee convergence.

Specifically, we have proposed a scheme that limits com-

munication to instants when some state estimation error

function at a node exceeds a threshold and proved that,

under certain conditions, the convergence of a gradient-based

fully asynchronous distributed algorithm is still guaranteed.
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Fig. 6. Objective function trajectories of asynchronous distributed algo-
rithm with differnt Kδ

In addition, we have quantified the range of the two crucial

parameters on which such convergence depends. We have

applied this approach to a coverage control problem common

in the deployment of wireless sensor networks and confirmed

through numerical examples that the effect of asynchronous

limited communication is minimal on the optimization objec-

tive while resulting in very substantial energy savings which

can prolong the life of such a network.

Our ongoing work is aimed at incorporating communi-

cation delays into our proposed framework, which are not

expected to affect the basic convergence result. Moreover,

we are considering enhancement of the estimation error

function that guides communication events so as to use

second derivative information (see also [16]) which may be

critical when controlling the state of a node is sensitive to

the state of other nodes.
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