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Abstract

We use a Stochastic Fluid Model (SFM) for a com-
munication network node with finite buffer capacity
processing two classes of traffic: one is uncontrolled
and the other is subject to threshold-based buffer con-
trol. We derive gradient estimators for class-dependent
packet loss and workload related performance metrics
with respect to the threshold parameter. These estima-
tors are shown to be unbiased and directly observable
from a sample path without any knowledge of under-
lying stochastic characteristics of the traffic processes.
This renders them computable in on-line environments
and easily implementable for network management and
control.

1 Introduction

In this paper, we use the framework of Stochastic Fluid
Models {SFM), together with Perturbation Analysis
(PA) techniques, in order to develop means for on-line
control and performance optimization of communica-
tion networks with multiple traffic classes. In {1}, we
considered a node {switch) with infinite buffer capacity
which processes two traffic streams: one traffic stream
is nncontrolled and the other is subject to threshold-
based buffer control. We used Infinitesimal Pertur-
bation Analysis (IPA) to obtain sensitivity estimators
for packet loss and workload metrics with respect to
a threshold parameter. In this paper, we analyze a
similar model, except that the node has finite buffer
capacity, which introduces several complications.

SFMs provide an alternative to queueing models when
the latter become impractical due to huge traffic vol-
umes and complex stochastic phenomena that cannot
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be handled by tractable analytical derivations. It fore-
goes the identity and dynamics of individual packets
and focuses instead on the aggregate flow rate. SFMs
have recently been shown to be especially useful for an-
alyzing various kinds of high-speed networks (see [2], [1]
and references). As argued in (2} and [1], such models
may not always be accurate for the purpose of perfor-
mance analysts, but they capture the salient features of
the underlying “real” system, which is often sufficient
to solve control and optimization problems. In this
case, estimating the gradient of a given cost function
with respect to key parameters becomes an essential
task, for which Perturbation Analysis (PA) methods
(3], {4] are therefore suitable, if appropriately adapted
to a SFM viewed as a discrete-event system {5], [6], {2], .
[1]. In a single-class node with threshold-based buffer
control [2], Infinitesimal Perturbation Analysis (IPA)
has been shown to yield simple nonparametric sensi-
tivity estimators for packet loss and workload metrics
with respect to threshold or buffer size parameters. In
the multiclass case studied in {1], the estimators gen-
erally depend on traffic rate information, but not on
the stochastic characteristics of the arrival and ser-
vice processes involved. In addition, the estimators
obtained are unbiased under very weak structural as-
sumptions on the defining traffic processes. As a re-
sult, they can be evaluated based on data observed on
a sample path of the actual (discrete-event) system and
combined with gradient-based optimization schemes as
shown in [2] and [1].

In this paper, we consider a node with a finite buffer
and two traffic streams (see Fig. 1) one controlled and
the other subject to threshold-based control. Thus,
we model a typical network node where the controlled
stream represents a source of new traffic into the net-
work at that node and the uncontrolled stream rep-
resents “interfering traffic”, i.e., traffic originating at
other nodes on its way to various destinations, This is
an essential step towards the study of a complete net-
work, which is the ultimate objective of this line of re-



search. Interestingly, this model also captures the oper-
ation of the Differentiated Services (DS} protocol that
has been proposed for supporting QoS requirements ([7]
and its references). In contrast to [1], the uncontrolled
traffic class may now experience loss when the buffer
exceeds its capacity. Thus, new events have to be in-
corporated in the model and, as a result, a different
way of analyzing a sample path is introduced. More-
over, there are now two loss metrics to consider, one
for each traffic class. The contribution of this paper is
the derivation of IPA gradient estimators for two class-
dependent loss metrics and & workload metric with re-
spect to the threshold parameter in the model (from
workload metrics it is possible to obtain delay metrics
using appropriate forms of Little’s law; see [8]). In ad-
dition, these estimators are also shown to be unbiased.

2 The Stochastic Fluid Model (SFM)

The SFM studied in this paper is shown in Fig. 1.
There are two “classes” of traffic: controlled {class 1)
and uncontrolled (class 2). Uncontrolled traffic has a
time-varying arrival rate as(t). A threshold 8 is as-
sociated with class 1 traffic, which has a time-varying
arrival rate a;(t}. A control policy is exercised so that
when the total buffer content reaches a threshold 8,
class 1 traffic is rejected, while class 2 traffic is not af-
fected. The two traffic streams share a common FIFO
buffer which has a finite capacity b > @. The service
rate is also time-varying and dencted by £(f). In ad-
dition, let v1(#;¢) be the loss rate of class 1 when the
buffer content exceeds the designated threshold level
6, and let v3(0;1) be the loss rate of class 2 when the
buffer content exceeds the buffer size b. Finally, z(#;1)
denotes the buffer content at time ¢. The notational
dependence con # indicates that we will analyze perfor-
mance metrics as functions of the given #. In the infi-
nite buffer system in [1], only class 1 traffic may experi-
ence loss, whereas in the current finite buffer case, class
2 traffic will overflow when the buffer content reaches
the capacity b. We are interested in studying sam-
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Figure 1: Stochastic Fluid Model (SFM) with two Traffic
Classes

ple paths of the SFM over a time interval [0,7] for a
given fixed 0 < T < oo. We assume that the processes
{o1(t)}, {a(t)}, and {B(2)} are independent of # {thus,
we consider network settings operating with protocols
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such as ATM and UDP, but not TCP) and they are
right-continuous piecewise continuously differentiable
w.p.1. Viewed as a discrete-event system, an event in a
sample path of the above SFM may be either exogenous
or endogenous. An exogenous event is any event that
causes the difference function [on(t} + a2(t) — 8(t)] or
[z (£)—3(t)] to change sign. For our purposes, we iden-
tify the following exogenous events of interest: (e;) an
event where the buffer ceases to be empty, (e;) an event
where the buffer content leaves the value {6;t) = @ af-
ter it has maintained it for some finite length of time,
and (es) an event where the buffer content leaves the
buffer limit & An endogenous event is defined to oc-
cur whenever: (es} the buffer becomes empty, (es) the
buffer content reaches the value z(6;{) = & and then
maintains it for some finite length of time, (eg) the
buffer content crosses the value x(8;¢) = 8 from either
below or above, and (ey) the buffer content reaches b.
Observe that any exogenous event time is locally in-
dependent of €, whereas any endogenous event time is
generally a function of 8.

We will assume that the real-valued parameter 8 is con-
fined to a closed and bounded {compact) interval €; to
avoid unnecessary technical complications, we assume
that 0 < 8 < bforall # € ©. Let L(f) : © - R bea
random function defined over the underlying probabil-
ity space {2, F, P). Strictly speaking, we write £(6,w)
to indicate that this sample function depends on the
sample point w € 2, but will suppress w unless it is
necessary to stress this fact. In what follows, we will
consider three performance metrics, the Loss Volume of
Class 1, L17(6), the Loss Volume of Class 2, Lor(8),
and the Cumulative Workload (or just Work) Qr(#),

all defined on the interval [0, 7] as follows:
T
I
0

T .
/ (8 t)dt,
0

where, for simplicity, we assume that z(6;0) = 0. We
may then formulate optimization problems such as the
determination of #* that minimizes a cost function of
the form

Lir(6) 1,2 (1)

Qr(6)

@)

Ir{) = ZE1Qr(0) + 1 (ELur(®)] +wE [Lar(@)]}

= %JQ(O) + % {J10(8) + war (6)} (3)
where R represents a rejection cost due to loss, and w
is a weight factor to reftect the relative importance of
class 1 and class 2 losses. In order to sclve such prob-
lems, we rely on estimates of dJy.(8)/d8, dJy.(6)/d0
and dJg(f)/df for use in stochastic gradient-based
schemes. Henceforth we shall use the “prime” nota-
tion to denote derivatives with respect to .



3 Infinitesimal Perturbation Analysis (IPA)
with respect to Threshold

Our objective here is to estimate the derivatives J:f (8,
Jé;.((?) through the sample derivatives L;7(6) and Qi-()
which are commonly referred to as the Infinitesimal
Perturbation Analysis (IPA) estimators; comprehen-
sive discussions of IPA and its applications can be
found in {3], [4]. The IPA derivative-estimation tech-
nique computes the derivative of a sample function £{8)
along an observed sample path w.

Contrary to {1], where the sample path was partitioned
into alternating empty periods and busy periods, here,
we shall proceed by partitioning a sample path into al-
ternating Boundary Periods (BP) and Non-Boundary
Periods (NBP). A NBP refers to the time interval such
that 0 < z(#;t) < b. A BP is either an Empty Period
(EP) in which z(8; £) = 0 or an Overflow Period (OP} in
which z(#;t) = b. Suppose that a sample path includes
K NBPs denoted by A, k = 1,..., K. The starting
point of any N is one where the buffer ceases to be
either empty or full, which corresponds to the exoge-
nous events e; and ez respectively, and it is, therefore,
locally independent of 8. The ending point of A}, gen-
erally depends on 8. Denoting the starting point of My
by ¢« and its ending point by 7:(#) respectively, we
express My as Ny = [&x, me(6)), k=1,..., K, for some
random integer K which is alsc locally independent of
6. Note that if there were no limit b to the buffer con-
tent, then a NBP would be identical to a busy period
as used in {1]. :

b
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Figure 2: Typical Sample Path Segment

Let us now focus on a typical NBP M = [£x.m:(9)).
Let vgs, ¢ = 0,..., S, be the occurrence times of all
exogenous and endogenous events {e,...,e7 as previ-
ously defined) in the NBP. Note that v o = & and
Uk,5, = Me(f). Depending or buffer content level, we
can divide M} into periods (intervals) py ;(#), which is
defined as

Pri(B) = [gim1(9), v2,:(6)). i =1,..., 8y (4)

so that each one belongs to one of the following three
sets, defined as in earlier work [1]:

" 1. Partial Loss Period Set Uy(6). During such peri-
ods, the buffer content is z(#;¢t) = ¢ and class 1 traffic
experiences partial loss. In particular,

dz(t)
a+ ¢ (5)
o (8) + a(t) - 3() > 0 {6)
a(t) ~ B(t) <0 {7
Therefore, the loss rate of class 1 is
Y1(8;8) = e (t) + e (t) — B(1) (8)

Formally, we déﬁne Ui (8) as follows:
Ui(8) = {pes(0) : 2(t) = 6, t € prs(B)}  (9)

where the end point v ¢ of each period is locally inde-
pendent of 6. In Fig. 2, [vg3, vk s) is an example of &
partial loss peried within Ag.

2. Full Loss Period Set V4(9). In a full loss period,
the buffer content is z(¢;8) > € (excluding the starting
point v ;—1(#)) and all class 1 traffic is lost:

Vi) := {pr4(6) : (@) > 8, t € (vk,i-1(8), v, (O))}

(10)

and we have
2 — aott) - 800 oy
T(ft) = ealt) (12)

In Fig. 2, [€xyUk,1), [Uk,2, v 3) are examples of full loss
periods within N.

3. No Loss Period Set Wy (8). During such periods
the buffer content is x(t;8) < 8 (excluding the starting
point # ;1 (f)) and no loss occurs:

Wi () == {pei(6): 2(t) < 8, t € (vk,;_l(ﬂ),vk,i(ﬂ))}

(13)

and we have
B ) ey -8 (9)
Mg =0 (15)

In Fig. 2, [vk,1,V2), [Uk,4, k) are examples of no loss
periods within N%. .

\

Before proceeding, let us identify conditions under
which the sample derivatives exists.

Assumption 1.

a a(t) < oo, az(t) < oo and B(t) < oo feor all
te 0,7

b. For every 8 € ©, w.p. 1, no two events may occur
at the same time
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¢ W.p. 1, there exists no interval (vg,;(8), v :(6) + 1),
T > 0, such that z(t) = 0 for all £ € (vi;(8), v :(F)+7),
and either ap(t) — B(t) = 0 or au(t) +oaz(t) - 5(t) = 0.

All three parts of Assumption 1 are mild technical
conditions. Regarding part ¢, one-side derivatives may
still be used. if a sample path happens to contain &
partial loss period in which ag(t) — 8(t) = 0 or oy (2) +
ax(t) — B(t) = 0.

We further define, fori=1,...,85, - 1:
Ax,i = 0a(vr,i(0)) + az(ve,i(0)) — Blues(6))  (16)
Bii = ao{vk,:(6)) ~ Blve(8)) (17

Note that if Sy = 1 for a NBP [£,, 75(8)), this means
that the buffer content is either always above or always
below the threshold 8 and no vy ;(6) of interest exists.
No such NBP contributes to the derivatives, therefore,
in the following, we consider only the case Sp > 1,

which means the buffer content reaches # at least once
during the NBP.

The following lemma shows that all event time deriva-
tives of interest, v} ;(f), are expressed in terms of Ay ;
and By ; above; by convention, we shall set Ao =1
and By g = 1. Moreover, we establish the fact that af-
ter a Partial Loss period occurs, all ensuing event time
derivatives are v;m-(ﬂ) =9

Lemma 3.1 Suppose that pim+1(6),1 <m < Sk — 1,
is the first Partial Loss period in ¢ NBP [£k, ik {0)) with
S > 1. Then:

1. For vgs < Ukm, if 2(6;6:) = 0:

‘ Ag,0
v = 18
o= oy
Brai-r Arzi-2
A L 19
k 2n( ) H Bk 2I Ak,Ziul ( )
where1<n< 2 ifmiseven, and 1 <n < 251
if m is odd, end m > 1; and
’ Agan 11 Broicr Arzi-a
Vg anpa(8) = 2 2l Aedicd (g
kan1(6) Apany1 28 Brai Agzia (20)

wherel<n< m:2 if m ds cven, and 1 < n <
—- tf m is odd, and m > 2.

If I(awfk) - b
. B
v {0) = E: (21)
Akgi-1 Bipi2
vk n6) = H Arzi  Braia (22)

i=1
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wherel <n < B ifmiseven, and1 En <

if m is odd, and m > 1; and
, Bion 17 Ak2ici B i-
v N = : 2 23
k,2n+1( ) Biant1 et Ag 2i Bk 21 ( )

where 1l < n < B=£

E..

B 2 ifm is even, and 1 < n <
if m is odd, and m > 2.

2. For all vp; > vemei:

ﬂ;c,i(e) =0

Due to space limitation, we omit all the proofs in this
paper.

Remark. It should be obvious that if there is no Par-
tial Loss Period in a NBP, then (18)-(23) apply for all
”M(G) i=1,...,5 -1

3.1 Class 1 Loss Derivatives

We begin by considering the class 1 loss metric Lyr{8).
In view of our sample path partitioning into NBPs
&, ), k = 1,..., K, and BPs that precede and
follow them, we may write (1) as follows:

Z / {8, t)dt+z / (8 t)dt

(24)
If the sample path ends with an incemplete NBP, we
simply set nx = £xy1 = T; similarly for a possibly
incomplete last BP. By differentiating with réespect to
& we obtain

Lr(8

. d . (8)
Lir(6) = d— JRRE

K d 1T¥8Y
Z 7 / 71{6;t)d (25)
k=
Let us now define
0 (6) . 11991
Ark(8) =f T(8; t)dt*{-] T (8; t)dt,
£k ()
s0 that, from {25), we can write
X
ir(0) = Xi4(0) (26)
k=1
and our objective is to evaluate A} ,(6) for any k =

1,....K.

The next lemma provides an expression for the deriv-
ative ) .(6) required in (26). Let $(6) denote the set



“of NBPs containing no Partial Loss periods and set

00(8) = {k : k € ®(6), x(6;&k) = 0, z(8;nx(9)) = 0}
%a(ﬂ) {k:k € 0(8), 2(6;&) = 0, =(6;m(6)) = b}
DPpo(0) = {k: k € ®(8), x(6;&) = b, x(6;m(8)) =0}
Pop(0) = {k: k € B(6), =(8; &) = b, =(6;m(0)) = b}
and we note that all the above sets are locally inde-
pendent of 8. Further we define for any k=1,..., K,
n=24,...

2
ﬁ Ak Braia (27)
B Ak2i1’
n/2
Bk 2% Ak 2i—1
Rin= C 28
. H Ar2i Braia (28)
and define Ryo =1, Rio= 1.
Lemma 3.2 Foranyk=1,..., K,
gk,sk—l if k € Boo(8)
’ ﬁ::—;fﬁ-,ssz if k € ®op(6)
Malf)=-1+{ 2e31p o 0 if k€ Bpo(6)
—kSp—1 =
Rk,S,‘fl ifk € ¢I>bb(9)
0 otherwise
(29)
Moreover,
~1.< A () < 0. (30)

Theorem 3.1 The sample derivative L 5(6) is given
by

Lir(0)=-K+ Y Resea+ 3 kS"ﬂlesk—z
kE@on keda kS
Ags,
+ Z AR 2+ Y Rese (31)
kedyo Brsi-1 kedes

where K is the (random)} number of NBPs contained in
i0,T], including a possibly incomplete last one.

The expression in (31) provides the IPA estimator for
the loss metric defined in (1). We show the unbiased-
ness of this estimator in Section 4. Note that L1T(9)
above does not depend on any distributional informa-
tion regarding the traffic arrival and service processes
and involves only flow rates at event times v ;(§) which
may be estimated on line. If NBPs include at least one
Partial Loss period, then the only implementation re-
quirement is that such a period be detected and the
contribution of this entire NBP is simply —1.
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3.2 Class 2 Loss Derivatives

Class 2 traffic will experience loss only during an OP
where the buffer level is b and the loss rate is v2(6;t) =
aa(t) — B(t). Let [7(6),Ek41) denote the kth BP in
[0,T} and suppose it is an OP. Note that €41 is in-
dependent of # since it is the occurrence time of an
exogenous event e3. Define the loss of class 2 during
that period to be Az x(8): ’

Ert1 1
Ne(8) = j N feat) ~ B(E)dL,

£kt
ittt = [
nx(6)

(32)
so, upon taking derivatives, we have
d £k+1
Yeal®) = 5 [ leatt) - B0
= ~[az m(e)) — Bme(O)me(6).  (33)
Define
V() ={ke{l,....K} : z(8;m(8)) = z(8; £k41) = b}

to be the set of OPs in the sample path {locally inde-
pendent of 8), so that

Lyr(8) = (34)

3 a0

LEW(8)

Lemma 3.3 Let [n:(0), £xq) denote the kth BP, k =
1,..., K, and assume it is an OP. Then,

Az (8) = =X 4(0)

where Ay (6) is the class 1 loss incurred over the pre-
ceding NBP [£, 1x(6)).

(35)

Lemma 3.3 greatly simplifies the task of evaluating the
sample derivatives of both traffic classes, since Li(8)
in (34) is obtained as a byproduct of the evaluation of
L (6} in Theorem 3.1.

3.3 Work Derivative
Similar to Lyr in (24), we can rewrite (2) as

7 (6)
Qr(6) Z/ 0tdt+2] z{(f;t)dt
{8}
Define
% {0) Ekt1
qk(9)=f (8, t)dt+j z(6;1)dt,
£ nx{8)
so that
. d @ Ek+1
@) =2 f (8t + = f (0 )t
de Ex e (8)



Lemma 3.4 For any NBP [£x,n(0)), suppose that
S > 1 and prm43{8),1 € m < S — 1 is the first
Partial Loss period in the NBP. Then,

m—1

a(8) = Z (Uk,i41 — Vh,e)Pri + (Vk,5% — Ve,m) (36}

g==1

where

tri = {

Moreover, if S =1, then

q:(8) = 0.

1-— Ak,i”;c,i: if Pr.it1 15 @ No Loss period
1-— Bk,l—v;c,i, if Pr,iv1 15 o Full Loss period
(37)

Theorem 3.2 The sample derivative Q}(H) is given
by

K
Qr(8)=>_ a8 (38)
k=1
where K 1is the (random) number of NBP contained in
[0,T), including a possibly incomplete last NBP.

The expression in (38) provides the IPA estimator for
the work metric defined in (2). Its implementation re-
quires the same information as that for the loss metric
with the addition of timers to measure the duration
- of periods py ;41 within each NBP observed in (0,71,
as well as (vk,5, — Y&,m,) if one or more Partial Loss
periods are included.

4 IPA Estimator Unbiasedness

In general, the unbiasedness of an IPA derivative £'{#)
is ensured by the following two conditions (see [9],
Lemma A2, p.70):

Condition 1. For every 8 € €, the samplhe derivative
L£'{0) exists w.p.1.

Condition 2. W.p.1, the random function £(§) is

Lipschitz continuous throughout 8, and the (generally
random) Lipschitz constant has a finite first moment.

Consequently, establishing the unbiasedness of L;T(f}),
Lop(8) and Qp(8) as estimators of dE[L:r{8)]/d#,
dE|Lor(#)]/d® and dE(Qr(6))/df, respectively, re-
duces to. verifying the Lipschitz continuity of Lyr(#),
Lor(d) and Q¢(8) with appropriate Lipschitz con-
stants.

Theorem 4.1 The IPA estimates Lyp(6), Lop(6)
and Q(8) are unbiased estimates of dE|L.17(8)]/d8,
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dE[Lar(8))/d8 and dE[Qr(6)]/d6 respectively. In

other words,

and

¢ _ dEELlT(G)] s
E[L,;T(G)] == is 12
] _ dEQr(8)]
£ [orio] - 222
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