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Abstract

We consider a model of a make-to-stock manufactur-
ing system. External demand is met from the finished
goods inventory; unsatisfied demand is backlogged. We
adopt a base-stock production policy which produces if
inventory falls below a certain threshold and idles oth-
erwize. We get this threshold to guarantee stockout or
delay probabilities to stay below given constants (ser-
vice level constraints). These can be set by solving
a utility maximization problem which trades-off Qual-
ity of Service with expected inventory costs. We com-
bine analytical {large deviations) and simulation-based
(perturbation analysis) techniques. We demonstrate
that there is a patural synergy between these two ap-
proaches.

Keywords: Make-to-stock systemns, Service levels,
Large Deviations, Perturbation Analysis.

1 Introduction

In this paper we will focus on a make-to-stock manufac-
turing system. In such systems, demand is met from
a finished goods inventory (FGI) and the production
facility strives to maintain this inventory nonempty to
avoid stockouts, which lead either to backordered de-
mand or Jost sales. A large variety of preducts are
manufactured in this fashion. In these systems the
fundamental trade-off is between producing, which ac-
cumulates inventory and incurs inventory costs, and
idling, which leads to stockouts and unsatisfied de-
mand. The objective is to devise a production pol-
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icy optimizing sorne measure of the system’s perfor-
mance, which should incorporate both inventory costs
and backorder costs, L.e., costs asscciated with not be-
ing able to timely meet demand.

In modern manufacturing, Quality of Service (QoS) is
gaining significance in acquiring and maintaining mar-
ket share. To that end, we introduce constraints that
ensnre that probabilities of stockout events or delays
stay bounded below given desirable levels. We believe
that such service-level constraints provide a more nat-
ural representation of customer satisfaction than ex-
pected backorder costs. The latter are the norm in the
literature but are hard to quantify.

The make-to-stock problem we are considering has
been studied extensively in the literature (see [1] and
references therein). In a variety of settings (e.g., 2]} it

_has been established that a base-stock policy (produce
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when inventory falls below a certain threshold and idie
otherwise) is optimal. The multiclass version of the
problem is more involved; apart from idling, a pro-
duction policy consists of scheduling decisions as well,
Combining fluid and large deviations techniques the
multiclass problem was analyzed in [3].

In this paper we will combine Large Deviations (LD)
(employed in [3]) and Perturbation Analysis (PA) tech-
nigues [4]. We will demonstrate that there is a natural
synergy between these rather distinct approaches.

LD analysis is an off-ltne approach, based on asymp-
totic results, intended to evaluate performance mea-
sures of interest that involve “rare events”. A case in
point arises with stockout probabilities which should be
relatively small. One can obtain asymptotically tight
approximations of such probabilities {as they become
small) for a variety of models, including models that
capture dependencies in the demand and production
processes. LD analysis is computationally fast, charac-
terizes the most likely way that stockouts occur, and
can be used to answer key “what-if” questions. On the
other hand, it does require detailed statistical charac-
terization of the stochastic processes involved. PA is
an on-line approach intended to estimate performance
measures by observing an actual {or simulated) system
sample path. It estimates performance over multiple
parameter settings from a single sample path. In con-
trast to the LD approach, it requires data, the collec-
tion of which may be time-consuming {e.g., estimating
small probabilities requires long sample paths). On the
other hand, PA does not rely on detailed knowledge of



the mode] statistics.

We believe that there is a natural synergy between PA
and LD, arising in several domains:

o PA provides accurate estimates for relatively
large stockout probabilities (e.g., 5%) within rea-
sonable time, and LD approximations become
very reliable for relatively small ones (e.g., 107%).
Hence, combining LD and PA one can accurately
estimate a large range of such probabilities.

LD analysis can be used to quickly obtain a con-
trol policy based on some initial estimates on de-
mand and production processes and then rely on
PA to fine-tune the control policy based on the
actual realization of these processes.

PA can also be of direct use in the LD analysis.
As we will see in the sequel, we use the expected
inventory position to fine-tune our large devia-
tions asymptotics. PA can be naturally used to
provide this expectation.

QOur analysis is general enough to handle rather sophis-
ticated models of demand and production that can rep-
resent inherent dependencies in these processes. This
enables us to model realistic demand scenarios and
failyre-prone manufacturing facilities. To that end, we
will allow demand and production to be modeled by
autocorrelated stochastic processes.

Our motivation is to develop this line of analysis to
handle the more general supply chain case {multiple
stages). In this conference paper, however, we chose to
focus on the simpler, yet nontrivial, single stage case
to demonstrate our key ideas on the synergy between

LD and PA techniques.

The remainder of this paper is organized as follows:
Section 2 introduces the system we will study using
both LD analysis (Section 3) and PA (Section 4). In
Section 5, we present numerical results using both
methods. Conclusions are in Section 6.

2 The Model

We consider the make-to-stock manufacturing system
of Figure 1. Demand is met from the finished goods in-
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Figure 1: The model of a make-to-stock system.

ventory (FGI); unsatisfied demand is backordered. We
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assume a discrete-time model, where time is slotted
and the state of the system is examined at the begin-
ning of each time slot n € Z (pericdic review policy).
Let D,, denote the demand arriving during time slot n,
and B, denote the amount of goods that can be pro-
duced (capacity) during the same time slot. Let also
X, € R denote the available inventory at the beginning
of time slot n. We allow X, to take negative values;
when nonnegative it is equal to the amount of avail-
able inventory, and when negative it is equal to the
amount of backordered demand. We will be measuring
D.., B,, and X,, in units of work content of a reference
machine (identical to ours) which produces goods at a
given constant reference rate.

We assume that the demand and service processes
{D,,B.; n € Z} are arbitrary, stationary, and mo-
tually independent stochastic processes, that satisfy
certain mild technical conditions (a large deviations
principle, see [3] for details). These assumptions are
satisfied by a fairly large class of stochastic processes,
which includes renewal processes, Markov-modulated
processes, and general stationary processes with mild
mixing conditions. For stability purposes, we further
assume that

E[Bi] > E[D], (1)

which by stationarity carries over to all time slots n.

We will implement a base-stock policy which maintains
a safety stock or hedging point of w: the system pro-
duces when the inventory is below w and idles other-
wise. We have

Xop1= min{Xn ~ Dy + Bmw}- (2)
We quantify customer dissatisfaction by the proba-
bility, P[X, < 0], of not being able to meet in-
coming demand immediately (stockout probability).
Alternatively, we can quantify customer dissatisfac-
tion by the probability of exceeding a promised de-
livery time {delay probability). Let us denote by
Plcustomer dissatisfaction] either the stockout, or the
delay probability. Let us now assume the existence of a
“utility function” U{z,y) that quantifies the desirabil-
ity of a given QoS level x, and a given level y of inven-
tory costs. Let finally, € be a desirable upper bound on
the QoS level. We are interested in selecting a hedging
point w that solves the following optimization problem:

max U{P[customer dissatisfaction], Cost} (3)
a.t. Pleustomer dissatisfaction] < ¢, (4)
Cost = RE{X}}, (9)

where h is a given scalar and X} denotes max{X,,,0}.
We will be referring to (4) as the service-level con-
straint. To achieve our goal we need to compute
Pjcustomer dissatisfaction]. An exact analytic expres-
sion is impossible to obtain, especially in view of the
complicated, autocorrelated, models for the demand
and production processes. To that end, we will resort
either to simulation or to asymptotic technigues.



3 Large Deviations Analysis

Given a process {X;}, where X;, ¢ > 1, are identically
distributed, possibly interdependent, random variables,
let S, £ ", X;, and A(6) 2 lim, o L log E[e?S].
We will refer to A(-) as the limiting log-moment gen-
erating function. In the sequel, we will be dencting by
Ax () and A%(:) the limiting log-moment generating
function and the large deviations rate function, respec-

- tively, of the process {X;} (see [3] for some background
in large deviations).

We start by an asymptotic large deviations analysis.
Define the shortfall L,,, during time slot n, as:

L, - X
Eq. (2) becomes

Ly = max{L, + D, — B,,,0}. {(6)
We can interpret L, as the queue length of a discrete-
time G/G/1 queue with D, arrivals and at most B,
departures during time slot n. We will refer to this
queue as the make-to-order system corresponding to
the make-to-stock system we are studying. Using this
equivalence, we have P{X,, < 0] = P[L, > w|. Un-
der general assumptions on the demand processes and
production processes, we have the following result ([3]).
Proposition 3.1 The steady-state queue length pro-
cess L, safisfies

wh_l:rcln % log P[L,, > w] = -8, (7)
where 8* > 0O is the largest root of the equation Ap(#)+
Ag(—68)=0.

Intuitively, for large enough w we have

P[X, < 0] =P[L, > w] ~ e ¥%, (8)
Thus, the minimum w that guarantees P[X, < 0] to
be below ¢ is w = —log(e)/6*. Notice that Ap(f) +
Ag{—0) is zero at the origin and has negative derivative
at the same point (cf. (1)). When Ap(8)-+Ap(—0) <0
for all # > 0 we will say that §* = oc. In this case, no
stockouts occur and a safety stock of zero should be
maintained (Just in Time (JIT} policy).

We can improve the accuracy of (8) by introducing a
constant in front of the exponential, i.e.,

P[X, < 0] = ae™ ¥, (9)
Thus, the hedging point satisfies
__lotefe) w0
g~
Using an idea from [3] we obtain
o =#"E[L,]. {11)

Thus, to find the asymptotic constant we need (apart
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from 6*) the expectation of the queue length process
L, in a G/G/1 queue, which is independent of w and
can be obtained either by analytical approximations or
by simulation (see {3]). In particular, E[L,] can be
obtained as a byproduct of the PA work {discussed in
Section (4)). A key point here is that large deviations
analysis is used to determine the exponent, and simu-
lation might be used only to estimate E{L,]|. This is
beneficial since it is much easier to obtain a reliable
estimate for E[L,] than one for P{X, <0}.

We next turn our attention to the delay probability.
Consider an order arriving at time slot n. We will call
delay, and denote by d,., the time that it takes until
the order starts to get filled. As with inventory, we will
measure delay in units of work content, that is, time
units required by the reference machine to produce it.
Thus, when X,, > 0, the incoming order can start to
get filled immediately, which by our definition implies
d, = 0. When, however, X, < 0, the machine has a
backlog of —X,, units of work content, which implies
d, Xn- Using the correspondence with the make-
to-order system, we obtain

d, = (L, —w)" = max{L, —w,0}. (12)

We are interested in obtaining an expression for P|d,, >
], at an arbitrary time slot n, where r is a positive
gcalar. Note that

Pldn > 7] = Plmox{Ln - w,0} 2 ] = P{L, 2w +7].

Using the result of Proposition 3.1 we establish

Proposition 3.2 For any v > 0, the steady-state de-
lay probability satisfies

lim
w—oo W+ T

logP[d, = 7] = -8

Intuitively, for large values of w,
Pld, > ] ~ e~ (W),
A refined estimate can be obtained using (9), i.e.,

Pld, > r] = ae™8 (wF7), (13)

where « is given by (11).

We finally consider the inventory cost. Let C{w) be the
expected inventory cost, when we fix the hedging point
to w. As in (5), C(w) = RE[X,], where h is a given
constant. C{w) can be approximated by (the proof is
omitted due to space limitations)

Clw) = h(w — E[L,] + E[L.)e™®).  (19)

4 Perturbation Analysis

Whereas the LD analysis of Section 3 was based on a
time-driven model for the mventory X, {or shorifall
L.}, for the purpose of Perturbation Analysis (PA) an



event-driven model is more convenient. As we will see,
the two models are equivalent. There are two event
processes whose evolution affects the inventory level.
First, there is an exogenous demand process {Rk; k €
Z*} where R € R* denotes the time when the kth
demand request is made (it is possible that an entire
order for N parts is placed at one time, ie., Ry
Ryi1=...= Rgisn-1). Let {pi} denote an arbitrary
inter-request time stochastic process {g € Rt). In
addition, there is a production process represented by
{Ci;k € Z*}, where Cy denotes the time when the
kth part completes processing and is added to the FGL
Let {m} denote an arbitrary processing time stochastic
process (m, € RT).

As before, we shall use a hedging point to control pro-
duction. However, whereas in the LD analysis the
hedging peint is real-valued because of its interpreta-
tion as a safety stock measured in time units, in an
event-driven model it is integer-velued: it is a counter
of finished parts in the FGI. With this observation in
mind, we shall retain the same symbol w to denote the
hedging point. Note that Cj satisfies

Cr = max{Cr_1, Rk} + T, (15)
where Ry_,, = 0 for all & such that k —w < 0.
This model is virtually the same as one used to repre-
sent kanban-based manufacturing systems with w cor-
responding to the number of kanban assigned to the
workeenter modeled through (15), as in [5].

In this model, a “stockout event” is one such that R <
Cr. Thus, if a sample path under w is available, an
estimate of the stockout probability, denoted by Plw],
after N demand requests are observed is given by

-

Pluw] = —;-21 {Ry. < Cy}. (16)
k=1

Next we turn our attention to the delay probability.
Recalling the definition of delay, we obtain

dk = (Ck - Rk)+ = max{Ck - Rk,U}. (17)
Thus, if a sample path under w is available, an estimate

of the delay probability, denoted by P[dyx > 7], after N
demand requests are observed is given by

N
- 1
Pl >r}= Nkz—ll {Ch—Ry>7}. (18
The expected delay E[d,] can be estimated as follows:

. 1 N
Eld] = “J\TZ‘{“' (19)
k=1

Finally, we can also estimate the expected inventory:

-

N
1
EX]] = To SXF(t—te), (20)
k=0
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where Ty is the length of the observed sample path
and #; is occurrence time of an event {production or
demand request) which changes Xj. Thus, if a sample
path under w is available, an estimate of inventory cost
C(w) is given by

C(w) = hB[X}]. (21)
4.1 Completion Time Perturbation Dynamics
For our purposes, any sample path observed under a
hedging point w is referred to as the neminal sample
path. Then, a perturbed sample path is one that would
have resulted if the exact same nominal one had been
reproduced under a different hedging point @ # w.
I the sequel, we will use a tilde {7} for all perturbed
variables. We define completion time perturbations as
follows:

AC (W) =C —Ck, k=1,2,..., (22)
and ACy(w) = 0. The purpose of PA is to derive a
recursive relationship for ACk(w), k = 1,2,..., which

involves only quantities directly observable along the
nominal sample path. If this is possible, then at each
completion time Cy one can evaluate ACL(w} as well
for as many values of @ as desired. In the sequel,
we shall only write AC; to denote perturbed com-
pletion times corresponding to a given w. Let us
also define Iy = Rj_,, — Ck_y, and observe that if
I > 0, it represents the length of an idle period start-
ing with the completion of the (k—1)th part and ending
with the (k — w)th demand request. Furthermore, set
G = Rik-—-g — Ri—w, which represents the time differ-
ence in ending an idle period (positive or negative) due
to the change in hedging point. The following propo-
sition characterizes ACy; the proof is omitted due to
page limitations.

Proposition 4.1 For any perturbed value 1w, the com-
pletion time perturbation is given by (k=1,2,...)

AC, = max{AC;_y, I + Q} — max{],0}. (23)

In order to use (23) on-line, we must ensure that at time
Ck, I, and Q) are indeed available, i.e., we need to en-
sure that Cy > maX{Ry—., Bk-a, Cx-1}. It is obvious
from (15) that C > max{Cr—1, Bx—w}. Moreover, if
W > w, then Ry_,, > Rp_;-

In a simulation environment, we conclude that it is al-
ways advantageous to simulate the system at the small-
est feasible value of w and apply PA to infer the effect
of all desirable @ > w.

The PA algorithm operates by updating AC (1) over
a given set of values for i, after observing the kth com-
pletion event at time C}, along an observed sample path
under a given hedging point w. If we are interested in
estimating Plw| and P[], this is accomplished using
(16). If, in addition, our objective is to determine the
smallest hedging point that provides a stockout proba-
bility below a given threshold ¢, this is done by simply
comparing all stockout probability estimates to deter-



mine the smallest @ satisfying P(1) < e. In so doing,
we are exploiting the fact that Plw] is monotonically
nonincreasing in w.

Algorithm:

1. Initialize: Np(w) = 0, ACo (i) = No(ib) = 0, V4.

2. Whenever a completion event occurs at time Cp:

2a. Evaluate AC () for all & using (23).

2b. If €y > Ry, increase the number of nomi-
nal sample path stockout events: Ni{w) =
Nk_l(w) + 1.

2c. If Cx + ACy(w) > Ry, increase the number
of perturbed sample path stockout events:
Ni(w) = Ni-1 (@) + 1.

3. After N demand request events are observed,
STOP and estimate the optimal hedging point:

3a. For every w (including @ = w), estimate the
stockout probability: P(@) = -Ii“;v—("’—)

3b. Estimate the optimal hedging point: w*
arg ming {P{&) < e}

Clearly, estimates of the delay probability, expected de-
lay, and expected inventory can also be obtained under
Step 3a above by using (18), (19), and (20) respectively.

In a simulation environment, the advantage of the
algorithm is that it can provide performance metric
estimates over multiple hedging points from a single
simulation run at some selected hedging point values.
Typical nurnerical results we have obtained show a
“speedup” realized by the PA algorithm of ahout 5.5,
while the overhead imposed by the algorithm was ap-
proximately 2.5%.

The PA algorithm described above can be adapted to
a discrete-time model conforming to the one presented
for the LD analysis. This will allow us to use both LD
and PA-based hedging point determination on a com-
mon model for comparison purposes and for achieving
the synergy that has motivated this work. We assume
a periodic review policy where time is divided into time
slots of equal duration and the system is examined at
the beginning of each time slot. Let N, be the num-
ber of production events and N,, the number of de-
mand requests observed during the ith time slot. The
demand process {N,,.¢ € Z*} and the production pro-
cess {Ny,,i € ZT} are arbitrary stochastic processes.
Our objective is to recover m; and p; {needed to drive
the event-driven model based on which PA was carried
out) from {N. } and {N, }. Once we recover these
integer values of m; and p, (details are omitted), we
can return to the model (15) and the PA algorithm ob-
tained through (23), the only difference being that all
quantities involved are now integer-valued. The opti-
mal hedging point obtained in this fashion is based on
a discrete-time model of the same underlying system.
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5 Numerical Results

We next provide numerical results to demonstrate the
accuracy of the LD asymptotics and compare them
to those obtained by PA. We consider only stockout
probabilities; the conclusions for the delay probability
would not be much different. The demand and pro-

@@D@@D

r=(3, 10) (0,14)
E[D,} =833 E[B 1= 10 35
Var(D,) = 5.56 Var(B,) = 37.79

Figure 2: The demand and production processes.

duction processes are discrete-time Markov modulated
processes (see Fig. 2). By r we denote the vector of
demand or production amounts at each state of the
corresponding Markov chain. The load of the system
is nearly 0.8.

5.1 Performance Evaluation

For the example of Fig. 2, we apply the PA algorithm.
For each service level requirement e, the optimal hedg-
ing point from PA is the average over 20 independent
sample paths of N = 107 demand request events.

The LD analysis yields a decay rate for the stockout
probability 8* = 0.120. As discussed in Section 3, to
refine the LD asymptotic (c¢f. 9) we use PA to obtain

E[L.] in the equivalent G/G/1 queue. The hedging
point (10} becomes
«_ log(e/0.768)
B 0120

Table 1 compares the LD and PA results, Both ap-
proaches are very accurate and the results are very close
for most €’s. It can be seen that when ¢ is extremely
small, PA requires longer sample paths to get a reli-
able estimate, while the LD approximation is still re-
liable. The refined I.LD approximation is accurate even
for large €’s.

LD PA Simulation
€ w w w PIX, <0]

0.3 7.84 7.60 8 0.326

02 1122 | 11.00 | 11 0.194
1.0x 101 | 16.99 | 17.05 | 17 | 0.996 x 10!
10x107 [ 36.18 § 36.10 | 36 | 1.040 x 10~ 2
1.0x 102 | 5537 | 5485 | 55 [ 1.072 x 1073
10x 1072 ] 7456 | 7335 [ 75 | 0.964 x 10~7
1.0x 10-5 ] 03.74 | 9550 | 94 | 0.983 x 10—5
10x10°% | 112.93 | 106.06 | 113 | 1.059 x 10-F

Table 1: Comparing LD with PA results.



5.2 Robustness Analysis

In general, statistical models of demand and produc-
tion might not be known a priori, or even if the model
structure is known, certain parameters have to be es-
timated. Estimation leads to errors, which lead to in-
accuracies in the LD analysis. We next consider the
example of Figure 2 and introduce disturbances in the
parameters to test the robustness of the LD results. In
certain cases, the discrepancies are substantial which
demonstrates the utility of combining LD and PA tech-
niques as outlined in the introduction.

Constant disturbances in the transition prob-
abilities: Suppose there is a disturbance A in the
transition probability matrix of the underlying Markov
chain characterizing the demand process, e.g., consider
a matrix Pp where

PD=[0

and A € [-0.2,0.2]. We use PA to estimate optimal
hedging points w’ for the disturbed system and com-
pare it with the w given by LD for the original system.
We found that for -0.2 < A < 0.2, almost all rela-
tive errors }'"”1:"’] - 100% are to be within 10%, yet a A
equal to 0.2 causes a large relative change. On closer
inspection, “robustness” is more a property of the sys-
tem itself rather than the method of determining w,
i.e., w’ does not change much as we vary A. Thus, the
stockout probability is not too sensitive in A.

2—A 08+ A
04 06 §°

Constant disturbance in the demand: Consider
next a disturbance in the amount of demand at each
state of the underlying Markov chain. In particular,
we consider a demand process with rp = (5 + A,10),
where A € {-5,—4,...,4,5}. We observed that when
we increase the demand, i.e.,, A is positive, the rela-
tive error increases very steeply. In contrast, negative
disturbances do not affect the analytically (LD-based}
computed w value as much, This can be attributed to
the inherent nonlinearity in the system: as the utiliza-
tion increases the effect on the stockout probability is
more dramatic.

Random disturbance in the demand: Finally sup-
pose that the disturbance Ainrp = 5+ A,10) s a
zero mean random variable. This is for example the
case when the amount of demand at state 1 is not
known and we are estimating it from real data to apply
the LD approach. Table 2 gives simulation (PA) re-
sults for uniformly distributed disturbances in [—5,5]
and disturbances with a (0,1) Gaussian distribution.
These results show that if our model is accurate, in
the sense that the mean of the disturbance is zero, the
LD approach provides fairly reliable approximations.
Nevertheless, errors of about 5% that appear when A
is uniformly distributed might be significant in certain
circumstances.
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Original System A~U(=558) || A~N(0,1)
€ w w' w’ j__{w’;w w | owl
0.1 17.0 | 17.1 || 18.0 | 5.94% || 17.0 | 0.06%
0.01 | 36.2|36.0) 3r.7 | 4.20% |) 36.1 | 0.24%
0.001 [ 554 | 54.9 || 57.6 | 4.02% || 55.4 | 0.05%

Table 2: Random disturbances in the demand.

6 Conclusions

We considered the model of a make-to-stock manu-
facturing system under rather complicated, potentially
autocorrelated, models of demand and production. We
adopted a production policy that sets a certain thresh-
old for inventory (hedging point); the system produces
when inventory falls below this threshold and idles oth-
erwise, We analyzed the system using both large devia-
tions (LD) and perturbation analysis {PA) techniques.
LD techniques provide asymptotically tight approxima-
tions for the stockout or delay probability and allow us
to set the hedging point to guarantee desirable service
levels. PA techniques find this hedging point efficiently
from simulation. We demonstrated that there is a nat-
ural synergy between LD and PA. In particular, (i) PA
is very reliable and accurate for relatively large stock-
out probabilities and becomes computational expensive
for very small stockout probabilities, while LD becomes
more accurate for small stockout probabilities, (i) PA
can be used to refine the LD asymptotics and make
them reliable in a wide range of service levels, and (iii)
1D can initialize PA and lead to faster convergence in
situations where detailed statistical models of demand
and production are either imprecisely known or even
unknown.
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