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Abstract- We consider Discrete Event Systems (DES) in-
volving tasks with real-time constraints and seek to control
processing times so as to minimize a cost function subject
to each task meeting its own constraint. When tasks are
processed over a single stage, it has been shown that there
are structural properties of the optimal sample path that
lead to very efficient solutions of such problems. When tasks
are processed over multiple stages and are subject to end-to-
end real-time constraints, these properties no longer hold and
no obvious extensions are known. We consider a multi-stage
problem with not only stage-dependent but also task-dependent
cost functions over all tasks at each stage and derive several
new optimality properties. These properties lead to the idea of
introducing "virtual" deadlines at each stage except the last one,
thus partially decoupling the stages so that the known efficient
solutions for single-stage problems can be used. We prove that
the solution obtained by an iterative Virtual Deadline Algorithm
(VDA) converges to the global optimal solution of the multi-
stage problem and illustrate the efficiency of the VDA through
numerical examples.
Keywords: discrete event system, multi-stage system, optimal
control, real-time constraints

I. INTRODUCTION

A large class of Discrete Event Systems (DES) involves
the control of resources allocated to tasks according to
certain operating specifications (e.g., tasks may have real-
time constraints associated with them). The basic modeling
block for such DES is a single-server queueing system
operating on a first-come-first-served basis, whose dynamics
are given by the well-known max-plus equation

xi = max(xi 1, ai) + si(ui) (1)

where ai is the arrival time of task i = 1, 2, ..., xi is the
time when task i completes service, and si(ui) is its service
time which may be controllable through ui. Examples arise
in manufacturing systems, where the operating speed of a
machine can be controlled to trade off between energy costs
and requirements on timely job completion [11]; in computer
systems, where the CPU speed can be controlled to ensure
that certain tasks meet specified execution deadlines [6]; and
in wireless networks where severe battery limitations call for
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new techniques aimed at maximizing the lifetime of such
a network [10]. A particularly interesting class of problems
arises when such systems are subject to real-time constraints,
i.e., xi < di for each task i with a given "deadline" di. In
order to meet such constraints, one typically has to incur a
higher cost associated with control ui. Thus, in a broader
context, we are interested in studying optimization problems
of the form

min {Z Oi(ui)}
'Ul,.--,'UN i=l

(2)

s.t. xi =max(xi-, ai) + si(ui) < di, i 1, ..., N

where 0i(ui) is a given cost function assumed to be mono-
tonically increasing in ui, si(ui) > 0 is assumed to be
monotonically decreasing in ui, and all ai, di are known.
In general, this is a hard nonlinear optimization problem,
complicated by the inequality constraints xi < di and the
nondifferentiable max operator involved. Nonetheless, it was
shown in [8] that when Oi(ui) is convex and differentiable
the solution to such problems is characterized by attractive
structural properties leading to a highly efficient algorithm
termed Critical task Decomposition Algorithm (CTDA). The
CTDA does not require any numerical optimization problem
solver, but only needs to identify a set of "critical" tasks
in {1,..., N}. The efficiency of the CTDA is crucial for
applications where small, inexpensive devices are required
to perform on-line computations with minimal on-board
resources.

Extending the problem in (2) to a network environment,
where each node in the network is characterized by dynamics
of the max-plus form (1) coupled to those of other nodes,
presents many challenges. We consider in this paper a serial
multi-stage DES where tasks at the first stage satisfy

Xi,i = max(xzi 1, 1, ai) + si, 1 (ui, 1) (3)
and at the following stages j = 2, ..., M:

xij = max(xi1,j, i,j-1) + si,j(ui,j), j = 2, ..., AM (4)

In addition, tasks at the last stage satisfy the constraints
xi,,M < di. In other words, tasks are processed in series at the
M stages (with departures from stage j-1 becoming arrivals
at stage j) and the real-time constraint is imposed at the end
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of this M-step process. This turns out to be not a simple
extension of the single-stage problem (2). The decomposition
properties characterizing an optimal sample path of (2) no
longer hold and the coupling in (4) significantly complicates
any solution methodology. The same is true for single-
stage problems with no real-time constraints considered in
[3], which can also be efficiently solved as shown in [4]:
extending such problems to two or more stages becomes
significantly more difficult [5],[2].

In [7] we considered a two-stage system with homo-
geneous cost functions (i.e., different for each stage but
not for each task), in which we identified three structural
properties leading to an iterative Virtual Deadline Algorithm
(VDA) through which we can efficiently obtain a globally
optimal solution to the problem described above. In this
paper, we consider a multi-stage system with M > 2 and
with nonhomogeneous (i.e., different both for each stage and
each task) cost functions. We find that only two of the three
structural properties in [7] still hold in this case due to the
nonhomogeneous cost functions allowed. Nonetheless, the
main idea of introducing a "virtual" deadline at each stage
1, ...,M -1 still applies, so that the M-stage problem is
replaced by M single-stage problems of the form (2), which
we know can be very efficiently solved through the CTDA
in [8]. The key issue then is determining the appropriate
virtual deadline for each stage, which we will show requires
the solution of an additional, though simple, M-dimensional
convex optimization problem that exploits what we will refer
to as the "Q-chain structure" of the system. Finally, we show
that the iterative VDA converges to the global optimum of
the M-stage problem.

The paper is organized as follows. In Section II, we
formulate the M-stage problem with strict end-to-end real-
time constraints. In Section III, we establish two structural
properties of the optimal solution, leading to the proposed
VDA in Section IV and the proof of convergence to a global
optimum. We provide numerical examples in Section V and
conclude with Section VI.

II. M-STAGE PROBLEM FORMULATION

We consider an M-stage DES, as illustrated in Fig 1,
where a sequence of N tasks arrive at known times 0 <
a, < ... < aN at stage 1 and have known hard end-to-end
deadlines dl, ..., dN. The tasks are processed on a first-come-
first-served basis by M serial non-preemptive servers. Once
a task is finished at stage j-1, it immediately enters the
queue of stage j for j 2, ..., M. The dynamics describing
the process at stages 1, ..., M are given by (3) and (4),
where, by convention, x01 = ... = XO,N = -0c. The
deadlines d1, ..., dN are imposed so that xCi,M < di for all

1,..., N.

Task Stage 1 Stage M Task
Arrivals Departures

Fig. 1. A multi-stage system

Assuming si,j (ui,j) for all i, j are known monotonically
decreasing functions of ui,j , we will concentrate on control-
ling directly the service times si,j (ui,j can then be recov-
ered) for all i, j. We define vectors Si [Si1,j. SNJT
for j = 1, ..., M and formulate the M-stage problem:

z>z21 Oi,j (si,j) }
s.t. xi, =max(x i-,i,ai) + sii,,

xij = max (xi-l,j, Xi,j-) + si,j,
xi,M < di, i = 1, ..., N, j = 2, ...,~M;
si,j > O, i= 1, ...,~N, j= 1, ...,~M;
Xo,i = ...= XO,M

(5)

00.

We consider the cost functions 0,j (si,j) = 1i,jO (>L)
where ,Uj is the number of operations for task i at stage j
used to differentiate tasks and Oi (j) is the cost for each
operation of task i at stage j used to differentiate stages
(equivalently, we may think of controlling a processing rate
Pij = Pi,jlsi,j for a task whose requirement is expressed
as pi,j). The functions Oj(.) are assumed to be continuously
differentiable, strictly convex and monotonically decreasing,
which is consistent with most applications of interest. For
instance, in manufacturing systems the cost of operating
a machine is monotonically decreasing and convex in the
processing time of a part [11]; in wireless devices, the pro-
cessing time of a task is a convex monotonically decreasing
function of the voltage applied to its CPU and the energy
expended is monotonically decreasing and convex in the
processing time of a task [8].
As already pointed out, the M-stage problem above is not

a simple extension of the single-stage problem studied in [8].
It is much more difficult to solve for three main reasons:
(i) it inherits the difficulties of the single-stage problem
(described in [8]), (ii) there is an M-fold increase in the
dimensionality of the control variables, and (iii) the coupling
among the M stage dynamics causes the failure of the
structural properties exploited in single-stage problems. In
order to overcome these three difficulties and obtain efficient
solutions to problem (5), we explore two structural properties
of such M-stage systems in the next section.

III. OPTIMALITY PROPERTIES

A. Virtual Deadline Property

The first structural property we identify is one leading to a
partial decoupling of the M stages by introducing a "virtual"
deadline for tasks at stages j < M and showing that we can
replace problem (5) by a set of much simpler problems with
a weaker form of coupling between stages.
We begin by defining vectors Xi = [xl,j,...x,NJ]T for

j = 1,...,M, A = [al,...,aNlT and D [dl,...,dN]T. In
what follows, inequalities involving vectors should be under-
stood to apply componentwise. Next, we transform problem
(5) into an equivalent problem below by replacing the control
variables Si,..., SM by X1, ..., XM and incorporating the
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dynamics into the objective function, where XO = A:

min {J(X, ... XM)
X1 .. .,XM

EjI ? 1 Oi, (xij max(xij1, Xi- 1j)) } (6)

S.t. XM < D, xi,j-max(Xi,j_1,Si-l,j)> O, Vi,

The optimal solution of this problem will henceforth be
denoted by (X, ..., XM).
We can see that the stages in the problem above are

strongly coupled because of the end-to-end real time con-
straints. Now imagine that there exist virtual deadlines for
all tasks at stage j 1, ...,M -1 and that every stage can
independently optimize its control to meet these virtual dead-
lines. Then, the multi-stage problem (6) would be reduced to
M single-stage problems studied in [8]. Let the arrival time
vector at stage j 1,...,M be Fj = K1Y.. TYN,] and
the deadline vector be Aj = [61,j, 6N,Nj] We then define
for each j the single-stage problem:

Xj4>(Fj,{JA(X j)

ZN 1Si; (xij- max(yi,j, xi-j) } (7)

where 4 (Fj, Aj) is the feasible space of Xj defined as:

4)(Fj, Aj) = {Xj :Xj < Aj;
xi,j -max(7i,j, xi- ,j) > 0, i

Let
Wj (Fj ' Aj) miin Jj (Xj I)

Xj C4>(Fj,Aj)
Since these single-stage problems can be efficiently solved
by the CTDA developed in [8], solving M separate single-
stage problems is much easier than solving the multi-stage
problem (6). To establish the connection between the M
single-stage problems and the multi-stage problem, we define
the virtual deadline problem combining these M problems,
with AM = D:

miin {L(Ai,. ..,AM ) - Wj(Fj, )}
Al,)...AM 1 j=

s.t. F, = A; Fj+1 arg miin JJ(XJ F4j > 1.
X3c4>(Fj,Aj) J(Aj

The following lemma derives a property of the single stage
problems (7). This will help in proving Theorem 1, where a
connection between the original multi-stage problem (6) and
the virtual deadline problem is established.
Lemma 1: Let X* = A. The optimal solution of the

problem(6), (X1*, ..., XM), satisfies for j 1, ..., M -1,

Xi = arg min x*
{ Ji(XJ X _1)}

X3c4>(X3 1,X)
(The proofs in this paper are omitted or just sketched due

to space limitations; the full proofs can be found in [9].)
Theorem 1: Let AM = D, Xo = A and X

arg minxj 1 A(kj ,A*) )Jj(Xj )} for j = 1, ...,M.

Then, (Xi, ...,XM) is the optimal solution of problem (6)
if and only if (A *, ...,AM -1) is the optimal solution of the
virtual deadline problem.
Proof: " ": Assume on the contrary that X-j Xj* for
some j. Then,

L(A*, ...,A -1)

M

Lilji(-kjlXj-1) = J(Xkl .. -kM)
Since Xj :t Xj* for some j, we have

min TL(A, ...- AM-,)
Aj1,..,AM1 (8)

J(X1, ...,XM) > J(X, ...,XM)
We consider Aj = Xj* for j 1,..., M -1. By Lemma 1,
we have for the virtual deadline problem

L(X1,.. ,XM-1 = , 1J(Xi* IXj-_1)

Using the equality above, we have

min {L(A\, *--, iAM-,)}
<L\ X,*l ..

X,
...

M-1
< L(X1, ,XM 1) = J(Xi,, M)

which contradicts (8).
"<=": See [9]. U

Based on these results, the optimization of the multi-
stage problem (6) is equivalent to first finding the optimal
virtual deadlines (A*1. AM-1) and then solving for M
single-stage problems. Since the latter can be efficiently
solved by the CTDA, finding A1, ..., A*M1 in the virtual
deadline problem becomes the key to solving the multi-
stage problem. Obtaining A1,..., AM-1 is facilitated by an
additional property discussed next, in which we establish
a necessary and sufficient condition for optimality in this
problem.

B. Q-Chain Property
The main result of this section is Theorem 2, where we

establish a necessary and sufficient condition for optimality
in problem (6) that involves a sequence of partially coupled
problems defined below. We will refer to these as "Q
problems" and collectively as the "Q-chain". The control
vector for each Q problem is

Zi = [-ij,1 ,i-1 ,2 , * **, Xi-M+ 1,M]'
defined for i = 0(,...,IN + M:

min {Q(ZjlZj_1,Zj+l)

-E 1 i±+lj j (zi,j- max(zi i,j- 1, Zi- ,j))
+ Q1Oi±+2-j,j (zi+,j- max(zi,j_1, Zi,j)) }

S.t. zidj-max(zi± 1,;-ij) > o, V)

zi+,,j -max(zi,j_1, Zi,j) > °, v

Zi,M < di-M+1.
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where zi,o = ai+l for i = 0, ...,N + M -1. From the
definition of Zi, we can see that Xj can be recovered by
extracting the jth entry of each vector ZJ,...,Zj+N-1 as
shown in Fig. 2. Note that the Zi vectors introduce two sets
of dummy variables corresponding to the lower triangular
matrix and the upper triangular matrix shown in Fig. 2. These
two sets represent the tasks arriving before task 1 and after
task N respectively, which are not included in the original
problem. In order to eliminate the influence of these dummy
variables on our problem, we set, for the lower triangular
matrix elements, di = a, and let xij be arbitrary constants
smaller than a, for i < 1; that is, we force all tasks before
task 1 to leave before a, so as to decouple them from tasks
1, ..., N. Similarly, for the upper triangular matrix elements,
we set ai = dN and xij are arbitrary constants larger than
dN for i > N; that is, we force all tasks after task N to
arrive after dN so as to decouple them from tasks 1, ..., N.

.X t ' ' / '\

'I =\
\ ,
. ,

I XtllI n X
r .f I_

....... .............................

III

,
I I *

\ XlM,m %s g-M

Parameter Variable

I I

I I
I X.I

I .
....
I I

M X}M+

Fig. 3. Illustration of Q Problem

|+ '(I1,1 ~XN1j CRI, XN+2,1 .. XN+M-1,1

(ZO
- X12 *XN22 sx* ": XN+2,M-1

9 -+1MX-1M 9 X1M * * XN,M XNYhMJ
DOummy Variables ml

Fig. 2. Relationship between (Zo,...,ZN+M) and (X1,...,XM)

The significance of the ith Q problem can be
explained as follows. For a single-stage system, we

fix the departure times of the previous and next task
relative to task i and then solve a scalar problem to
determine xi,1 C [max(xi i, , ai), min(xi+±,i, di)]
minimizing the total cost incurred by tasks i and
i + 1 alone. When there are M stages (see Fig 3),
we consider the departure times of M consecutive tasks
i,.. ., AlM + 1 at stages 1, ... , M respectively, that is, use

Zi [Xij i-12, ***, M+l,M]T as the control vector, and

fix the departure times of the previous and next task at each
stage, that is, treat Zi- [Xi-lj,,Xi-2,2, ..., i-M,M]T
and Zi+ = [Xi+1,1,Xi,2,...,Xi-M+2,M]T as parameters.
We then solve an M-dimensional problem to determine
Xi,1 C [rmax(xi 1,1, ai), min(xi+±,i, xi,2)], Xi-1,2 C
max(Xi-2,2, Xi-1,1), min(Xi,2, Xi-1,3)],....*, Si-M+i,M C

max(xi- M,M , xi-M+1,M-1 ), min(Xi- M+2,1,~di-M+1)]
minimizing the total cost incurred by tasks i and i + 1 at
stage 1, tasks i- land i at stage 2,..., tasks i-M + 1

and i-M + 2 at stage M.
In order to obtain our main result, we will need the next

two lemmas.
Lemma 2: Problem Q (Zi Zi- 1, Zi+) is strictly convex

in Zi and problem J(X1, ..., XM) is strictly convex in
X1i ... X M.

Lemma 3: Let Yj [Yl,j, ,yN,J]T, and suppose

[¾1T, ..., YT]T is a feasible direction for problem
J(Xl, ..., XM). Consider the directional derivative along
[YiT ..,yTA]T, J'(Xi, ,XM; Yl, ... YM). Similarly, let

Vi = [Yi,1, .,_iM+l,M]T, where Yi,j = O for i < 1 or

i > N, and consider the directional derivative along Vi,
Q'(Zi; Vi Zi_ , Z+±1). Then

J (X, ..., XM; Yl, ,YM)

E 'M-Q1(Z';V'|z'-1,Zi+1)-
LeZ

*

= [z,,,M+J,M]T for i' = O, ..., N + M be
the solutions of the Q problems we have defined and recall
that X* XM can be recovered from ZO,..., ZNM as

shown in Fig. 2. We then establish the following result.
Theorem 2: X1, ..., XM is the unique global optimum of

J(Xl,...,XM) if and only if

Z, = arg min{Q(Zi Zi- 1 Z ±+1)}

for i = 1, ...,N+M -1.
Proof: " \ ": [Sketch only] First, from Proposition B.24(f)
in [1] and Z? = argminz, {Q(Zi Z* 1,Z±+1)}, we can

prove that there exists Gj [g=,j, ...,gN,J]T such that

L-1Gj (Xj_-X3) > 0 (9)

Second, from Proposition B.24(a) in [1], we can prove that

[G, ...GT] C aJ(X, ..., XM) (10)

where &J(X1, ..., XM) is the subdifferential of
J(X1, ,XM) at Xl, ...,~XM

Third, from (9), (10) and Proposition B.24(f) in [1],
it follows that X1, ..., XM is the global optimum of
J(X1, ...,XM).

Finally, since J(X1, ..., XM) is strictly convex by
Lemma 2, X1, ..., XM is the unique global optimum of
J(X1. XM).
"<=": See [9].
Theorem 2 provides a way to determine the optimality of

problem J(X1,..., XM) by solving a set of M-dimensional
convex optimization problems. Then, from Theorem 1, if we
can find some Al,-., AM-1 which result in the optimal
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departure times X21, ..., XM that satisfy the property in
Theorem 2, then these A1, ..., AM- 1 must be the optimal
solution of the virtual deadline problem. Thus, combining the
two theorems, we can determine the optimality of the virtual
deadline problem. The final remaining question, which is
addressed in the next section, is how to efficiently find the
optimal A 1, ...,AM- 1

IV. VIRTUAL DEADLINE ALGORITHM

In this section, we develop the Virtual Deadline Algorithm
(VDA) to derive A1.A*- 1 efficiently. The VDA is out-
lined in Table I, where k is the index of the current iteration.
In every iteration, the single-stage problem in step 2 is very
efficiently solved by the CTDA [8] and Q(ZlZ4 1,Zk )
in step 3 is an M-dimensional convex optimization problem
which can be efficiently solved. Note that the vector Ak+l
in step 4 is extracted from the solution Ak±l of the jth
Q problem obtained in step 3 as shown in Fig. 2. Finally,
(X1, ...,X) obtained in step 5 is guaranteed to be the
global optimum in our original problem as shown in Theorem
3 below.

TABLE I

VIRTUAL DEADLINE ALGORITHM

Step 1: k = 0, Ak = D, for j 1.M;J
Step 2: Xk argminX A(x k){)Jj(X{jJX i)}' for

j 1.M, where Xk = A;

Step 3: Ak+l argminz, {Q(Z1jZk4, Zk1)Q for i

1.N+M- 1,whereA+l = [6k+l1. -M ]T

Step 4: if A\k+-Ak /M < e,then k= k+1 and Goto
Step 2;

Step 5: A* Ak+l, X7 = A* for j
1 M -1 and XM

argminxmc4(x 1,D) {JJ(XmIXm- )}

vector (X1, ..., X-M- 1), which is bounded from below
by (X1, ..., XM 41). Xk must converge to kM =

argminxm<D {JM(XMkkM-1)}. So, we have for all i =
1,...,N+M -1

Zi argminzi Q(Z|Zj-i-Zi+l)} (14)

Using (14) and Theorem 2, it follows that Xj = Xj* for
j 1,..., M. U

V. NUMERICAL RESULTS

A. Example
We have applied the VDA to a 3-stage system with N = 8,

arrival time vector A = [1 2 4 6 7 8 9 12]T, deadline
vector D = [20 22 24 26 29 31 33 38]T, number of
operations vectors ,ul = [1 3 1 4 3 3 1 3]T, §2 =

[2 3 1 1 1 3 2 3] T,P3 [2 1 3 2 4 2 5 2]T, and cost
functions Oi,j(si,j) = kj pi,j/(si,j/pi,j + 0.001) where
K = [k1 k2 k3] = [3 2 4]. The termination condition in
step 4 of the VDA is set so that j 1Ml j1Aj+l- /M

-1z7(1jk 6klj )/N/M < e = 0.001. The optimal

3-stage System
- 4 -

<

0=,2

0 5 10 15 20 25
Time

Z FH H

0 1

co0
0

¢, 2-

's 1
0

0

5 10 15 20 25
Time

10 15 20 25
Time

30 35 40

30 35 40

30 35 40

Fig. 4. Optimal sample path obtained by the VDA

To establish Theorem 3, we first need two lemmas:
Lemma 4: If A' > Ak+1 for j 1, ..., 1, then

Xk > Xk+1 forj 1, ...,M, k = 1, 2, ...
Lemma 5: If Z1 > Zk+1 and Z+1 > Z+1, then
\k+1 > kA+27k A mono
Theorem 3: Xk and A\ monotonically converge to X}

forj 1, ...,M -1.
Proof: [Sketch only] First, we prove the inequality below
for k > 0 by induction using Lemma 4,

sample path obtained by the VDA is shown in Fig. 4, where
the y-axis shows the number of tasks in each stage and the
x-axis is the time line. Fig. 5 shows the optimal processing

3-stage System

01 1

0 5 10 1 5 20 25
Time

-, 0.5

O0 D
Ak > Ak+j1, j = 1, ..., M-1 (1 1)

1 5 20 25
TimeSecond, we prove the inequality below for k > 0 by using

30 35 40

30 35 40

(1 1),
Ak > Xk > Ak+l j = 1, ...,M-1J J J'3~ (12)

Third, we prove the inequality below for k > 0 by
induction using Lemmas 1, 4, 5 and Theorem 2,

Ak > X} and Xk > X* j = 1,...,M-1J J J J (13)

Finally, from (12) and (13), both (Ak, ..., A -1) and
(Xk X... xk -1) are guaranteed to converge to the same

z

- 0.5

0
0 40

Time

Fig. 5. Optimal processing rate obtained by the VDA

rates, where the length of a block is the service time of the
corresponding task, and the number in a block is its number
of operations.
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B. Complexity

We have tested the complexity of the VDA in terms of
CPU time and number of iterations. In these tests, the VDA
was programmed using Matlab 7.0 on an Intel Pentium4
3.06GHz, 1.0 GB RAM machine. We tested cases where N
varied from 100 to 1000 in increments of 100 and M varied
from 2 to 8 in increments of 1. We randomly generated 10
samples for each combination of N and M, in which task
interarrival times are exponentially distributed with mean 4,
di-ai is uniformly distributed over [5M, 5M+2] and pij, kj
are selected from [1, 2, 3, 4] with equal probability. For
each case, we recorded the elapsed CPU time and required
number of iterations, finally averaging them to obtain the
corresponding performance.

Fig. 6 and Fig. 7 show the average CPU time (in seconds)
as a function of the number of tasks N and the number of
stages M. Fig. 8 shows the average number of iterations also
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Fig. 6. Average CPU time of VDA as a function of N
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as a function of the number of tasks N and the number of
stages M. We observe that the VDA complexity scales with
N, while the number of iterations is insensitive to N.

VI. CONCLUSIONS AND FUTURE WORK

As pointed out in the Introduction, it is difficult to extend
optimal control problems for DES with real-time constraints
from a single stage to M > 2 stages. We have derived two
optimality properties that lead to the idea of introducing
"virtual" deadlines at stage 1, ..., M -1, and then solving
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partially decoupled single-stage problems whose solutions
are known to be efficiently obtained. Based on this idea,
we have developed an iterative Virtual Deadline Algorithm
(VDA) and shown that it converges to the global optimal
solution of the M-stage problem. In practice, task arrival
times may not be known at the time problem (5) needs to
be solved, in which case one must proceed by repeatedly
solving the problem as new arrival information is obtained
or by estimating future arrivals or by relying on stochastic
optimization techniques making use of distributional infor-
mation regarding the arrival process. Our ongoing work is
focusing on such cases, while also exploring generalizations
of the system setting to arbitrary networks rather than the
tandem case considered in this paper.
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