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Abstract

We consider a setting where multiple vehicles form a
team cooperating to visit multiple target points to col-
lect rewards associated with them. The team objec-
tive is to maximize the total reward accumulated over
a given time interval. Complicating factors include
uncertainties regarding the locations of target points
and the effectiveness of collecting rewards, differences
among vehicle capabilities, and the fact that rewards
are time-varying. We propose a Receding Horizon (RH)
control scheme which dynamically determines vehicle
trajectories by solving a sequence of optimization prob-
lems over a planning horizon and executing them over
a shorter action horizon. The properties of the result-
ing cooperative controller are tested in a simulated en-
vironment and seen to maitch a reward upper bound
with high probability. This exploratory work has also
helped identify several issues for further research.

1 Introduction

Cooperative control refers to settings which involve
multiple control agents cooperating toward a common
objective. The information based on which an agent
takes control actions may differ from that of other
agents, complicating such problems and placing them
in the context of team theory [1],[2]. In addition, when
the control agents operate in an uncertain environment,
one needs to explicitly mode] the sources and effects of
uncertainty and to provide the capability to react to
unexpected events by appropriately adjusting all fea-
sible control actions. Cooperative control has recently
emerged as a framework for establishing teams of au-
tonomous vehicles whose task it is to perform a mission

IWork supported in part by the National Science Founda-
tion under Grants ACI-98-73339 and EEC-00-88073, by AFOSR
aader contracts F40620-01-0056 and F49620-01-1-0348, and by
the Air Force Research Laboratory nnder contract F30602-99-C-
0057.

0-7803-7516-5/02/$17.00 ©2002 IEEE

with a common goal [3].

In this paper, we consider a setting which involves a
team A of N vehicles indexed by j = 1,...,N and a
set T of M {arget pointsindexedbyi=1,..., M ina?2-
dimensional space. Associated with the ith target point
is a reward R;. A mission Is defined as the process of
controlling the movement of the vehicles and ultimately
assigning them to target points so as to maximize the
total reward collected by visiting points in the set T
within a given mission time T. The problem is compli-
cated by several factors: (z} Target point rewards may
be a time-dependent, typically decreasing in time; thus,
the order in which target points are visited by vehicles
may be critical, (i1} Different vehicles have different ca-
pabilities in terms of collecting the reward associated
with a target point; thus, assigning specific vehicles to
specific points can also be critical, (i) The exact lo-
cation of target points may not always be known, (iv)
There may be obstacles (also known as éhreats) in the
2-dimensional space (referred to as the mission space),
which constrain the feasible trajectories of vehicles or
may cause their elimination when they are encountered,
{v) The collection of information about the state of the
mission space is an important aspect of the problem,
since knowledge of target point and obstacle locations
clearly affects the ultimate objective of the mission.

This setting gives rise to a complex stochastic optimal
control problem. In principle, one can use dynamic pro-
gramming as a solution approach, but this is compu-
tationally intractable even for relatively simple mission
control settings [4],[5]. Moreover, developing stochastic
models for the various sources of uncertainty requires
parameters which are generally unavailable and hard to
estimate. A first step for dealing with such problems
is to analyze them at different levels — from detailed
control of the vehicles (e.g., [6],(7]) to higher-level path
planning and assignment of vehicles to target points
before considering the detailed vehicle dynamics. In
this paper, we pursue the latter direction in formulat-
ing an optimal control problem based on simple vehi-
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cle dynamics, aiming to determine trajectories which
cooperatively guide vehicles to target points so as to
maximize the total reward the team can collect as a
result of its mission. The problem framework incorpo-
rates time-dependent rewards, different vehicle capa-
bilities, and the possibility of unknown target points.
We initially assume, however, that there are no obsta-
cles in the mission space; obstacles can be included by
defining target points with negative rewards that the
vehicles, therefore, try to avoid. We alsc assume that
all information is shared by the vehicles.

In solving this problem, we adopt a Receding Hori-
zon (RH) approach. The RH idea is an integral part
of Model Predictive Control (MPC), an approach used
to solve optimal control problems for which feedback
solutions are extremely hard or impossible to obtain
{8],19],{10]. Tn such cases, one can derive implicit feed-
back solutions for nonlinear systems and possibly con-
straints in the state or control. Applying MPC is still a
computationally challenging task for real-time applica-
tions and significant effort goes towards efficient ways
to obtain solutions at least for some classes of prob-
lems (e.g., {11]}. In our case, the use of a RH scheme
18 somewhat different in nature, It is related primarily
to the issue of trading off long-term against shori-term
decisions in the presence of uncertainties by re-solving
an optimization problem at appropriately selecied time
instants or as a result of certain (generally random)
events, The main idea is that when a team of vehicles
is located relatively far from any known target points,
a long planning horizon is adequate to direct them to-
wards their objective and solving a corresponding op-
timization problem is relatively easy. The solution to
this problem is subsequently applied for an appropri-
ately selected period of time, typically much shorter
than the actual planning horizon. Thus, the overall
mission problem is tackled through a sequence of op-
timization problems over different RH time intervals.
Based on the results reported in this largely exploratory
paper, it is somewhat surprising to observe that the rel-
atively simple framework we propose yields solutions
which, as will be seen in Section 3.1, are identical or
near-identical to an upper bound obtained by an ex-
haustive search of all possible vehicle-to-target-point
assignments and minimal straight line trajectories,

2 Cooperative Control Problem Formulation

We consider a 2-dimensional ission space, in which
there is a set T of M target points indexed by ¢
1,....M. The location of target points may vary
and new points may randomly emerge. However, let
us initially assume that M is fixed and all locations
are known with (o;,7;) being the position of the ith
target point. There are also N vehicles indexed by
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.V that define a set A, the “cooperating
team”, and let (z;(¢},y;(t)) denote the position of the
jth vehicle at time £. The vehicle intial positions are
given by (z%,3%), j = 1,...,N. The vehicle dynamics
may be generally quite complex, but for the time scale

of interest here, we set

Vi cosu;{t), z;{(0) = 2!
Visinu;(t),  3;(0) =v;

()

j

(1)
(2)

where u;{t) € [0,2n] is the heading (i.e., the control
variable) of vehicle § and V; is the corresponding ve-
locity, assumed fixed over a mission time interval [0, T.
Associated with each target point ¢ is a value or “re-
ward” R; > 0.

The objective of the mission is to collect the maximal
total reward Zfil R; by the end of the mission at time
T. Aside from the fact that T' may be insufficient to
allow vehicles to reach all points, there are two fac-
tors preventing the team from meeting this goal: (¢}
When vehicle 7 visits point £, there is a probability
p;;(t) of actually collecting the reward R;, and (i) At
the time that a vehicle visits point #, the reward R; is
generally discounted by a factor ¢;(t) < [0,1]. If, for
instance, a point ¢ has a fixed reward over [0, 7] and
ceases to have any value after 7, then the reward asso-
clated with i is given by Ri¢; with ¢, = 1[t € [0, 7]];
here 1 [-] is the usual indicator function. In general, the
function ¢;(1) is defined so that it is monotonically non-
increasing with ¢;(0) = R;, and lim; .o ¢;(t) = 0. It is
worth noting that points in the mission space with ¢,(t)
which is monotonically nondecreasing are also possi-
ble. Also note that we allow p;;(¢) above to be time-
dependent, since the effectiveness of a particular vehicle
may change over time after one or more visits to target
points prior to visiting 7.

CUltimately, in the course of a mission a particular
vehicle must be assigned to a target point. Given
some such point 4, all other factors being equal a ve-
hicle which is closer to point 7 at time ¢ is assigned
to it. As vehicles move, however, the relative dis-
tances between vehicles and targets change and flex-
ibity in target point assignment is maintained so as
to have the capability to react to unexpected events.
Let dii(t) = [(25(t) — 04)% + (5(t) — 7:)2]"/* be the
Euclidean distance between vehicle § and target point
i at time ¢ and define the relafive distance of vehicle j
with respect to point ¢ as

di;(t)

0 By )

)

A normalized relative distance function g;;(6:;} is any
monotonically nonincreasing function of é;; such that

;0 =1, ¢;(1)=1/2,  lim g;(8;5)=0 (4)



One can interpret g;;(8;;) as the probability that ve-
hicle j is assigned to target point 7 when its relative
distance is &;;(f).

Let u(t) = [u1(t)---un(t)] be the control vector and
x(t) = [z1(t) - - zpa ()], ¥(2) = [p2(t) - - - yps (2))] be state
vectors. An optimal control problem aimed at maxi-
mizing the total expected reward at the end of a mis-
sion may be formulated as

M N

max Z Z R, (T)pi; (T)qi; (T)+

T
fu Lix(t), y(£), u(®))dt 5)

s.t. (1)-(2), where the double sum in (5) is the total
final expected team reward and L(x(t), ¥(t),u(f)) is a
reward function associated with the state and control
during the course of a mission. At the level at which we
are analyzing the mission, however, we do not consider
any such pathwise rewards {e.g., maintaining some de-
sirable vehicle separation or proximity or imposing lim-
its on the control} and seek to solve instead a problem
Pr as follows:

AM N

max Z Z R, (T)pi;(T)g:5(T)

i=1 j=1

s.t. (1)-(2}, where u = [u; - - - up] is 2 fixed control and
the solution of the problem yields the final position of
the vehicles specified by z;(T") and y;(T") obtained from
the state equations in (1)-(2). Note that this is a non-
linear programming problem which is relatively easy to
solve. However, it will frequently be characterized by
muitiple optima, as will be illustrated in the sequel.

3 The Receding Horizon (RH) Mission
Control Scheme

Solving the problem Pr in (5) over the entire mission
time T is of limited practical use, since its solution sim-
ply positions the vehicles so that they can maximize the
total expected reward, but it does not actually assign
vehicles to specific target points. Suppose, however,
that the solution found is applied for a time period
h < T. Then, problem Pz can be re-solved by replac-
ing z;(0) = =¥ and ,(0) = ¥ by new initial conditions
z;i(h) and y;(k), = 1,...,N. Since dj;(h) # dy;{0),
this implies that §;;(k) has also changed, consequently
qi;(T') is updated, leading to a new solution with more
up-to-date state information. The process then repeats
with problem Pr replaced by Pr_s.

In general, however, we can replace T by some H < T,
and seek an initial solution of a problem Py, rather

that Pr, over a shorter time horizon than the entire
mission time. The choice of H depends on the state
of the mission, as discussed later. With this in mind,
we define H(f) and A(t) to be the planning horizon
and action horizon respectively when problem Py is
formulated at time t € ]0,T). Next, we discuss the
choice of H(t) and k().

Let diin(t) = minje 4 ie7 dij(t) be the minimum dis-
tance over all vehicles and target points. The choice of
the planning horizon at time ¢ is such that dmia(t) <
H(t) < T where dpp;,(t) can be expressed in time units
since we are assuming a fixed speed for each vehicle.
Note that when dy;,(t) is small enough to identify some
vehicle as being in the vicinity of a target point, then
a short-term problem of the form Ppy is solved. We
shall assume that there exists a distance r defining the
“range” of a target point. Thus, d;;(f) < r implies
that vehicle j is close enough to point ¢ to render it
possible to collect the value R;¢,(t}, i.e., the vehicle is
effectively “at target point ¢”.

The action horizon h(t) is selected so that
h(t) = ag + By H(),

where [y is monotonically decreasing in H. In ad-
dition, we set oy = 0 and 85 = 1 for any H(t) < r.
Thus, if a vehicle is within the range r of a target point,
the action taken is limited to the small interval H(t);
this is equivalent to the assignment of a vehicle to a
target point. The choice of k() in (6) allows for flexi-
bility to select a fixed action horizon (am = constant,
By =10) or one that is a fraction of the planning hori-
zon depending on its magnitude (ay = 0).

ag 20, 0<8y <1 (6)

Let {tx}, £ = 0,1,..., denote the time instants when
the planning horizon is updated and a new problem
Pp is solved. Based on the above discussion, it is clear
that

k
ler1 = Z h{t:)
=0

where tg = 0. In addition, however, this setting allows
for a new planning horizon as a result of an event such -
as the unexpected emergence of a new target point or
a change in the value assigned to a target point. In
general, any change in the state of the mission space
may trigger the solution of a new problem Pp. In im-
Plementing trajectory planning, it is common to define
way points, t.e., points on the trajectory that simplify
the task of guiding a vehicle in a desirable manner.
The RH scheme effectively generates way points dy-
namically, as solutions of problems of the form Py at
times {tx}, k=0,1,...

3.1 Testing Environment
In this section, we describe a testing environment cre-
ated to explore the behavior and properties of this RH
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control scheme. This MATLAB-based environment al-
lows for time-dependent target point values (modeled
through ¢,(f)}, different vehicle capabilities {modeled
through p;;(1)), and random events such as a new tar-
get point or a vehicle failure. A mission preblem exam-
ple and its RH-based solution are shown in Fig. 1. In
this example, there are 2 vehicles and 5 target points
{shown as circled triangles). Each target point is as-
signed a reward R;, i = 1,...,5 (shown connected to
the circled triangles) and a “deadline” such that be-
yond this deadline the point has no more value to the
team. The pair (a, b) associated with each target poins
in the figure is such that a represents the remaining
reward and b is the deadline. In this case, the mission
time was T' = 25 time units and upon termination of
the mission, all but one target point were visited. The
total reward for each vehicle is also shown. On the
top right of the figure , the notation (¢ : d) represents
the final mission time (¢) and the remaining expected
reward for the team (d).
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Figure 1: An example of a typical mission executed

through the RH control scheme

In all examples shown, we have adopted the following.
For simplicity, p;(t) = 1 for all t € [0,T] and all 4,3.
The planning horizon is set to H(t) = duua(t) for all
t € [0,T), and the action horizon is specified through

JHE) LH() >
hit) =4 gH(t) if H{t) €[r, f] (7)
H(t) fH{E <r

where r is the range of all target points and f is a con-
stant such that f >> r to capture the situation where
all vehicles are far from target points and the planning
horizon is large relative to r. A discount function ¢,{t),
associated with target point £, is selected as follows:

lnr};a)t ft <D
e Di i [
¢i(t) = In(l—a, =

e Ui e Al-Da ifiw Dy
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where D); is the deadline for target point ¢ and «, 3 are
positive constants. Note that ¢,(D;) = 1 — a, so by se-
lecting o arbitrarily small we can represent a situation
where the target value experiences negligible reduction
over the interval [0, D).

A normalized relative distance function g;{5;;) is con-
structed as follows, Let §;; = rz—,éi—"lr and define
=19

1 ) ifS,-jsA
b = | e B2 1) A <By <1
0 ifS,‘j)l*A

which satisfies the conditions set in (4). The parameter
A is selected so that A > r, i.e., some threshold value
greater than the range of any target point.

The most noteworthy, perhaps, feature of the RH
scheme is illustrated in Fig. 1, where we observe that
vehicles are always ultimately assigned to target points,
despite the fact that, as formulated, problem Py does
not explicitly involve any assignment procedure. The
RH control approach is based on guiding vehicles to-
wards points in the mission space that maximize the
expected rewards conditicned on the current mission
state. As deadlines approach and relative distances
vary, velicles are attracted to the vicinity of target
points and are eventually assigned to them by virtue
of their proximity. The fact that vehicles do not gener-
ally follow straight-line trajectories to the various tar-
get points is a potential advantage in a setting where
significant uncertainty is present: Vehicles tend to wait
as long as possible before committing to points by fol-
lowing paths allowing them to alter their destination
in the event that the state unexpectedly changes.

3.2 Comparison to a Reward Upper Bound

An upper bound to the mission optimization problem
described above is provided by considering a fully de-
terministic environment and performing an exhaustive
search over all possible trajectories from given initial
vehicle positions, assuming straight-line paths between
all target points, In other words, the trajectory of ve-
hicle 7 is fully specified by a sequence of target points
to be visited by j. Such a search obviously becomes
infeasible for large values of N and M. In what fol-
lows, we limit ourselves to N = 2 vehicles and M = 6
target points and obtain results for 15 randomly gen-
erated mission spaces (i.e., target point positions, re-
wards, and deadlines, as well as initial vehicle loca-
tions) within a square area defined by « € [-10, 10] and
y € [-10,10]. These results are compared to the total
reward obtained under the proposed RH scheme, as
shown in Table 1 (ES stands for ‘Exhaustive Search’).
In some cases there are multiple target point assign-
ment sequences with the same optimal value; in this
case, we report the one that yields the shortest mission



Case Same ES RH ES RH
Seq. Value | Value Time Time
(Y/N) | (U.B) (L.B.)
1 N 110 100 22.8648 | 29.7260
2 Y 140 140 17.2761 | 17.2791
3 Y 110 110 10.6540 | 13.0039
4 Y 130 130 16.5697 | 21.0438
5 N 100 80 19.4185 | 27.2128
i Y 140 140 13.7395 | 18.4356
7 Y 80 80 10.2367 | 12.6853
8 Y 110 110 19.0695 | 26.2326
9 Y 130 130 17.7994 | 23.4521
10 Y 100 100 15.4430 | 15.4430
11 Y 120 120 15.2512 | 19.4545
12 Y 146 140 16.4528  22.3243
13 Y H 120 120 14,4911 | 17.7579
14 Y 120 120 17.1673 | 17.4501
15 Y ﬁ.‘ 90 90 16.0619 | 24.7739

Table 1: Exhaustive Search Upper Bound vs. RH Control

time. Rather than specifying a mission time, we let the
mission end as soon as there is no more positive reward
left to collect (because all target point rewards have ei-
ther been collected or have expired). Clearly, the ES
mission time defines a lower bound.

Figure 2: A 2-vehicle, 6-target point example (Case 5 in
Table 1)

It is interesting to observe that in all but two cases
{Cases 1 and 5) the RH control scheme yields the same
total value as the ES optimal solution. In order to gain
more insight into the two exceptions, the RH-based ve-
hicle trajectories for case 5 are shown in Fig. 2. Vehicle
1 (marked by x) visits target points 4 and 1, which is
identical to the ES optimal solution. Vehicle 2 follows
the sequence 5,8, whereas the ES solution turns cut
to be 6,5,2. Note in Fig. 2 that the vehicle control

initially oscillates between directions pointing towards
points 6 and 5, before ultimately heading towards an
area between points 5 and 2. As previously mentioned,
the fact that vehicles do not always follow straight-line
trajectories to target points is a potential advantage in
the presence of uncertainty, at the expense of mission
time (as reflected in Table 1). However, this feature
can also lead to instabilities in control actions such as
the one seen in Fig. 2. The source of such instability is
the presence of multiple local minima in solving prob-
lem Py, which is further discussed in the next section,
where we revisit Cases 1 and 5.

4 Control Issues

The exploratory research we have pursued thus far has
revealed a number of issues which are characteristic of
the mission space setting. In this section we identify
and briefly discuss two such issues.

Multiple Local Optima and Instabilities. As al-
ready mentioned, it is common for the solution of prob-
lem Pr as formulated in (5) ro exhibit multiple local
optima. This is true even for relatively simple examples
as we shall illustrate next. Consider a mission space
with 2 vehicles initially located at the origin and three
target points at (10,0), (5,5), and {0, 10). By keeping
the rewards fixed but varying the deadline parameters
Dy, Dy, Dy and evaluating the resulting value of the
objective function in (5) under multiple values of the
controls u; and us, we can generate response surfaces,
a typical one shown in Fig. 3, where we can clearly see
that there are multiple local optima and their respec-
tive rewards may not be even be close to each other.

Figure 3: Total Reward response surface for a 2-vehicle,
3-target mission space with Dy, = D2 = 10,
Ds; =60
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Case Same ES RH ES RH
Seq. Value | Value Time Time

(/N || (uB) (L.B)
1 N W10 jioo ]| 22.8648 | 29.7260
lmod. | N J[110 j100 [[[22.8648 | 27.3045
5 N 100 80 10.4185 | 27.2128
Smod. | Y H 100 [ 100 19.4185 | 27.4041

Table 2: Exhaustive Search Upper Bound vs. RH Control
after adding a direction change cost

This type of behavior is frequently exhibited in solving
problem Py at different steps of our RH scheme. Re-
furning to Fig. 2, note that vehicle 2 initially heads for
target point 5, then switches direction towards point 6,
and the process repeats for several iterations. In so do-
ing, it is assumed that the vehicle is free to arbitrarily
change directions at no cost. Introducing such a cost
results in a tradeoff between changing direction and the
incremental expected benefit of such a contrel action.
This tradeoff can be formalized by introducing a di-
rection change cost function A(u,u'), where u is the
current heading of a vehicle and ' is a new heading,
determined as the solution of a problem of the form Py
at some point in time. Let Py (k) denote the kth step
in our RH scheme when problem Py of the form (5) is
solved at time ;. Let u;fy x—1 denote the control for ve-
hicle j after solving Py (k—1), and (23 ,._, (), 47 1 (t})
be the position of the vehicle corresponding to this con-
trol at time £ > ¢,_;. We can now modify (5) to define
the following problem, denoted by f‘H(k):

M N
mgxz > Rii{te + Hipss(te + He)  (8)
i=1 ;=1
N
Gislts + Hi) = Y Aj(u} oy )
s
s.t. @&y V; cosuy, Ij(tk) = I;,k—l(tk}? j=1...,N
v = Vjsinuy, yj(tk) = y;,kAl(tk), i=1...,N

Returning to the results shown in Table 1, we have im-
plemented this modified approach by using A(u,u’) =
Q%"'l. Table 2 shows the two exception cases from
Table 1 before and after the incorporation of the di-
rection change cost, which results in eliminating the
oscillatory behavior seen in Fig. 2.

Selecting the Planning and Action Horizon Val-
ues. As mentioned in Section 3, the planuing horizon
H{(t) is selected so that dmin (t) < H{t) < T. We believe
that setting H(t) = dmin(t) can guarantee the property
that a vehicle always eventually gets assigned to a tar-
get point, but have not yet established a proof of this
cenjecture. The choice of acting horizon is easier to
deal with, since it is clear that ideally a small value of

h(t) is desirable, forcing the controller to re-evaluate
control options at a high rate, thus incorporating all
new state information. Naturally, this imposes serious
computational requirements to be traded off against
accuracy.
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