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Model-Based Design of a Dynamic Voltage Scaling Controller
Based on Online Gradient Estimation Using SimEvents

Wei Li, Christos G. Cassandras, and Michael Clune

Abstract - This paper demonstrates SimEvents , a model-
based design and simulation tool, and its application in assisting
power awareness micro-controller design. A Dynamic Voltage
Scaling (DVS) controller based on online gradient estimation is
proposed. Simulation models are built in SimEvents, which
proves the effectiveness of the control scheme.

I. INTRODUCTION

ecent developments in embedded systems and
radio-frequency communication enable the application

of distributed control systems over a wireless network.
However, important issues arise during the design and
operation of such systems, such as multi-process scheduling
ofthe Electronic Control Unit (ECU), real-time control over a

network and power management.
Software tools are needed to assist the effective analysis

and solution of such problems. The concept of Model-Based
Design and related software tools fits these requirements and
becomes commonly accepted by industrial and scientific
communities.

This paper presents an application of on-line gradient
estimation techniques (i.e. Infinitesimal Perturbation
Analysis or IPA) to the power control of ECUs [1]. A
Dynamic Voltage Scaling (DVS) controller is designed and
evaluated using SimEvents'TM, a discrete event simulator in
the MATLABR/ SimulinkR family. By monitoring the current
workload of the system and performing on-line gradient
estimations, this DVS controller dynamically updates the
input voltage of the ECU of the device, so that the power

consumed by the ECU is optimized and at the same time the
quality of service measured by the average system time of a

job is guaranteed.
SimEvents contains libraries and block sets (e.g. Queues,

Servers, Gates and Switches) that model the basic
components of a Discrete Event System (DES). By
inter-connecting these building blocks, one can easily model
a DES such as a communication network or a manufacturing
system. SimEvents can also be jointly used with Simulink and
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facilitate hybrid system design and simulation.
This section first introduces the IPA technique and its

importance in the design and performance optimization of
discrete event systems. Then, the motivation for DVS is
briefly reviewed as the background for the proceeding
sections that follows.

A. Sensitivity Analysis and the IPA Technique
During system design, maximizing performance while

minimizing cost are always the most critical objectives.
Performance is normally measured by the quality of service a

system can supply. For a DES, commonly applied
performance metrics include average system time, utilization
and packet loss rate. Cost, on the other hand, is usually
measured by the expenditure to construct and operate the
system or the resources that the system utilizes, such as

communication channels, space, time and energy. When
designing a system, we face the question of how to assign
limited resources and maximize the performance of the
system.

For a complex engineering system, simulation is a

powerful tool to assist the design process. Through
model-based design and simulation, one can efficiently
estimate the performance and corresponding cost of a system,
and obtain accurate insights from the results. However, a

well-recognized difficulty in model-based design is the
parameter tuning of the systems. Since the operation of a

system may depend on the configuration ofmany parameters,
and traditional simulation techniques can only replicate a

single trace of the system at a time, it is always a painful task
to repeatly execute the simulation and find a set ofparameters
that optimally fits the design requirements.
When designing a DES, the optimal parameter

configuration issue becomes more severe. Since a DES is
normally subjected to stochastic inputs and random noise,
considerably greater effort (in terms of simulation time and
computation complexity) is needed to obtain a precise
evaluation of the system. In addition, sensitivity information
of performance metrics cannot be easily obtained through
approaches that are commonly used in continuous systems.
The seemingly universally applicable ''finite difference"
approach is both time-consuming and error-prone.

Infinitesimal Perturbation Analysis (IPA) techniques have
proved to be an effective tool to resolve the optimal parameter
configuration problem. By using IPA, one can obtain
sensitivity information of the parameterized system from a
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single simulation. With such sensitivity information, we
obtain from a simulation not only the current performance of
the system, but also a first order approximation of the
performance metrics as a function of the configurable
parameters.

In this paper, we will present an application of the IPA
technique to the DVS of ECUs. To offer a background, the
rest of this section goes over the basic concept of DVS.

B. Dynamic Voltage Scaling
Today's technology enables the integration of computation,

communication and control into a compact and economical
device. For example, emerging sensor networks can monitor
the environment and report collected data wirelessly.
At medium load, a wirelessly connected sensor node is

supposed to work consecutively for 1-2 years without
recharging. This implies that the power consumption of the
electronic device must be carefully managed. Statistics show
that the ECU accounts for about 50%0 of the total power
consumption of these devices [2]. For this reason, the power
management of the ECU becomes a common interest of chip
manufactures, device designers and software providers.

Traditional approaches use on-off control to manage the
duty-cycle of the ECU. According to this approach, when the
workload of the ECU is low or when it is idle, the processor's
circuit will be completely shut down. When a new job arrives,
the processor is awakened and the job is processed at full
speed.

In addition to on-off control, the DVS techniques further
manage energy usage by changing the working frequency (i.e.
speed of processing) of the processor. In this way, 50°0 more
energy is saved than the case where only on-off control is
applied.

The basic motivation of DVS power control is easy to
understand. When the workload of the ECU is low, the DVS
controller lowers the input voltage of the processor so that it
works at a relatively slow pace, thus less energy is needed.
Whereas when the workload is high, DVS controls the
processor working at a higher frequency, so that the QoS can
be ensured. However, due to the stochastic nature of job
arrival processes and the randomness of the workload of
incoming jobs, the DVS controller needs to be carefully
designed so that it can lower power usage without impairing
the overall performance of the system [3].

The remainder of the paper presents the design of a DVS
controller based on IPA gradient estimation. The queueing
model and DVS controller are discussed in Section 2.
Simulation results and comparisons to analytical solutions are
shown in Section 3.

II. QUEUEING MODEL AND DVS CONTROLLER

As shown in Fig. 1, the ECU of a portable device is
modeled as a single server queueing system. Incoming jobs

are stored in a buffer that can be modeled as a non-preemptive
FIFO queue with infinite capacity. The arrival process is
stochastic. The inter-arrival times are random variables that
are independent and identically distributed (i.i.d.). Except for
the i.i.d. property, we assume that we know nothing about the
arrival process, neither the distribution of the inter-arrival
time, nor the rate of arrival.

Job arrivals >* ] [6 *| Job deDartures

Buffer ECU

Fig. 1. Queueing Model of an ECU

In addition to the randomness in the arrival process, the
size (or workload) of each individual job is random. We
assume that workloads ofjobs are i.i.d. random variables with
a known distribution. For example, the workload of ajob may
be an exponentially distributed random variable, with average
load of 106 operations.
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Fig. 2. Processing speed of an ECU at different voltage levels
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DVS Cotitroller

Job Arrils ECU AA 9S85J35

Fig. 4. Model-based design ofDVS controller using SimEvents and MATLAB/Simulink

A. ECUModel
The ECU can be modeled as a single server with adjustable

processing rate. As presented in Section I, DVS manages
power usage through dynamically changing the processing
rate. For current devices, this can be realized by controlling
the input voltage of the processing unit.

Let us use a specific product as an example. According to
the data sheet of AT9OS8535, the speed of processing can be
selected from 0-8MHz with corresponding input voltage
2.7V-6.OV. It is shown that the processing speed is a function
of the input voltage. For the specific processor, this function
is given by,

V ,or f =-1- (1)
1lc1f ci V)

Here, f is the processing speed (in MHz), V is the input
voltage (in Volts). V, is the device's threshold voltage

(minimal input voltage), and cl is a device dependent
constant. For AT9OS8535, v =2V c, 0.0833. Fig. 2

illustrates the functional relationship between V andf
On the other hand, the energy the processor consumes to

process a job can be expressed by the following formula,

P=c2NV2 (2)

where c2 =0.4167 x 10-3 is a device dependent constant, N is
the number of operations needed to process the job (in
106 operations), V is the input voltage and P is the energy
usage (in Joules). For a job with IM operations, Fig. 3
presents its energy usage at different voltages.

The processing speed model together with the energy
model (i.e., eq. (1) and (2)) enables DVS power control. For
some job with IM operations, when input voltage increases
from 4V to 6V, the energy usage changes from 6.67mJ to
15mJ at corresponding processing speeds of 6MHz and
8MHz.

B. SimEvents Model ofthe DVS Controller
Fig. 4 is a SimEvents/Simulink model of a DVS controller

for the single server queueing system presented in figure 1.
The SimEvents is a "queues and servers" style discrete event
simulation extension of the MATLAB/Simulink product
family. It allows entities to be passed from block to block to
represent the movement ofjobs through the microprocessor.
This model generates entities using the Time-Based Entity
Generator using an intergeneration time from its 't' port. The
generated entities are stored in the FIFO Queue block before
being delayed by the Single Server block and subsequently
being sent to the Entity Sink. The time for the entity to pass
through the FIFO Queue block and Single Server block is
marked by the Start Timer and End Timer blocks. This time
is used in conjunction with the counts of entities passing
through other blocks by the DVS optimizer to calculate
performance metric below (see eqs. (3) through (9)). The
perturbation is supplied by the Random Service Time
subsystem block that varies the service time used by the
Single Server block.

C. DVS Controller based on IPA
When operating, the DVS controller will monitor the

current workload of the processor and dynamically adjust the
input voltage (thus the processing speed) of the processor.

In order to offer energy savings and ensure QoS at the same
time, an optimizer is constructed to find the optimal input
voltage. During optimization, the performance metric is given
by,

J(V) = wP(V) + S(V) (3)

J(V) comes from two parts: (i) P(V) -the average energy
consumption of a job, and (ii) S(V) -the average system time
of a job. In (3), w is a weighting parameter. It can be thought
of as the price of energy relative to processing delay.
By using (3), we can optimize energy usage without
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impairing the QoS offered by the processor (i.e. if there is no
S(V) term in (3), the optimized input voltage will be the
smallest feasible voltage level, which may incur an
unacceptable delay).
We assume that the average workload of a job is IM

operations. By combining (1), (2) and (3), the performance
metric can be rewritten as,

J(0) = WC2 ( +S(0) (4)

Note in (4), we replace Vby 0--the average service time of
a job ( 0 = J/J). We perform this substitution for mathematical
simplicity. Because of the one-to-one mapping between 0
and V, this substitution does not change the nature of our
optimization problem.

According to the necessary condition for optimality, when
minimizing (4), the optimal solution must satisfy

dl
dO

2wclc2Vt2O dS
- + 0dO(0 c1)3 dO (5)

During simulation, if we can estimate dS/dO and derive

dJ/dO, a gradient method then can be applied to find a 0 that
satisfies (5). In the DVS controller, we adopt a gradient
method with constant step size. That is, in the kth iteration of
the optimization, start from 0, we derive a new average

service time by,r ]

Okl =0 AL (6)

Where A is a constant step size (A = 0.00 1 in the proposed
DVS controller). (6) is the well-known "steepest decent
method" and by applying it, it is guaranteed that

J(ok+ ) < J(Ok). In (6), the dJ/dOk is estimated using,

dI 2wcc2V t F dS (7)
rd0 (ok c1) dOjkA 7

with [dS/dOk]JPA being the gradient estimate generated by
an IPA estimator [1]. By combining (6) and (7), we can
summarize the iterative process to find an optimal 0 (and
thus V) to minimize the average cost of ajob (i.e. j(.) in (3)
and (4)).

TABLE I
DVS CONTROL ALGORITHM DESCRIPTION

At t= to =0 Start simulation with an arbitrary initial
input voltage V0 and corresponding
average service time 00

Upon the
departure of
the kth job
(t 't,)

* Derive [dS/dok ]JPA based on new

departure information
* Obtain [dJ/doSk ] by using (7)

K-' * Update input voltage Vk_l andaverage
service time °k+l by using (6)

... Process repeats until the end of the simulation ...

III. SIMULATION RESULTS

This section derives a theoretical optimal solution of (4) by
assuming both the inter-arrival time and the workload of each
job are exponential distributed random variables (thus the
resulting queueing model is M/M/1). Then simulation results
are compared with the corresponding theoretical values. It
can be shown that the proposed DVS controller converges to
theoretical values.

A. Theoretical Solution
When the queueing system is M/M/1, (4) can be rewritten

as,

J(O) =-KC r; + 1 (8)

Where A is the arrival rate ofjobs. (5), on the other hand,
can be expressed by,

dJ 2wclc2Vt2O 1
dO (0-c1)3 (I_AO)2

0 (9)

It can be seen that (9) is reduced to a high order polynomial
equation. A theoretical solution can be derived for arbitrary
arrival rate. Here, we give some of the theoretical solutions.

TABLE II
THEORETICAL RESULTS

A (Jobs/s) V* (Volt) 0 * (s) f* (MHz)
6.85 6 0.125 8
3.88 4 0.167 6
0.73 3 0.25 4

The parameters we adopted in (9) are: w=100, cl = 0.0833,

c2 =0.4167 x10 -3, Vt = 2 and we assume that the average
size of a job is IM (lx 106)operations.

B. Simulation Results and Comparison
The designed DVS controller and IPA estimator are

constructed using SimEvents. The following table compares
the optimal solution we obtained during simulation with the
theoretical value. The simulated and theoretical values are
very close demonstrating that SimEvents and Simulink can be
used to find the optimal voltage for a wide range ofjob arrival
rates.

TABLE III
COMPARE SIMULATION RESULTS WITH THEORETICAL VALUES

A (Jobs/s) VSimu V* oSimu 0 * (s)
(Volt)

6.85 6.014 6 0.1249 0.125
3.88 3.996 4 0.1668 0.167
0.73 3 3 0.25 0.25

Fig. 5 illustrates the convergence of ECU input voltage
to the theoretical value during a simulation.
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Fig. 5. Compare simulation results with theoretical value

IV. CONCLUSION

This paper demonstrates that SimEvents can be used to
design microprocessor controllers that optimize power usage
using the variations inherent in the inter-arrival time ofjobs.
The result shows the convergence of the voltage value to the
theoretical optimum, as expected by the fact that IPA
provides unbiased estimates. Note that it is only in the simple
M/M/1 case that a theoretical value for j(O) can be evaluated.
SimEvents and IPA, on the other hand, are not dependent on
such modeling assumptions and may be used for general
inter-arrival and processing time distributions and provide
information such as that shown in Fig. 5. These results are
also an indication that IPA techniques can be applied in
SimEvents to more complex models to efficiently find
optimal values, determine sensitivity to changes in inputs
values, and observe convergence properties.
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