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Abstract— We address the problem of batching messages gen-
erated at nodes of a sensor network for the purpose of reducing
communication energy at the expense of added latency. We first
develop a baseline analytical model, derive conditions under
which batching is profitable, and explicitly determine a batching
time that optimizes a performance metric capturing the trade-
off between communication energy and message latency. We
then provide an on-line performance optimization method based
on Smoothed Perturbation Analysis (SPA) for estimating the
performance sensitivity with respect to the controllable batching
time. We prove that the SPA gradient estimator is unbiased and
combine it with a Stochastic Approximation (SA) algorithm for
on-line optimization. Numerical results are provided for Poisson
and Markov modulated Poisson arrival processes and illustrate
the effectiveness of the message batching scheme.

Index Terms— Wireless Sensor Network, Perturbation Anal-
ysis, Batching

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of low-cost

nodes which are mainly battery powered and have sensing

and wireless communication capabilities [1]. Power con-

sumption is a key issue in WSNs, since it directly impacts

their lifetime in the likely absence of human intervention

for most applications of interest. Energy in WSN nodes is

consumed by the CPU, by sensors, and by radio, with the

latter consuming the most [2].

Several approaches for reducing communication energy

cost have been proposed and implemented [3]. However,

among existing approaches few consider exploiting network

traffic statistics for further savings, even though a large

class of applications involves irregular, random, event-driven

traffic. Since an important characteristic of WSNs is the

sporadic and bursty nature of traffic, a natural question is:

Upon detecting an event, should the sender transmit the

message immediately, or is it profitable to intentionally delay

it for some time period knowing that more events might

occur within a short interval? If so, how long should the

sender wait and what is the trade-off between energy and

network performance, say average delay? In this paper, we

propose a time-based message batching approach which uti-

lizes network statistics to reduce communication energy cost.

The contribution is to: (i) provide an analytical stochastic
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model on time-based message batching, and solve it under

exponential distribution assumptions; (ii) present gradient

estimators of performance, in which no a priori statistical

arrival information is needed, and proved their unbiasedness;

(iii) present an on-line control method using a Stochastic

Approximation algorithm.

The time-based message batching problem is formulated

in Section II, where the stochastic model is introduced.

In Section III, with exponential assumptions, the model is

solved analytically and some quantitative results are derived.

In Section IV, we turn our focus to on-line control by using

Smoothed Perturbation Analysis (SPA) to derive gradient

estimators [4]. Using these estimators, in Section V we pro-

vide simulation results of on-line control using a Stochastic

Approximation (SA) algorithm [5]. Finally, conclusions are

given in Section VI.

II. TIME-BASED MESSAGE BATCHING

Our approach focuses on the link layer of a WSN. A

sender node in a WSN detects a random event or receives a

message from upstream, and sends a message to a receiver,

which either relays it to the next hop or processes it. Random

events are modeled through a point process. We adopt the

same low-power listening and variable length preamble tech-

nique presented in [6]. As illustrated in Fig. 1, the preamble

is initiated when the sender is ready to transmit and it allows

a variable sleep time on the receiver side. In other words, un-

like many other approaches, the preamble need not be longer

than the sleep time to ensure proper reception. Although (as

shown in Fig. 1) the preamble consists of discrete packets,

we assume a continuous preamble in order to simplify the

analysis. From the sender’s perspective, the receiver channel

polling events take place randomly and are modeled through

a point process as well. This captures the fact that there may

be multiple receivers for redundancy purposes, that clock

drift and time offset behavior are possible, and that different

sampling schedules may be adopted by different receivers.

In our previous work [6], upon detecting an event, the

sender starts sending the preamble at once. However, in

time-based message batching, since the sender anticipates

more events/messages to come, it intentionally postpones

sending the preamble for W units of time, where W is a

preset parameter independent of the buffer content; this is in

contrast to queue-length based batching where the preamble
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Fig. 1. Illustration of the variable preamble technique. After each preamble
packet (P) sent, the sender listens for possible receiver reply (R) which is
sent upon the receiver detecting P at polling events. When sender receives
R, a synchronization packet (SYN) is sent, followed by the data payload
(DATA). Thus the data are received.

is sent after a certain threshold in the queue is reached. We

choose time-based batching because it ensures a bounded

delay, whereas queue-length based batching may result in

large delays especially when arrivals are very sporadic in

WSNs. When the preamble meets with a polling event, as

illustrated in Fig. 1, the entire batch of messages is transmit-

ted. Note that the transmission of the message (DATA) and

control packets (SYN) also consumes energy. However, we

do not consider this cost since it is uncontrollable, while

in our analysis we aim to determine a suitable batching

time W so as to reduce the preamble cost (number of P

packets). The fundamental trade-off in this problem is the

following: If the waiting time W increases, the sender’s

energy consumption is reduced as more messages share a

single preamble; on the other hand, all messages are further

delayed by the increase in W . A special case arises when

the polling process is deterministic. However, the analysis

is much simpler as the sender can perfectly coordinate with

receiver polling periods by varying W for each polling event.

Therefore, in the following we focus on the more general

stochastic case.

A typical sample path is shown in Fig. 2(a). The upper

timeline is for the sender side and the lower one is for the

receiver. The jth event or upstream message arrival time

is denoted by Aj . The jth channel sampling event time is

denoted by Sj .
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Fig. 2. (a) Typical sample path. (b) Critical events divide the sample
path into busy periods.

After an arrival finds the sender’s buffer empty, e.g., A1 in

Fig. 2(a), the sender waits for W units of time before sending

a preamble which is indicated by a bold line segment. As a

sampling event S2 sees the preamble, messages A1, A2, A3

are transmitted. Since the only randomness in the system

lies in the arrival and sampling time epochs, the sample path

is uniquely determined by two exogenous point processes:

(i) The message arrival process {Aj : j ≥ 1}, and (ii) The

sampling process {Sj : j ≥ 1}.

The sample path contains certain critical events. An arrival

that finds an empty buffer is critical because it initiates a busy

period at the sender node and also determines the starting

time of a preamble. In addition, a particular sampling event

that “downloads” the messages is critical as it ends a busy

period. Clearly, the sample path consists of a sequence of

busy periods {BPi, i ≥ 1}. A busy period BPi starts with

an arrival AIi
which finds an empty buffer, and ends with a

sampling event SRi
which triggers the transmission of all the

accumulated messages. These are critical events, as shown

in Fig. 2(b). Once {Aj : j ≥ 1} and {Sj : j ≥ 1} are given,

the index sets {Ii, i ≥ 1} and {Ri, i ≥ 1} can be recursively

determined as follows:

I1 = 1 (1)

Ri = min
j

{j : Sj > AIi
+ W} , i ≥ 1 (2)

Ii+1 = min
j

{j : Aj > SRi
} , i > 1 (3)

An additional critical event is the first arrival during a

preamble time within BPi, denoted by AJi
, where:

Ji = min {j : AIi
+ W < Aj < SRi

} (4)

Note that Ji may not exist for some BPi, e.g., BP3 in Fig.

2(b).

The system performance depends on the message delays

and the preamble length. For a message arriving at Aj , its

delay is given by:

Dj = min
i

{SRi
: SRi

> Aj} − Aj (5)

In each BPi there is only one preamble, beginning after

a delay W initiated by AIi
and ending with the critical

sampling event SRi
. The length of this preamble is:

Pi = SRi
− AIi

− W (6)

Denote by N the number of arrivals in a sample path and by

B the number of busy periods (depending on N , obviously)

and define:

D̄ = lim
N→∞

1

N

N
∑

j=1

Dj, P̄ = lim
N→∞

1

N

B
∑

i=1

Pi (7)

which are the long term average delay and preamble length

per message, respectively. Assuming ergodicity, they are

deterministic values determined by W and the statistics of

{Aj : j ≥ 1} and {Sj : j ≥ 1}. D̄ and P̄ reflect the key

trade-off, since the goal of the batching mechanism is to

delay sending a preamble so that a single preamble is shared

by a batch of messages and energy consumption is reduced

at the expense of message delay.
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Fig. 3. A single busy period.

III. ANALYTICAL SOLUTION WITH POISSON PROCESSES

In this section, we assume that the arrival and sampling

processes are Poisson with rate λ and µ, respectively. Due

to the Markovian structure of the system, the analysis can be

performed in terms of a single busy period BP , which begins

when an arrival finds the system empty, and ends when a

sampling event takes away the stored messages, as illustrated

in Fig. 3. Denoting the average delay and preamble length

per message in a BP by D and P respectively and assuming

ergodicity, we have D̄ = E [D] and P̄ = E [P ]. Conversely,

an idle period IP lies between two consecutive BP s, where

there is no message in the sender’s queue. Let TIP denote the

length of an IP and note that it is exponentially distributed

with rate λ and E [TIP ] = 1/λ.

A BP consists of two phases. Phase 1 lasts for W time

units, when the source is waiting with its radio off. Phase 2
occurs when the source continuously sends the preamble. Let

TP denote the length of phase 2. Note that it is the time until

the next sampling event, therefore, it is also exponentially

distributed with rate µ, and E [TP ] = 1/µ. Thus, the

expected total number of arrivals during a BP , including the

first arrival, is E [NBP ] = 1+λW +λ/µ, hence the average

preamble time per message is: E [P ] = E [TP /NBP ]. Due

to the regenerative structure of the system, we have

E [P ] =
E [TP ]

E [NBP ]
=

1

λ + λµW + µ
(8)

Next, to obtain E [D], there are three cases corresponding

to arrivals occurring at different times within a busy period:

(i) the first arrival which initiates the BP ; (ii) arrivals during

the waiting period. (iii) arrivals during the preamble period.

Denote by Dij the jth arrival of the ith case, and by Ni the

number of arrivals during case i. Hence, E [D11] = W +
1/µ, E [N2] = λW , E [N3] = λ/µ. Some straightforward

calculations lead to:

E





N2
∑

j=1

D2j



 = λW

(

W

2
+

1

µ

)

, E





N3
∑

j=1

D3j



 =
λ

µ2

Due to the regenerative structure, we have

E [D] =
E

[

D11 +
∑N2

j=1 D2j +
∑N3

j=1 D3j

]

E [1 + N2 + N3]

=

W +
1

µ
+ λW

(

W

2
+

1

µ

)

+
λ

µ2

1 + λW +
λ

µ

(9)

Suppose our performance objective is chosen as a linear

combination of the two metrics, D̄ and P̄ :

J = D̄ + αP̄ = E [D] + αE [P ] (10)

where α > 0. Taking derivatives with respect to W in (9)

and (8) we get

dJ

dW
=

λ2W 2

2
+ λ

(

1 +
λ

µ

)

W +

[

1 + (1 − α)
λ

µ

]

(

1 + λW +
λ

µ

)2

To determine the optimal waiting time W ∗, we solve the

equation dJ/dW = 0. This is equivalent to solving the

quadratic equation in the numerator. Hence, J has a sta-

tionary point for W ≥ 0 if and only if:

1 + (1 − α)
λ

µ
≤ 0 (11)

which implies that batching is profitable. This positive root

corresponds to a local minimum of J since d2J/dW 2 is

positive. So the optimal batching time and corresponding

cost are:

W ∗ =

−

(

1 +
λ

µ

)

+

√

(

1 +
λ

µ

)2

− 2

[

1 + (1 − α)
λ

µ

]

λ

J∗ =

W ∗ +
1

µ
+ λW ∗

(

W ∗

2
+

1

µ

)

+
λ

µ2
+ α

1

µ

1 + λW ∗ +
λ

µ

In the case where W = 0, i.e., no batching is carried out,

the performance is

J0 =
1

µ
+

α/µ

1 + λ/µ

To further explore the benefit of batching when (11) holds,

let ∆ = J0 − J∗. We normalize the parameters by setting

1/µ = 1, 1/λ = k and let

∆̃(k, α) =
J0 − J∗

J0

so that ∆̃(k, α) is a function of k and α which characterizes

the relative optimal batching benefits.
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Fig. 4. Relative optimal message batching benefits under different k and
α settings.

Figure 4 shows the relative benefit under different k and α
settings. The curves are obtained by choosing different k and
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α, then calculating J0, J∗ and ∆̃. An interesting observation

is that all curves attain their maximum at around k = 1,

which implies that under the setting µ/λ = 1 the batching

scheme performs the best. This observation can be used as

a guideline for tuning the receivers, although the problem

itself focuses on the sender. Meanwhile, as α increases, the

benefit is obviously larger since more emphasis is put on the

power side of the objective.

IV. ON-LINE GRADIENT ESTIMATION AND

OPTIMIZATION

In practice, network statistics are not known in advance,

which calls for an adaptive control method. The analytical

model breaks down when the Markovian assumptions of

the previous section are relaxed. Therefore, we propose an

on-line gradient estimation method based on Perturbation

Analysis (PA) [4]. Thus, we attempt to extract from an ob-

servation of the sample path not only performance data, but

also sensitivity information with respect to the controllable

parameter W . This gradient information will be used in

optimization, i.e., seeking the optimal value W ∗, using a

Stochastic Approximation (SA) algorithm.
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Fig. 5. (a) is the nominal sample path of two cases: without/with sampling
event SR′

1
. (b), (c) are the perturbed sample paths without/with SR′

1
,

respectively. SR′

1
combined with AJ1

results in a drastically different

perturbed sample path and discontinuous sample functions.

Consider the performance objective J in (10) and let

LD (W, ω), LP (W, ω) be sample functions defined on an

observed sample path denoted by ω and consisting of N
arrivals and B busy periods:

LD (W, ω) =
1

N

N
∑

j=1

Dj (W, ω) (12)

LP (W, ω) =
1

N

B
∑

i=1

Pi (W, ω) (13)

and let

L (W, ω) = LD (W, ω) + αLP (W, ω) (14)

By the ergodicity assumption, J (W ) = E [L (W, ω)], hence

dJ (W )

dW
=

dE [L (W, ω)]

dW
= lim

∆W→0

E [∆L (W, ω)]

∆W
(15)

In the most basic form of PA, known as Infinitesimal Pertur-

bation Analysis (IPA), an unbiased estimator of dJ/dW is

obtained through the sample derivative of L (W, ω) provided

it exists and we are able to change the order of expectation

and limit above. Thus, the IPA estimator is
[

dJ (W )

dW

]

IPA

=
d [L (W, ω)]

dW
(16)

However, in this problem, there exists some ω such that

L (W, ω) is discontinuous with respect to W (see Fig. 5).

Due to this discontinuity, IPA will not produce an unbiased

estimator, a key condition needed in the convergence of the

SA algorithm. The observation in Fig. 5 that the existence

of some events leads to large sample path changes motivates

the use of Smoothed Perturbation Analysis (SPA) [7]. The

main idea in SPA is to replace the original sample function

L (W, ω) by a conditional expectation E [L (W, ω) |z], i.e.,

set

J (W ) = E [L (W, ω)] = E [E [L (W, ω) |z]] (17)

where z is called a “characterization” of the sample path

which must be appropriately selected. Since E [L (W, ω) |z]
is generally “smoother” than L (W, ω), we expect to be able

to interchange expectation and limit and obtain the SPA

estimator:
[

dJ (W )

dW

]

SPA

= lim
∆W→0

E [∆L (W, ∆W, ω) |z]

∆W
(18)

where ∆L (W, ∆W, ω) is defined as the difference between

the sample function values on the nominal and perturbed

sample paths. Let us select the characterization z to be all

the arrival events {Aj} and sampling events {Sj}:

z = {Aj : j ≥ 1} ∪ {Sj : j ≥ 1}

Let ei denote the event (in the measure theoretic sense) that

a sampling event such as SR′

1
in Figure 5(c) above takes

place, i.e., ei ≡ [AI1 + W − ∆W < Sk ≤ AI1 + W ] for

some Sk. Let ēi denote its complement. Assume that Pr (ei)
is an analytic function of the time ti = AIi

+W and of ∆W
around 0, i.e.,

Pr (ei) = F (ti, ∆W ) = F (ti, 0) + a1 (ti)∆W + o (∆W )

= a1 (ti)∆W + o (∆W ) (19)

which is of order O (∆W ). We further assume that inter-

sampling times are mutually independent, so that the prob-

ability that, from (19), two or more such events occur is of

higher order than O (∆W ): Pr (eiej ...) = o (∆W ). Define

∆Li to be the perturbation in the sample function generated
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within BPi. Given z, the total expected perturbation over all

BP ’s is:

E [∆L (W, ∆W, ω) |z] =
B

∑

i=1

[E [∆Li|ēi, z] Pr (ēi) + E [∆Li|ei, z] Pr (ei)]

+
B

∑

i=1

B
∑

j=1,j 6=i

E [∆Li,j |eiej, z] Pr (eiej) + ...

=

B
∑

i=1

[E [∆Li|ēi, z] Pr (ēi) + E [∆Li|ei, z] Pr (ei)] (20)

+ o (∆W )

Thus, the evaluation of the SPA sample function

E [∆L (W, ∆W, ω) |z] boils down to two cases

corresponding to ēi and ei, where Pr (ei) =
a1 (ti)∆W + o (∆W ), Pr (ēi) = 1 − Pr (ei).

First, under ēi the only difference in the sample function

is an increase in the preamble length in BPi since the

waiting time is reduced by ∆W > 0 and this effect does not

propagate to any further busy periods. All arrivals must still

wait until SRi
to be transmitted, therefore, E [∆Dj |ēi, z] =

0, j = 1, . . . , N , E [∆Pi|ēi, z] = ∆W , and the total pertur-

bation in this case is: E [∆LD,i|ēi, z] = 0, E [∆LP,i|ēi, z] =
∆W/N . Combining (18) and the first part of (20), we get

lim
∆W→0

Pr (ēi)

∆W
E [∆LD,i|ēi, z] = 0 (21)

lim
∆W→0

Pr (ēi)

∆W
E [∆LP,i|ēi, z]

= lim
∆W→0

1

N

1 − a1 (ti) ∆W + o (∆W )

∆W
∆W =

1

N
(22)

On the other hand, under ei there will be major changes

in the delays of messages, as well as preamble lengths.

Combining (18) and the second part of (20) we get

lim
∆W→0

Pr (ei)

∆W

[

B
∑

i=1

E [∆Li|ei, z]

]

(23)

= a1 (ti) lim
∆W→0

B
∑

i=1

E [∆Li|ei, z] (24)

so that the remaining task is to evaluate E [∆Li|ei, z] and

then take the limit ∆W → 0. To accomplish this, we need

to partially reconstruct the perturbed sample path. First,

referring to Fig. 5, if AJi
does not exist, we can see that the

message batch will be transmitted at SR′

i
and no propagation

to future busy periods exists. However, if AJi
exists, the per-

turbation caused by ∆W will propagate because the critical

events in BPi are affected. Let {I ′k, k ≥ 1} and {R′
k, k ≥ 1}

be the index sets of critical events in the perturbed sample

path and observe that

I ′1 = Ii (25)

SR′

1
= AIi

+ W − ξ

where ξ ∈ [0, ∆W ]. As ∆W → 0 in (24), ξ → 0 so we can

omit it and obtain the following recursive expressions:

SR′

1
= AIi

+ W (26)

R′
k = min

j

{

j : Sj > AI′

k
+ W

}

, k ≥ 2 (27)

I ′k+1 = min
j

{

Aj : Aj > SR′

k

}

, k ≥ 1 (28)

This procedure is carried out through the [l(i) − 1]th busy

period with l(i) such that AI′

l(i)
coincides with some AIj

in

the nominal sample path, i.e.,

I ′l(i) = Ij0(i) ∈ {Ij : j > i} (29)

as illustrated in Fig. 5 with AI3 = AI′

4
. Denote by D′

j the

new delay of the jth arrival, and by P ′
k the new preamble

in the kth busy period beginning with BPi. It is easy to see

that

D′
j = min

i

{

SR′

i
: SR′

i
> Aj

}

− Aj (30)

P ′
1 = 0 (31)

P ′
k = SR′

k
− AI′

k
− W, k ≥ 2 (32)

Therefore,

lim
∆W→0

E [∆LD,i|ei, z] =
1

N

∑

Ii≤j<I′

l(i)

(

D′
j − Dj

)

(33)

lim
∆W→0

E [∆LP,i|ei, z] =
1

N





l(i)−1
∑

j=2

P ′
j −

j0(i)−1
∑

j=i

Pj





(34)

Recalling (14) and (18), we obtain the left-hand SPA gradient

estimator for D̄ using (21), (24), (33):

[

dD̄

dW

]−

SPA

= −
1

N

B
∑

i=1

∑

Ii≤j<I′

l(i)

a1 (ti)
(

D′
j − Dj

)

(35)

Similarly, using (22) and (34) we obtain

[

dP̄

dW

]−

SPA

=

−
1

N

B
∑

i=1



a1 (ti)





l(i)−1
∑

j=2

P ′
j −

j0(i)−1
∑

j=i

Pj



 + 1



 (36)

Finally, combining the two and using (14),

[

dJ (W )

dW

]−

SPA

=

[

dD̄

dW

]−

SPA

+ α

[

dP̄

dW

]−

SPA

(37)

Note that a1 (ti) depends on the sampling event distributions

and must be separately evaluated. To summarize, the SPA

gradient estimator algorithm is described as follows:

1) For each BPi: (1) initialize I ′1 through (25); (2)
use (26)-(29) to determine the critical events in the

perturbed sample path; (3) use (30) to calculate the

perturbed delay D′
j , j = 1, . . . , N ; (4) use (31)-(32)

to calculate the perturbed preamble P ′
i , i = 1, . . . , B.
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2) Obtain the SPA derivative estimate through (35), (36),

and (37).

While (35)-(37) are left derivative estimators, right deriva-

tive estimators can be derived using similar analysis. Assum-

ing mild conditions: (i) E [AN ] < ∞; (ii) E [Sj+1 − Sj ] <
∞, j = 1, 2, ...; (iii) F (ti, ∆W ) is analytic for all i around

∆W = 0, we have the following theorem to establish the

unbiasedness of (35)-(37):

Theorem 1: The SPA gradient estimator given by (35)-

(37) is unbiased.

Proof: See [8].

Using the gradient estimator (37), we use a Stochastic

Approximation (SA) algorithm of the form:

Wk+1 = Π[a,b]

[

Wk −
β

kδ

[

dJ (Wk)

dWk

]

SPA

]

, k ≥ 0

(38)

with W0 being an initial point and Π[a,b] [x] a projection of

x onto interval [a, b]. The parameters β and δ in (38) need

to be carefully chosen to ensure convergence and regulate

convergence speed. The guidelines are: (i) the algorithm

converges for β > 0 and 0.5 < δ ≤ 1; (ii) larger β and

smaller δ will result in fast response but also higher variance,

while smaller β and larger δ will have a slower response. In

each step of the algorithm, we observe a sample path with N
messages, obtain [dJ (Wk) /dWk]SPA by the SPA algorithm,

and use (38) to obtain Wk+1. By the fact that (37) is

unbiased, Wk converges to W ∗ where dJ (W ∗) /dW ∗ = 0.

A similar proof of convergence can be found in [9].

V. NUMERICAL RESULTS

Exponential Arrival Processes. First, we consider the

case where the arrival and sampling processes are Poisson

with rate λ and µ, respectively so as to compare our results

with the analysis of Section III. Therefore, a1 (ti) in (19) is

simply a constant µ. Fig. 6(a) shows a sample trajectory of

the optimization process using the SA algorithm. Here, we

use the objective function (10) with α = 20 and choose β =
6 and δ = 1 as the parameter values in (38). We performed

200 iterations and we note that W is already at the vicinity

of the optimal point after approximately 100 iterations.

Markov Modulated Poisson Arrival Process. One fea-

ture of the SPA gradient estimator is that it does not

depend on the arrival process distribution, which allows

the controller to adapt to different network traffic patterns.

In this section, we use a Markov Modulated Poisson Pro-

cess (MMPP) to model bursty data traffic in a WSN. A

MMPP consists of an underlying continuous time Markov

process {Xt; t ≥ 0} and a function λ (Xt) which specifies

the arrival rate in each state. One simple MMPP example

is a Poisson process with exponentially distributed on-off

durations, where the states of a continuous time Markov

chain are {0, 1} and arrivals occur only in state 1 with rate

λON . In this example we still assume the same Poisson

process for receiver polling epochs so a1 (ti) = µ. Fig.

6(b) show the derivative estimates obtained and a sample

trajectory of the optimization process (38). Unfortunately,

under MMPP arrivals, there are no analytical results for

comparison purposes. We can still see, however, that the SA

algorithm readily converges to the optimal W value in Fig.

6(b).
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Fig. 6. (a) On-line optimization using the SA algorithm with exponential
arrival process. Arrival and channel polling rates are λ = µ = 1.
(b) Optimization with arrival process being a Markov Modulated Poisson
Process. Transition rates are λ10 = 0.2, λ01 = 0.022. Arrival rate and
channel polling rate is also λON = µ = 1.

VI. CONCLUSIONS

We have proposed a time-based message batching ap-

proach for reducing transmission energy consumption in

WSNs. When no analytical model is available, we have

developed a gradient estimator using Smooth Perturbation

Analysis (SPA) and proved its unbiasedness. Since the SPA

gradient estimator does not depend on the arrival distribution,

it can be used in conjunction with a Stochastic Approxi-

mation (SA) algorithm allowing the controllable parameter

W to adapt to possibly changing network traffic conditions.

Future work is directed at extending this approach to multi-

hop sensor networks and relaxing the requirement that the

probability P (ti, ∆W ) of an ei event taking place is known.
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