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COMPLEXITY

PHYSICAL
COMPLEXITY

STOCHASTIC
COMPLEXITY

Christos G. Cassandras

NUMERICAL
COMPLEXITY
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THREE FUNDAMENTAL COMPLEXITY LIMITS

1/T12 NP-HARD
LIMIT LIMIT
G
@ Tradeoff between :

GENERALITY and EFFICIENCY \CI.E‘
of an algorithm

CH [Wolpert and Macready, IEEE TEC, 1997]

NO-FREE-LUNCH
LIMIT
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THREE FUNDAMENTAL COMPLEXITY LIMITS

.NP-HARD
AMIT

LIMIT
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A “BARGAIN” EXAMPLE
USING
SAMPLE PATH ANALYSIS



A COMPLEX SYSTEM IN [0, 4]

xﬂ(t)

IX: f(u,t;6’)/

I f UNKNOWN
Christos G. Cassandras CODES Lab. - Boston University




A COMPLEX SYSTEM IN [0, 4] CONTINUED

PROBLEM: Determine & to minimize:
T
31(0) = || L(x(®):0)dt
subjectto X = f(u,t;0)

I Random f —

N

® «— Random
Events
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A COMPLEX SYSTEM IN [0, 4]

CONTINUED

0

< G > -

s AL .
or-_ e,

’ a(t)- B(t)

x(t) =0, a(t)— B(t) <0
x(t) =8, a(t)- A(t)>0

otherwise

WORKLOAD

Decrease &
to keep low
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A COMPLEX SYSTEM IN [0, 4] CONTINUED

PROBLEM: Determine @ to trade off LOSS vs WORKLOAD:

B e [0 duplf ]
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SENSITIVITY ANALYSIS

Try and get :

dL.

LOSS Sensitivity:
déo

WORKLOAD Sensitivity: ddQ(;
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SENSITIVITY ANALYSIS - RESULTS

» O(6) = set of periods with at least one overflow interval

UNBIASED
do = _‘(D(@)‘ ESTIMATE

dL, E[%}:EE[LT]
do | d

» LOSS Sensitivity:

» 1, = time between first overflow and end of period, ke ®(6)

ZEE[QT]

UNBIASED [IeN
» WORKLOAD f{ E[ }

ESTIMATE do

No knowledge _of

detailed dynam\c-s,t- e pr———
stochastiC characters :eré :
or even model parame
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THE MORAL...

» Often, partial knowledge of system dynamics is adequate
to allow useful inferences from observed state trajectory
data; in particular: SENSITIVITY INFORMATION

» This “bargain” applies to a large (but not universal) class
of problems; otherwise, the NFL limit gets you!

> What about this system with BERTCRIRNA] ?

m=) Similar results, but more info.
needed regarding model
parameters

Feedback

Christos G. Cassandras CODES Lab. - Boston University



DECOMPOSITION
AND
ABSTRACTION



HIERARCHICAL DECOMPOSITION

FLIGHT PLAN

COMMANDS,
RANDOM
EVENTS

AIRCRAFT

FLIGHT
DISCRETE-EVENT DYNAMICS

PROCESSES

PHYSICAL
PROCESSES
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HIEARARCHICAL DECOMPOSITION CONTINUED

Diff. Eq’s, Flows, LP

A
l _ Automata, Petri nets,
Minutes - Weeks DISCRETE-EVENT Queueing, Simulation
I PROCESSES l

PHYSICAL
msec - Hours PROCESSES

Christos G. Cassandras CODES Lab. - Boston University

' EQ’s,
ailed Simulation



HYBRID CONTROL SYSTEM

What exactly
does that mean?

N

@ DISCRE
PROCESSES

— PHY?S
PROC
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WHAT'S A HYBRID SYSTEM?

. , TIME-DRIVEN
= o = Z>,U ,t —
21 = 01(z1, Uy, ) 2 =0(Z. Uz, DYNAMICS

EVENT-DRIVEN
DYNAMICS

More on modeling frameworks, open problems, etc: [Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000]
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HYBRID SYSTEMS IN COOPERATIVE CONTROL

RN

Falijah-
Al Hamamyah"""a iR

PR EVENT threat sensed ol {

TIME-DRIVEN
DYNAI\/IICS
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HYBRID SYSTEM IN MANUFACTURING

Key questions facing manufacturing system integrators:

« How to integrate ‘process control’ with ‘operations control’ ?

\ y -
Q) -
N .
\
—

PERATIONS CONTROL

3 Industrial EngmeWoﬂa

ntrol
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HYBRID SYSTEM IN MANUFACTURING CONTINUED

Throughout a manuf. process, each part is characterized by

A PHYSICAL state (e.g., size, temperature, strain)

A TEMPORAL state (e.g., total time in system, total time to due-date)

PHYSICAL Time-driven NEW

Dynamics PHYSICAL
STATE y L

5 — ESS —=

TEMPORAL NEW

STATE : TEMPORAL
Event-driven — STATE

Dynamics
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DECOMPOSITION
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MORE COMPLEX

> EVENT-DRIVEN
SYSTEM

aDSITION
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LESS COMPLEX



ABSTRACTION
(AGGREGATION)



MORE COMPLEX

ZOOM OUT

EVENT-DRIVEN
SYSTEM

CTION
ATION)
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LESS COMPLEX



ﬁ— MORECONPLEX

TIME-DRIVEN
SYSTEM

‘“I
N\ EVENT- DRIVEN
ION
e aaTion: _ <=BEEOMPOSITION

% SYSTEM
Christos G. Cassandras CODES Lab. - Boston University
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WHAT IS THE RIGHT ABSTRACTION LEVEL ?

TOO FAR...

model not
detailed enough

TOO CLOSE...
too much
undesirable
detail
JUST RIGHT...
good model CREDIT: W.B. Gong

Christos G. Cassandras CODES Lab. - Boston University



DECOMPOSITION IN
OPTIMAL CONTROL



OPTIMAL CONTROL PROBLEMS

Physical State, z

Temporal State, x

» Get to desired final physical state z,, in minimum time x,,, subject to N-1 switching events

 Minimize: - deviations from N desired physical states (z; - g;)?
- deviations from target desired times (x; - 7)°

Christos G. Cassandras CODES Lab. - Boston University



OPTIMAL CONTROL PROBLEMS

Temporal state

min i j L (z. (t), u. (t))dt

Christos G. Cassandras

Physical state

Time-driven
Dynamics

Z; = 0i (7, U, 1)

S.t.

Event-driven
Dynamics

CODES Lab. - Boston University



OPTIMAL CONTROL PROBLEMS CONTINUED

J‘:i L. (z,(t),u. (t))dt

costunderu() [ (xVx. )

over [X; 1, Xl

N
muin Z [¢| (Xis Xi1) + w3 (X )]
i—1

Assume: PACAVEREFAEN

Christos G. Cassandras CODES Lab. - Boston University




HIERARCHICAL DECOMPOSITION

Z; = 0i(z;, U, 1)

muin Z_:M (S)+v, (Xi)]

: HIGHER
| LEVEL

: PROBLEM:

Christos G. Cassandras CODES Lab. - Boston University



HIERARCHICAL DECOMPOSITION CONTINUED

Si+1

Z|+2
Xi+1
)

REALLY
CHALLENGING
PROBLEM!

Christos G. Cassandras

Y
[)n”f] \¢i+1(si+1)

(77 7 [

“ROUTINE”
OPTIMAL CONTROL
PROBLEM!

CODES Lab. - Boston University



HIERARCHICAL DECOMPOSITION CONTINUED

Decomposition works well in this case...

...but we still have to solve
all LOWER-LEVEL problems
and a HIGHER-LEVEL problem

[Gokbayrak and Cassandras, 2000] [Xu and Antsaklis, 2000]

...and there Is also the i1ssue of
selecting among many possible
modes to switch to

[Bemporad et al, 2000]
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ABSTRACTION
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DISCRETE-EVENT

CODES Lab. - Boston University
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ABSTRACTION OF A DISCRETE-EVENT SYSTEM

DISCRETE-EVENT
SYSTEM

TIME-DRIVEN
FLOW RATE DYNAMICS EVENTS

HYBRID
SYSTEM
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STOCHASTIC FLOW MODELS (SFM)

«— 0

CONTROLLER

aft), At): arbitrary stochastic processes
(piecewise continuously differentiable)

X(t)=0, A(t)—p(0)<0
X(t)=6, A(t)-p(@) =0
otherwise

feedback
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WHY SFM?

» “Lower resolution” model of “real” system intended to
capture just enough info. on system dynamics

» Aggregates many events into simple continuous dynamics,
preserves only events that cause drastic change

= computationally efficient
(e.q., orders of magnitude faster simulation)

» If used for CONTROL purposes,
another “BARGAIN” opportunity arises...

Christos G. Cassandras CODES Lab. - Boston University



AN EXAMPLE OF A
“BARGAIN”
USING A
“SURROGATE” PROBLEM



THRESHOLD BASED BUFFER CONTROL

“REAL” SYSTEM

| e 7 .
ARRIVAL § . % - L(K): Loss Rate
P R OC ESS i B 4B b ".,///ﬂ Loa n )|

! 2 Jé S A B S Q(K): Mean

Queue Lenth

PROBLEM: Determine K'to minimize [Q(K) + R-L(K)]

e Zas

A

RANDOM — X(t) — RANDOM
PROCESS PROCESS

SURROGATE PROBLEM: Determine £to minimize [Qs™™(6) + R-LsFv(H)]

Christos G. Cassandras CODES Lab. - Boston University



THRESHOLD BASED BUFFER CONTROL o\ 1inueD

- “Real” System

Optim. Algorithm
~ using SFM-based

= = =5SFM

—0O=— Opt. Algo

gradient estimates

35

40

Christos G. Cassandras CODES Lab. - Boston University



“SURROGATE" PROBLEM IDEA

DISCRETE SET Observe and estimate

“SURROGATE”
CONTINUOUS SET

...but this is “real”... pd

This is not “real”...

Pn 1 /

(e.g., gradient)

H(r,)

ra = f(p)

1. Transform

Christos G. Cassandras

pn+1 —

3. Update

Pn

+n H(r
pn 77['] (n)pn

+1

X

CODES Lab. - Boston University



WHEN DOES THIS PROVABLY WORK?

» Need some structural properties;
otherwise, the NFL limit gets you!

» Similarities to Ordinal Optimization

» Resource allocation problems

[Gokbayrak and Cassandras, JOTA 2002]

» Cooperative control problems — see Session FrA06

Christos G. Cassandras CODES Lab. - Boston University



BYPASSING COMPLEXITY IN
COOPERATIVE CONTROL  conTINUED

Christos G. Cassandras CODES Lab. - Boston University



BYPASSING COMPLEXITY IN

COOPERATIVE CONTROL  conTINUED

Current Control Horizon _, ==
_Y, 4
-—=A
\

/

Optimal heading
Over
Event-Driven /

Receding Horizon I
J \
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BYPASSING COMPLEXITY IN
COOPERATIVE CONTROL  conTINUED

MAIN IDEA:
Replace complex Discrete Stochastic Optimization problem
by a sequence of simpler Continuous Optimization problems

But how do we guarantee that vehicles actually
head for desired DISCRETE POINTS?

It turns out they do!

.

Can replace HARD problem by
several SIMPLER ones...

Christos G. Cassandras CODES Lab. - Boston University



DANGERS OF DECOMPOSITION, ABSTRACTION

TIME-DRIVEN
SYSTEM

EVENT-DRIVEN

SYSTEM
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DANGERS OF DECOMPOSITION, ABSTRACTION

LOW-RESOLUTION MODEL
e.g., X = f(x,a)

AVERAGING ’ ‘
o= EfAuo) |

INPUT U

- OUTPUT:

HIGH-RESOLUTION Data from
RANDOMNESS @ N simulated

- SIMULATOR scenarios

Christos G. Cassandras CODES Lab. - Boston University



WHY THIS FAILS...

L OW-RESOLUTION MODEL
e.g., X = f(x,a)

Average corresponds to unlikely scenario = x(a) is way off...

Prob. Density Function

of A

obtained from
High Resolution model

Christos G. Cassandras CODES Lab. - Boston University



WHY THIS FAILS...

> SIMPLE AVERAGING: f(E[A])
)
> SAMPLE, THEN AVERAGE: E[f(A)]

If ultimate OUTPUT Is x(a) =0or 1
this can result in 0 instead of 1
= completely wrong conclusion !

Christos G. Cassandras CODES Lab. - Boston University



WHAT'S THE WAY AROUND THIS?

QUESTION: To average or not to average
ANSWER: Average “just enough”

1 B

Replace AVERAGE by CONDITIONAL AVERAGES,

one for each CLUSTER
CLUSTER = group of “similar” scenarios from
High Resolution model

1

CLUSTER ANALYSIS

Christos G. Cassandras CODES Lab. - Boston University



CLUSTERING

x = E[f(a)]

I HIGH-RESOLUTION - j
R_ SIMULATOR

Christos G. Cassandras CODES Lab. - Boston University



HIGH PROBABLILITY
Vv
CERTAINTY



HIGH PROBABILITY v CERTAINTY

Birthday Paradox
51 101 151 201 251 301 351

7y}
0
()
&
&
-]
0p)
Y
@

CERTAINTY v 99% CONFIDENCE
366 v 60

No. of samples
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A BRAVE NEW COMPLEX WORLD...

ROBOTS M Scenario 2020

-,
-

SR
‘ .-I:':/I//".,"f JW*ﬂ AN &

i’

.

——

A Servants that

Never Sleep

~ If you've always wished you could get reliable and affordable

Bsehold help, you've got something to look forward to. In a few
years, service robots will perform a wide variety of tasks. Theyl
clean windows, serve beverages, empty the dishwasher and
more. And theyll enable older people to live at home longer.

L spectrun o
ke e o br
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A BRAVE NEW COMPLEX WORLD...

e —

=3 ﬂ . . IF_.“-T " g .‘,-.. -~ 1.-4;% 3"
| -._. 1: LI '\"-r,“. .. _-‘_‘.-l' " - s "‘H ':}.'_-.-' Pt

ot

Ever refiable,
gulonamous claaning
machines produce

srmles as well os

sparkling cleandioors.
o) 3
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MANAGING COMPLEXITY

> Better HAR(®?/ ¥ and SOFTWARE help.. 4[@]

» System ARCHITECTURE v OPERATIONAL CONTROL

» HIGH v LOW RESOLUTION models
(Too much detail can hurt)

» Know what PROBLEM needs to be solved,
then develop METHODOLOGIES (othenwise, NFL i1 et

7

» MODEL-DRIVEN v DATA-DRIVEN approaches 1,
(Embrace DATA -- and the NETWORK that gets data to you)

Christos G. Cassandras CODES Lab. - Boston University
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