
Optimal Admission Control of Discrete Event Systems

with Real-Time Constraints

Jianfeng Mao and Christos G. Cassandras

Dept. of Manufacturing Engineering

and Center for Information and Systems Engineering

Boston University

Brookline, MA 02446

jfmao@bu.edu, cgc@bu.edu

Abstract— The problem of optimally controlling the pro-
cessing rate of tasks in Discrete Event Systems (DES) with
hard real-time constraints has been solved in [9] under the
assumption that a feasible solution exists. Since this may not
always be the case, we introduce in this paper an admission
control scheme in which some tasks are removed with the
objective of maximizing the number of remaining tasks which
are all guaranteed feasibility. In the off-line case where task
information is known, we derive several optimality properties
and develop a computationally efficient algorithm for solving
the admission control problem under certain conditions. In the
on-line case, we derive necessary and sufficient conditions under
which idling is optimal and define a metric for evaluating when
and how long it is optimal to idle. Numerical examples are
included to illustrate our results.

Keywords: discrete event system, admission control, real-time
constraints

I. INTRODUCTION

A large class of Discrete Event Systems (DES) involves

the control of resources allocated to tasks according to

certain operating specifications (e.g., tasks may have real-

time constraints associated with them). The basic modeling

block for such DES is a single-server queueing system

operating on a first-come-first-served basis, whose dynamics

are given by the well-known max-plus equation

xi = max(xi−1, ai) + µiτi

where ai is the arrival time of task i = 1, 2, . . . , xi is the

time when task i completes service, µi is the number of

operations and τi is its processing time per operation which

is controllable (equivalently, the processing rate 1/τi is con-

trollable). Examples arise in manufacturing systems, where

the operating speed of a machine can be controlled to trade

off between energy costs and requirements on timely job

completion [11]; in computer systems, where the CPU speed

can be controlled to ensure that certain tasks meet specified

execution deadlines [2],[6]; and in wireless networks where

severe battery limitations call for new techniques aimed

at maximizing the lifetime of such a network [3],[10]. A

particularly interesting class of problems arises when such

The authors’ work is supported in part by the National Science Founda-
tion under Grant DMI-0330171, by AFOSR under grants FA9550-04-1-0133
and FA9550-04-1-0208, and by DOE under grant DE-FG52-06NA27490.

systems are subject to real-time constraints, i.e., xi ≤ di for

each task i with a given “deadline” di. In order to meet such

constraints, one typically has to incur a higher cost associated

with control τi. Thus, in a broader context, we are interested

in studying optimization problems of the form:

min
τ1,...,τN

{

∑N

i=1
µiθ(τi)

}

(1)

s.t. xi = max(xi−1, ai) + µiτi ≤ di, i = 1, ..., N ;

τi ≥ τmin, i = 1, ..., N.

where θ(τi) is a given cost function, τmin is the minimal

processing time per operation, and all ai, di are known. Such

problems have been studied for preemptive tasks [12],[1],

nonpreemptive periodic tasks [4],[5], and nonpreemptive

aperiodic tasks [3],[10],[9]. The latter case is of particular

interest in wireless communications where nonpreemptive

scheduling is necessary to execute aperiodic packet transmis-

sion tasks which also happen to be highly energy-intensive;

in such cases, the cost function in (1) represents the energy

required for a packet transmission. One of the key challenges

in dealing with (1) is to develop computationally efficient

solution approaches that can be used in real-time settings

and can be implemented in wireless devices with very limited

computational power.

In prior work [9], we have shown that exploiting structural

properties of the optimal state trajectory in (1) leads to

a highly efficient Critical Task Decomposition Algorithm

(CTDA) for obtaining a solution as long as the problem

is feasible. This leaves open the question of dealing with

the case where feasibility does not hold, which may often

arise in practice. For example, tasks may arrive in a bursty

fashion causing a temporary system overload. When this

happens, some tasks will violate their real-time constraints

even if all tasks are processed with the minimal processing

time per operation. Thus, before the CTDA can be applied

it is necessary to selectively reject tasks so as to render

the problem feasible. This naturally leads to an admission

control problem where the objective becomes to maximize

the number of tasks allowed to remain in the system while

guaranteeing the feasibility of (1). The contribution of this

paper is to formulate this problem and develop an efficient

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

ThPI25.7

1-4244-1498-9/07/$25.00 ©2007 IEEE. 3005

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 6, 2010 at 17:47 from IEEE Xplore. Restrictions apply.

solution we term Maximal Shift Task Removal Algorithm

(MSTRA) under certain sufficient conditions. Further, we

consider the on-line version of this problem where task

arrival information is not known in advance and show that

under certain necessary and sufficient conditions idling is

optimal (in the sense of maximizing the number of tasks

that can be processed without violating their deadlines).

We propose a metric based on distributional information

characterizing task arrivals and develop an algorithm for

solving the on-line version of (1).

In Section II of the paper we formulate the admission

control problem associated with (1). In Section III, we exploit

some optimality properties leading to the aforementioned

MSTRA. We consider the on-line admission control problem

in Section IV, provide numerical examples in Section V, and

conclude with Section VI.

II. PROBLEM FORMULATION

In this section, we will formulate the admission control

problem whose solution will maximize the number of tasks

leading to a feasible optimization problem (1). The first step

is to develop a necessary and sufficient condition for easily

checking the feasibility of (1). Let x̂i denote the departure

time of task i when all tasks are processed in τmin, i.e., the

system dynamics reduce to

x̂i = max(x̂i−1, ai) + µiτmin

Based on the lemma below, we can easily determine the

feasibility of (1) by checking whether x̂i ≤ di for all i =
1, ..., N .

Lemma 1: Problem (1) is feasible if and only if x̂i ≤ di

for all i = 1, ..., N .

(Most of the proofs in this paper are omitted or just

sketched due to space limitations; the full proofs can be

found in [7].)

By Lemma 1, the feasibility of (1) is equivalent to the

feasibility of the solution τi = τmin for i = 1, ..., N . Based

on this fact, we formulate the Admission Control Problem

(ACP) as follows:

max
z1,...,zN

∑N

i=1
zi

s.t. xi = max (xi−1, aizi) + µiτminzi, i = 1, ..., N ;

(xi − di)zi ≤ 0, zi ∈ {0, 1}, i = 1, ..., N ; x0 = 0.

where 0 ≤ a1 ≤ a2 ≤ ... ≤ aN and zi ∈ {0, 1}. Thus, zi = 0
means that the i-th task is removed, while zi = 1 implies

it is admitted. Note that the objective function is simply the

number of admitted tasks. The constraints are different from

(1): If zi = 1, then task i must follow the same dynamics as

in (1) and it has to meet the hard real time constraint xi ≤ di;

if zi = 0, then the departure time of task i, xi, is assigned

to coincide with xi−1 and the associated hard real time

constraint is overlooked. The ACP is an integer programming

problem with nonlinear inequality constraints. Although it

may be solved by standard methods (e.g., branch and bound),

this is too time consuming to be implemented in a real-

time environment with limited resources. In what follows,

we develop an efficient solution algorithm by utilizing the

optimality properties presented in the next section.

III. OPTIMALITY PROPERTIES

Before we formally study the optimality properties of the

ACP, we consider a simple greedy algorithm, termed Direct

Deletion Algorithm (DDA). The idea is to process all tasks in

τmin and drop the current task when it violates its deadline.

The algorithm has very low complexity, but it is not optimal

as the following counterexample shows: a1 = · · · = a5 = 0,

d1 = · · · = d5 = 9, µ1 = 8, µ2 = · · · = µ5 = 2 and

τmin = 1. If we apply the DDA, tasks {2, ..., 5} will be

dropped. However, the obvious optimal solution is to remove

only task 1 so that the remaining tasks {2, ..., 5} can meet

their deadlines.

Although the DDA fails to be optimal, it provides a

clue regarding optimality. In the counterexample above, the

failure of the method is caused by focusing only on the

task that violates its deadline. Instead, we should consider

all tasks before the one violating its deadline and pick an

appropriate one to drop, which may lead to an optimal

solution. Intuitively, the “appropriate” task should be the

one that results in the largest departure time shift of the

remaining tasks. In what follows, we will explore this idea

further by first defining the concepts of “busy period” and

“first infeasible task”.

A. Busy Period and First Infeasible Task

Definition 1: A Busy Period (BP) is a set of contiguous

tasks {k, ..., n}, such that x̂k−1 ≤ ak, x̂n ≤ an+1 and x̂i >
ai+1 for i = k, ..., n − 1.

Based on the definition of a BP, we can decompose

the ACP into a set of smaller problems, one for each BP

{k, ..., n}, that is,

max
zk,...,zn

∑n

i=k
zi

s.t. xk = ak + µkτminzk;

xi = max (xi−1, aizi) + µiτminzi, i = k + 1, ..., n;

(xi − di)zi ≤ 0, zi ∈ {0, 1}, i = k, ..., n.

Since the removal of some task can only decrease the

departure time of all following tasks, any interdependence

among BPs can only result from the tasks before a specific

BP. Without loss of generality, we remove some task before

task k. This will result in a new departure time xk−1 which

must be no larger than x̂k−1. From the property x̂k−1 ≤ ak

of a BP, the removed task cannot affect those tasks in the BP

{k, ..., n}. Therefore, the optimal solution of the ACP can be

obtained by independently solving these smaller problems.

Based on the definition of a BP, we define next its first

infeasible task.

Definition 2: Suppose task m belongs to the BP

{k, ..., n}. If xm > dm and xi ≤ di for i = k, ...,m − 1,

then task m is the first infeasible task.

The following lemma identifies a property of the first

infeasible task.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI25.7

3006

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 6, 2010 at 17:47 from IEEE Xplore. Restrictions apply.

Lemma 2: Suppose task m is the first infeasible task in

the BP {k, ..., n}. Then, for any feasible solution [z1, ..., zN]
of the ACP, there must exist some task j (k ≤ j ≤ m) such

that zj = 0.

B. Maximal Shift Task

In this section, we focus on a BP {k, ..., n} which has

a first infeasible task m. We first define the departure time

shift of a task i resulting from the removal of only task j
such that k ≤ j ≤ i ≤ m. We denote this shift by vi(j).

Definition 3: Let

ci(j) = min
s=j,...,i−1

{x̂s − as+1} (2)

The shift of task i when only task j is removed is

vi(j) = min
(

ci(j), µjτmin

)

(3)

for any i, j such that k ≤ j ≤ i ≤ m.

Note that x̂s−as+1 represents the waiting time of task s+1
within the BP {k, ..., n}. The smallest such waiting time is

the extent to which removing a task j can cause a departure

time shift in a subsequent task unless the processing time of

j, µjτmin, is even smaller.

Lemma 3: For any s ∈ {j, . . . , i},

vi(j) = min
(

ci(s), vs(j)
)

Lemma 4: Let xi(j) denote the departure time of task i
after removing only task j. Then, vi(j) = x̂i −xi(j) for any

i, j such that k ≤ j ≤ i ≤ m.

Definition 4: Task r is the maximal shift task if

vm(r) ≥ vm(j), ∀ j = k, ..., r − 1. (4)

vm(r) > vm(j), ∀ j = r + 1, ...,m; (5)

The theorem below identifies an important optimality

property of the maximal shift task defined above.

Theorem 1: Suppose m is the first infeasible task in the

BP {k, ..., n} and r is the maximal shift task. If r = m or

vm(r) ≥ x̂m−dm, then there must exist an optimal solution

[z∗1 , ..., z∗N] of the ACP such that z∗r = 0.

Proof: [sketch] Assume on the contrary that z∗r = 1
in all ACP solutions. From Lemma 2, there always exists

some task q (k ≤ q ≤ m) removed in any feasible solution.

Without loss of generality, there must exist an optimal

solution [z∗1 , ..., z∗N] such that z∗r = 1 and z∗q = 0 (q 6= r).

Let us construct a potential solution [z̄1, ..., z̄N] such that

z̄r = 0, z̄q = 1 and z̄i = z∗i for all i 6= q, r. If we can

show that [z̄1, ..., z̄N] is a feasible solution, then [z̄1, ..., z̄N]
must also be optimal because

∑N

i=1 z̄i =
∑N

i=1 z∗i , which

contradicts the assumption that r is admitted in all optimal

solutions. Therefore, the theorem can be proved by showing

the feasibility of the potential solution [z̄1, ..., z̄N].
Let x∗

i and x̄i denote the departure time of task i resulting

from the optimal solution [z∗1 , ..., z∗N] and the potential solu-

tion [z̄1, ..., z̄N] respectively. In the following, we will prove

the feasibility of [z̄1, ..., z̄N], that is,

z̄i(x̄i − di) ≤ 0, ∀ i = 1, ..., N (6)

First, we prove (6) for i = 1, ..., k − 1, i.e.,

z̄i(x̄i − di) ≤ 0, ∀ i = 1, ..., k − 1 (7)

Since [z∗1 , ..., z∗N] must be feasible, we have

z∗i (x∗

i − di) ≤ 0, ∀ i = 1, ..., N (8)

Since z̄i = z∗i for i = 1, ..., k − 1, we have x̄i = x∗

i for

i = 1, ..., k − 1. Combining this with (8), we obtain (7).

Second, we prove (6) for i = k, ...,m − 1, i.e.,

z̄i(x̄i − di) ≤ 0, ∀ i = k, ...,m − 1 (9)

Since m is the first infeasible task, we have

x̂i ≤ di ∀ i = k, ...,m − 1 (10)

Since x̄i is the departure time after the possible removal of

some tasks,

x̄i ≤ x̂i, ∀ i = 1, ..., N (11)

Combining (11) and (10), we have x̄i ≤ di for all i =
k, ...,m − 1, which implies (9).

Third, we prove (6) for i = m, i.e.,

z̄m(x̄m − dm) ≤ 0 (12)

This follows from the assumption that either r = m or

vm(r) ≥ x̂m − dm. If r = m, then z̄m = z̄r = 0 so that

(12) immediately follows. If vm(r) ≥ x̂m − dm, it follows

from Lemma 4 that xm(r) ≤ dm. Since at least task r is

removed in [z̄1, ..., z̄N], we have x̄m ≤ xm(r). Therefore, it

immediately follows that x̄m ≤ dm, which also implies (12).

Finally, we prove (6) for i = m + 1, ..., N , i.e.,

z̄i(x̄i − di) ≤ 0, ∀ i = m + 1, ..., N (13)

for which there are two possible cases.

Case 1: No task between k and r is removed in the optimal

solution [z∗1 , ..., z∗N], that is, z∗i = 1 for all i = k, ..., r. In

this case, we select q to be the first task removed after r,

that is, q > r, z∗q = 0, and z∗i = 1 for i = r, ..., q − 1. We

can obtain (6) from Lemma 3 and Lemma 4.

Case 2: There exists some task between k and r which

is removed in [z∗1 , ..., z∗N], that is, there exists some task i
(k ≤ i < r) such that z∗i = 0. In this case, we select q to

be the last task removed before r, that is, q < r, z∗q = 0,

and z∗i = 1 for i = q + 1, ..., r. We can once again establish

(13), which completes the proof.

The following Corollary of Theorem 1 establishes the

fact that the conditions under which the theorem holds are

satisfied for a large class of problems.

Corollary 1: If d1 ≤ d2 ≤ ... ≤ dN , then there must exist

an optimal solution [z∗1 , ..., z∗N] of the ACP such that z∗r = 0.

Theorem 1, leads directly to a highly efficient admission

control algorithm we term Maximal Shift Task Removal

Algorithm (MSTRA) shown in Table I. The algorithm yields

the optimal solution of the ACP when the condition r = m or

vm(r) ≥ x̂m−dm is satisfied for all BPs (e.g., in the case in

Corollary 1). Otherwise, the algorithm can still obtain a near-

optimal solution. The difference between the performance

of the MSTRA and the optimal performance is bounded by

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI25.7

3007

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 6, 2010 at 17:47 from IEEE Xplore. Restrictions apply.

the number of times that the condition is violated over the

whole process. Regarding the complexity of the MSTRA,

since we can locate the maximal shift task in O(N), the

total complexity is O(N2).

TABLE I

MAXIMAL SHIFT TASK REMOVAL ALGORITHM

Step 1: Locate a busy period {k, ..., n} by comparing x̂i and ai+1

and identify its first infeasible task m;

Step 2: Compute vm(i) for i = k, ..., m from (2) (3) and find the
maximal shift task r from (4) (5);

Step 3: If r = m or vm(r) ≥ x̂m − dm, then remove task r;
otherwise remove task m.

Step 4: If the problem with the remaining tasks is feasible, then
end. Otherwise, goto Step 1.

IV. ON-LINE ADMISSION CONTROL

So far, we have assumed that all task arrivals, number

of operations, and deadlines are known at the time we

solve the ACP and, subsequently, the original problem (1).

This corresponds to an off-line approach. In this section,

we tackle the on-line admission control problem where

this information is unavailable until a task actually arrives.

Therefore, one can proceed in two ways: (i) Based only on

the information available for tasks already in queue, and (ii)
Using information in the form of the joint distribution of the

arrival time, deadline, and required number of operations of

the next arriving task.

We begin with case (i). Without loss of generality, we

assume the current decision point is at time t > 0. Note that

all tasks that arrived before t and have not been processed yet

can be regarded as a set of tasks sharing a common arrival

time t. It is then possible to show that the optimal way to

process these tasks is using the Earliest Deadline First (EDF)

policy as established in the next lemma.

Lemma 5: If tasks share a common arrival time, then

EDF is the processing policy that maximizes the number

of remaining tasks that can be processed without violating

their deadlines.

Using this lemma, we can sort tasks in ascending order

of deadlines and apply the MSRTA to obtain the optimal

admission control for all tasks in queue from Corollary 1.

Next, we consider case (ii), i.e., making decisions based

on uncertain information about the next arrival task. Two nat-

ural questions arise: Is it possible to improve performance by

using such information, and, if so, how to accomplish it? The

first question can be answered through the following simple

example. Imagine that the next arrival task is imminent and

has an urgent deadline, while the current task has a large

number of operations and a relatively loose deadline. Then,

it is very likely that the next task will be dropped when it

arrives while we still process the current task. If distribution

information for the next arrival task is available, it is possible

to compute some metric quantifying the likelihood that the

case above can occur. If the metric shows it can happen

with sufficiently high probability, then we may rescue the

upcoming task by postponing the start of the current task

(i.e., by explicitly idling) and still successfully process the

postponed task. The net effect is better performing admission

control with high probability.

To answer the second question, we can get some clues

from the answer to the first one. In particular, the key is

to specify the aforementioned metric and compute it. The

theorem below is a step in this direction. Without loss

of generality, assume that at the current decision time, t,
there are n remaining tasks after applying admission control

through the MSTRA and they satisfy d1 ≤ d2 ≤ ... ≤ dn

and t +
∑i

j=1 µjτmin ≤ di for i = 1, ..., n (as already

mentioned, the MSTRA yields the optimal solution in this

case). Moreover, the optimal processing time per operation

can be assigned to task 1 using the CTDA [9] which solves

problem (1). Let τ1 be this processing time and let an+1,

dn+1 and µn+1 denote the arrival time, deadline, and number

of operations of the next arrival task respectively. We are

interested in establishing necessary and sufficient conditions

under which the optimal number of remaining tasks that

are all feasible (determined through the MSTRA without

any future information available) can be improved by idling

given some future information. Then, clearly the optimal

number of remaining tasks that are all feasible is at least

n. If we consider the next arriving task only, then the best

we can do is increase this number to n + 1.

It follows that the statement “we can improve the optimal

number of remaining tasks that are feasible under no future

information” is equivalent to the two conditions:

Condition 1. The optimal number of remaining tasks is n
if we do not postpone task 1.

Condition 2. The optimal number of remaining tasks is

n + 1 if we idle and postpone task 1.

Theorem 2: Assume the current decision point is t and

there are n tasks in queue that are feasible. Let Φ(i) denote

the set of tasks before task i and task i itself when all n+1
tasks are sorted in ascending order of deadline and Ψ(i) =
Φ(i)\{1}. Condition 1 and Condition 2 are satisfied if and

only if

∃ i ∈ {2, ..., n+1}, t+µ1τ1+
∑

j∈Ψ(i)
µjτmin > di; (14)

an+1 +
∑

j∈Φ(i)
µjτmin ≤ di, ∀ i = 1, ..., n + 1. (15)

Proof: =⇒: First, we prove that

an+1 ≤ t + µ1τ1, (16)

Using the definitions of Φ(i) and Ψ(i), we have

∑

j∈Ψ(i)
µjτmin ≤

∑

j∈Φ(i)
µjτmin (17)

By (14), there exists some task i such that

t + µ1τ1 +
∑

j∈Ψ(i)
µjτmin > di

By (15), we have

an+1 +
∑

j∈Φ(i)
µjτmin ≤ di

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI25.7

3008

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 6, 2010 at 17:47 from IEEE Xplore. Restrictions apply.

Combining the three inequalities above, we obtain the in-

equality (16).

Second, we consider the case where task 1 is not post-

poned, implying that t + µ1τ1 is the next decision point.

From (16), task n + 1 has arrived at this decision point so

that t + µ1τ1 +
∑

j∈Ψ(i) µ(j)τmin is the earliest departure

time of task i for all i = 2, ..., n + 1.

Based on Lemma 1, we can check feasibility by analyzing

the earliest departure time which is achieved through the

minimal processing time per operation τmin. Then, from (14),

at least one of tasks 2, ..., n + 1 will violate its deadline. By

assumption, there are n feasible tasks in queue so that we

can always attain the feasibility of these n tasks by removing

task n+1. Therefore, the optimal number of remaining tasks

is n if we do not postpone task i, i.e., Condition 1 is met.

Next, we consider postponing task 1, implying that an+1

is the next decision point and an+1 +
∑

j∈Φ(i) µ(j)τmin is

the earliest departure time of task i for all i = 1, ..., n + 1.

Similarly, we can still check feasibility based on the

earliest departure time from Lemma 1. Then, from (15), all

n + 1 tasks can meet their deadlines. Thus, Condition 2 is

satisfied as well.

⇐=: First, we consider postponing task 1. From Condition

2 and Lemma 1, all n + 1 tasks can meet their deadlines by

using the minimal processing time per operation τmin, which

turns out to be the inequality (15).

Second, we prove (16) has to be satisfied. Assume on the

contrary that an+1 > t + µ1τ1. From (17) and (15) obtained

above, we have

an+1 +
∑

j∈Ψ(i)
µjτmin ≤ di, ∀ i = 2, ..., n + 1

Combining it with an+1 > t + µ1τ1, all the other tasks can

still meet their deadline by using τmin if we do not postpone

task 1, which means the optimal number of remaining task

also equals to n + 1 in the case of not postponing task 1.

This contradicts Condition 1 and leads to the conclusion that

(16) must hold.

Finally, we consider the case where task 1 is not post-

poned. It follows from (16) that t+µ1τ1 +
∑

j∈Ψ(i) µ(j)τmin

is the earliest departure time of task i for all i = 2, ..., n+1.

Then, from Condition 1 and Lemma 1, if we do not postpone

task 1, there is at least one among tasks 2, ..., n+1 such that

its earliest departure time is larger than its deadline, which

is precisely inequality (14).

Let f denote the joint distribution of (an+1, dn+1, µn+1)
and P (t, f) denote the probability that (an+1, dn+1, µn+1)
satisfies (14) and (15) at the decision point t. From The-

orem 2, P (t, f) can be the metric to indicate how likely

idling and postponing the current task could improve per-

formance. Thus, if P (t, f) > p (typically, p = 0.5),
then we postpone the current task and otherwise imme-

diately process it. Although P (t, f) may not be easy

to compute in closed form, one can always estimate it

through Monte Carlo methods, that is, randomly gener-

ating M samples of (ai
n+1, d

i
n+1, µ

i
n+1) and calculating

∑M

i=1 1(ai
n+1, d

i
n+1, µ

i
n+1)/M , where 1(·) is the indicator

function indicating whether (ai
n+1, d

i
n+1, µ

i
n+1) satisfies (14)

and (15).

Further, if the decision is to idle, there remains a question

regarding the length of idling. Let P (t + w, f) denote the

probability that (an+1, dn+1, µn+1) satisfies (14) and (15) if

we postpone the current task by w and the next task still

does not arrive. Define

Ω = {w : P (t + w, f) ≤ 0.5, w ≥ 0} and w∗ = min
w∈Ω

w.

We can see that w∗ is the optimal idling time. However,

w∗ is much harder to compute in closed form than P (t, f).
Let L = mini=1,...,n(di −

∑i

j=1 µiτmin). We can bound w∗

as follows: 0 ≤ w∗ ≤ L − t, because (15) requires the

next task to arrive before L. Moreover, it is clear that the

longer idling is, the less likely we are to increase the optimal

number of remaining tasks since less time becomes available

for rescuing the next task. Thus, assuming that P (t + w, f)
is monotonically decreasing in w, an estimate of w∗ may

be efficiently obtained through simple binary search over

the interval [0, L − t]. This discussion leads to the on-line

admission control algorithm shown in Table II.

TABLE II

ON-LINE ADMISSION CONTROL ALGORITHM

Step 1: Sort all tasks waiting in queue in ascending order of
deadline and apply MSTRA and CTDA;

Step 2: Estimate P (t, f) by Monte Carlo method;

Step 3: If P (t, f) > 0.5, then estimate w∗ and postpone the
current task for w∗; otherwise just process the current task.

V. NUMERICAL RESULTS

A. Off-line control

We first compare the performance and the complexity of

two off-line algorithms: the MSTRA and the DDA. Both are

implemented using Matlab 7.0 on an Intel(R) Core(TM)2

CPU 1.86 GHz, 1.0 GB RAM Computer. We test cases

where N varies from 100 to 1000 in increments of 100. We

randomly generated 50 samples for each N , in which task

interarrival times are exponentially distributed with mean 8,

µi are selected from 1 to 10 with equal probability and di−ai

are uniformly distributed over [2µiτmin, 2µi(τmin + 1)].
Figure 1 compares the performance of these two al-

gorithms, in which the y-axis is the average number of

tasks removed. We see that the MSTRA can remove about

13 ∼ 16% fewer tasks to attain feasibility in (1) than

the DDA. Figure 2 shows the complexities of these two

algorithms in average CPU time. Although the DDA has a

lower complexity, the MSTRA is also very efficient (e.g., it

can solve the case with N = 1000 in less than 0.1 seconds).

B. On-line control

Next, we compare two on-line admission control algo-

rithms: one without idling and the other with idling. The

setting of the on-line experiments is the same as above.

Figure 3 compares the performance of these two on-line

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI25.7

3009

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 6, 2010 at 17:47 from IEEE Xplore. Restrictions apply.

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

 A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

T
a
s
k
s
 R

e
m

o
v
e
d

 Number of Tasks: N

DDA

MSTRA

Fig. 1. Performance comparison of two off-line algorithms

100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 A
v
e
ra

g
e
 C

P
U

 t
im

e
 (

s
e
c
o

n
d

)

 Number of Tasks: N

DDA

MSTRA

Fig. 2. Complexity comparison of two off-line algorithms

algorithms, in which the y-axis is the average number of

tasks removed. We see that idling results in removing about

28 ∼ 31% fewer tasks compared to no idling. Figure 4

compares the complexity of these two on-line algorithms in

terms of average CPU time. Obviously, on-line admission

control without idling tasks has a lower complexity because

it does not need to calculate the metric P (t, f) and the length

of idling. However, the algorithm with idling tasks is still

very efficient (e.g., it can solve the case with N = 1000 in

less than 0.9 seconds).

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

 A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

T
a
s
k
s
 R

e
m

o
v
e
d

 Number of Tasks: N

No idling

Idling

Fig. 3. Performance comparison of two on-line algorithms

VI. CONCLUSIONS

In this paper, we have removed the assumption that a

feasible solution exists in Problem (1) and formulated an

associated admission control problem for maximizing the

number of tasks processed which are guaranteed feasibility.

For the off-line admission control problem, we exploit an op-

timality property based on removing the “maximal shift task”

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 A
v
e
ra

g
e
 C

P
U

 t
im

e
 (

s
e
c
o

n
d

)

 Number of Tasks: N

No idling

Idling

Fig. 4. Complexity comparison of two on-line algorithms

and develop an efficient admission control algorithm, termed

Maximal Shift Task Removal Algorithm (MSTRA) which

can obtain an optimal solution in most cases. We further

develop an on-line admission control algorithm by utilizing

the MSTRA and a metric based on distributional information

for the next arrival task which is used to determine whether

it is beneficial to idle and for how long.

Problem (1) characterizes a single-stage DES. Multi-stage

systems studied in [8] face similar feasibility issues, which

are complicated by the coupling among stages. Our ongoing

work is aimed at studying the admission control problem in

such systems.

REFERENCES

[1] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Power-aware
scheduling for periodic real-time tasks. IEEE Trans. on Computers,
53(5):584 – 600, May 2004.

[2] G.C. Buttazzo. Hard Real-time Computing Systems: Predictable

Scheduling Algorithms and Applications. Kluwer Academic Publish-
ers, Norwell, MA, 1997.

[3] A. E. Gamal, C. Nair, B. Prabhakar, Elif Uysal-Biyikoglu, and
S. Zahedi. Energy-efficient scheduling of packet transmissions over
wireless networks. In Proceedings of IEEE INFOCOM, volume 3,
23-27, pages 1773–1782, New York City, USA, 2002.

[4] K. Jeffay, D.F. Stanat, and C.U. Martel. On non-preemptive scheduling
of periodic and sporadic tasks. In Proc. of the IEEE Real-Time Systems

Symposium, pages 129–139, 1991.
[5] J. Jonsson, H. Lonn, and K.G. Shin. Non-preemptive scheduling of

real-time threads on multi-level-context architectures. In Proceedings

of the IEEE Workshop on Parallel and Distributed Real-Time Systems,
volume 1586, pages 363–374. Springer Verlag, 1999.

[6] J.W.S Liu. Real - Time System. Prentice Hall Inc., 2000.
[7] J. Mao and C.G. Cassandras. Optimal admission control

of discrete event systems with real-time constraints. Tech-

nical Report, CODES, Boston University, 2007. See also
ftp://dacta.bu.edu:2491/TechReport/2007MSTRA.pdf.

[8] J. Mao and C.G. Cassandras. Optimal control of multi-stage discrete
event systems with real-time constraints. In Proc. of 45rd IEEE Conf.

Decision and Control, pages 1057–1062, Dec. 2006. (subm. to IEEE
Trans. on Automatic Control, 2007).

[9] J. Mao, C.G. Cassandras, and Q.C. Zhao. Optimal dynamic voltage
scaling in power-limited systems with real-time constraints. IEEE

Trans. on Mobile Computing, 6(6):678–688, June 2007.
[10] L. Miao and C. G. Cassandras. Optimal transmission scheduling for

energy-efficient wireless networks. In Proceedings of INFOCOM,
2006.

[11] D.L. Pepyne and C.G. Cassandras. Optimal control of hybrid systems
in manufacturing. In Proceedings of the IEEE, volume 88, pages
1108–1123, 2000.

[12] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
cpu energy. In Proceedings of the 36th Annual Symposium on

Foundations of Computer Science (FOCS’95), pages 374–382. IEEE
Computer Society, 1995.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI25.7

3010

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 6, 2010 at 17:47 from IEEE Xplore. Restrictions apply.

