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Abstract

This paper formulates and solves an optimal control
problem for steel annealing manufacturing processes in-
volving one or more furnaces integrated with plant-wide
planning and scheduling operations. We use a hybrid
system framework to capture the tradeoff between met-
allurgical quality requirements and timely product de-

livery. The resulting nonconvex and nondifferentiable

problem is solved by decomposing it into several smaller
and simpler constrained convex optimization subprob-
lems. Although the number of such subproblems ap-
pears to be combinationally large in the number N of
jobs to be completed, we use a recently developed ap-
proach for identifying at most 2N — 1 such problems
and provide some explicit numerical results.

Key words : Hybrid system, steel annealing pro-
cess, nonconvex optimization

1 Itroduction

In steel manufacturing environments, physical pro-
cess operations are integrated with plant-wide planning
and scheduling operations. Individual steel “parts”
(i.e., ingots or strips) undergo various operations to
achieve certain metallurgical properties that define the
‘quality’ of the finished products. In particular, the
steel annealing process is an important step for achiev-
ing a wide range of high-strength products with unique
properties from a limited number of compositions. This
step involves slowly heating and cooling strips to some
desired temperatures.

Before heating and cooling each roll of strips in steel
annealing processes, a higher level controller determines
the furnace reference temperature (more generally, a
“furnace heating profile”) which the strip should follow,
as well as the amount of time that this strip is held in
a furnace. In fact, the goal of achieving high quality for
the strip in a steel annealing process is clearly in conflict
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Figure 1: A steel annealing process line.

with the plant-wide planning and scheduling objective
of timely delivery of finished products to clients. A
hybrid system framework may be designed to deal with
this type of conflict [1, 2]. In this framework, the generic
term “job” refers to the processing task and the term
“server” is used to describe the workcenter or device
that processes the task. In steel annealing processes,
the jobs and server correspond to the strips and the
furnace respectively.

To represent the hybrid nature of the model, each
job is characterized by a physical state and a temporal
state. The physical state represents the physical char-
acteristics of interest and evolves according to time-

- driven dynamics (e.g., differential equations) while the
_ job is being processed by a server. The temporal state

represents processing start and stop times and evolves
according to discrete-event dynamics (queueing dynam-
ics in this case). In steel annealing processes considered
here, the physical state is associated with the strip tem-
perature (evolving according to the furnace tempera-
ture), the line speed, and possibly some other proper-
ties of the strips. On the other hand, the temporal state
is associated with the arrival time and the processing
time of the strip in the furnace. '

Figure 1 shows a typical annealing process line con-
sisting of a number of furnaces in tandem for continuous
heating, soaking, cooling, etc. [3, 4, 5]; the heating fur-
nace is normally the one with the greatest influence on
the production rate and strip quality. The entire length
of an annealing line is about 1 Km ~ 1.5 Km and a heat-
ing furnace, in particular, is about 400 m ~ 500 m. Raw
material, (e.g., a cold-rolled strip) is put on a pay-off
reel on the entry side of the line and runs through the
line with a certain line speed. Usually, it takes a few
minutes for a roll of strips to go through a furnace. On
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Figure 2: An example of the furnace reference tempera-
’ ture profile.

the delivery side, the strip is cut into a product length

by a shear machine and rolled again. The strip tem-

perature in each furnace is controlled by fuel flow rates

associated with the furnace reference temperature pro-

files given to each strip; these variables are measured at

each furnace. Typical reference temperatures through
" a line such as that of Fig. 1 are shown in Fig. 2.

In this paper, an optimal control problem for such
steel annealing manufacturing processes involving one
or more furnaces is formulated and solved in a hybrid

system framework. To solve the resulting nonconvex . .

and nondifferentiable problem, A backward recursive
algorithm developed in [6] is adopted. This paper pro-
vides some explicit numerical results for both a single
furnace and multiple furnace models.

2 Single Heating Furnace Model

In this paper, we will first. consider a single heat-
ing furnace model described in the above hybrid sys-
tem framework. The physical state of a strip in the
“steel annealing process is denoted by z(t) and repre-
sents the temperature at each point of the strip as it
evolves through the heating furnace. The strip temper-
ature is basically dependent on the line speed u, which

usually remains constant during the process, and the

Jurnace reference temperature F, which is pre-designed
at a plant-wide planning level. The thermal process in
the heating furnace can be represented by a nonlinear
heat-transfer equation describing the dynamic response
of each strip temperature so that the temporal change
in heat energy at a particular location is equal to the
transport heat energy plus the radiation heat energy [3]
as follows:

dz(t) = ~Kiu+ Ko[F* — 2(t)%]

at t>t (1)
where
_ F —z(to) _ 20505
Ki=—7— Ki=gros,
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Figure 3: Real and approximated trajectoriés of strip tem-
perature.

and
L furnace length m];
to heating start time;
Osb Stefan — Boltsmann constant
(= 4.88 x 1078 [kcal/m? - h - deg*]);
oA coefficient of radiative heat absorption,0 < ¢, < 1
(determined as 0.17 from actual data);
d, : strip specific heat [kcal/m? - deg];
7T : strip thickness [mm]

Since (1) is in nonlinear differential form, it is hard
to represent solutions in an explicit form. Figure 3(a)
shows the temperature trajectories of (1) in the fol-
lowing environment: L = 500 [m)], d; = 4.98 x 104
[kcal/m3-deg], ¢s = 0.17, 7 = 0.71 [mm], u
100, 200, 300, 500 [m/min] and 2(t9) = 30°C. The curve
in Fig. 3(a) turns out to be close to an exponential,
hence the model can be approximated as follows:

dz(t) 1
dt  f(u)

(F-2z(t), t=t. 2

where f(u) is an arbitrary function appropriately cho-
sen to achieve a desired level of accuracy. In this pa-
per, f(u) is taken to be a monotone increasing poly-
nomial function of u, i.e., f(u) = Y, cgu” for some
m = 1,2,.... This approximation has been employed
in a real heating furnace model for a steel annealing
process [5]. The approximated trajectory of the strip
temperature in the same environment as Fig. 3(a) is
shown in Fig. 3(b), where f(u) = 5.4u + 29.

Let us now consider the temporal state of strips
viewed as jobs denoted by C,,---,Cn. The tempo-
ral state of the sth strip is denoted by z; and y;. z;
represents the time when the job starts processing at



the furnace and y; represents the time when the job
completes processing and departs from the system. In
earlier work, the starting time of the (i+1)-th job is
identical to the completion time of the ith job (i.e.
Tiv1 = ¥;) for all ¢ = 1,2,--- because each job is sup-
posed to be a “lump”. On the other hand, the fact is
not true in the steep annealing process because each job
of the steel annealing process is a continuous strip of a
typical length, not a lump. Hence, the temporal behav-
ior of a steel annealing process cannot be represented
by a single “max-plus” equation.

Letting a; be the arrival time of the ith strip, the
event-driven dynamics describing the evolution of the
temporal states z; and y; are given by the following two
equations (3)-(4):

z; = max(a;,zi-1) + s1(ui) 3)
¥ = &; + 82(u;) (4)
subject t0 Umin < Ui < Umaz,t = 1,---, V.

where s;(u;) is the elapsed time for the whole body of
the strip to enter the furnace, which is dependent on the
length of the strip and s5(u;) is the processing time for
the each point of the strip to run through the furnace,
which is dependent on the length of the furnace. Umin
and e are the minimum and maximum allowable
line speed respectively, and assume that xp = —oc.

Since each strip C; of length h; runs through the
furnace of length L at a constant speed, u;, s1(u:) and
s2(u;) are determined by

sl(u,-) = % and Sz(ui) = -5, g=1,--- ,N. (5)

% 1

In this system, we have two control objectives : (i)
to reduce temperature errors with respect to the fur-
nace reference temperature, and (ii) to reduce the en-
tire processing time for timely delivery to clients using
acceptable levels of line speed, u;. Thus, the optimal
control problem of interest, denoted by P, is

o N .
P : min }J = Z[G(%) + o(y3)] (6)

{wrun}

subject to (2)-(4).

The function ¢(y;) in (6) is the cost related to jobs
departing at time y;. For example, ¢(y:) = (y; ~ di)?
defines a cost where departing after the due date d;
incurs a tardiness cost and completing the job before
its due date incurs an inventory (backlog) cost.

.The function 8(x;) in (6) is selected so as to penal-
ize the deviation of the ith strip temperature from the
reference temperature, F;. In earlier work [1], it was
assumed that the final state, 2(s;), is fixed. In this pa-
per, the final state is not a fixed value, but depends on
both the furnace reference temperature, F; and the line

speed. Accordingly, we set, fori =1,---,N:

Lju;
9@0=U%—4Lmdﬁ+ﬂ£ (Fi — =(9)%dt, (7)

where L/u; is the time required for each point of the
strip to stay in the furnace and 3 is a weighting factor.

To be consistent with the previous discussion re-
garding tradeoffs between the temporal and physical
requirements in hybrid systems, é(u;) should have a
certain monotonicity property in wmin < % < Umaz
which can be guaranteed by appropriately selecting the
weighting factor 3 in (7) as follows:

Lemma 1 if § = ﬂﬁ—i for any 0 < k < 2, then 8(u;) is
a monotone increasing function in umin < Ui < Umaz-

Proof : By the approximated differential linear

» equation of (2) and the initial state 2(0) = 0 w.l.o.g,

we obtain the temperature trajectory of each strip 7 on
the line speed u;:

2(t) = Fy(1 - e7/1®)). (8)
Replacing (7) with (8) and 8 = 7-(’%‘—) yields

bu) = F?[e2timt _ gl (;‘?)(e-—?lz/uff(u;) _ 1)]

e—2L/u;f(ua) _ g(e"ZL/uif(ui) . 1)]

r

Ky ~2L/uitu) K
» .(1 - -2—)6 + -2- .
Since f(u;) is monotone increasing in Umin < u; <
Umaz, 0(u:) is also monotone increasing under 0 < k <
2. |}

This monotonicity is an important requirement for
developing the optimal control algorithm presented in
the next section.

3 Computing Optimal Controls

The function J in the optimal control problem P
is neither convex nor differentiable. Consequently,
general-purpose algorithms, based on non-differentiable
calculus [7], for computing its minimum may require
overwhelming computing resources. There is, however,
enough special structure to be exploited and, conse-
quently, simplify the computation of explicit solutions.
In this paper, we adopt the backward recursive algo-
rithm recently proposed in [6] to efficiently solve the
optimal control problem. The main feature of this al-
gorithm is that the solution of the optimal control prob-
lem P in (6) is computed by solving a finite sequence of
differentiable, constrained convex programming prob-
lems. In addition, the number of these convex problems

542



Table 1: Backward recursive algorithm

ALGO 1:

Initialize :

Main Loop :
While(k > 1) {

Solve P(N, N) by solving Q(N, N). Set k= N.

Solve P(k — 1, N) using ALGO 2.

Set k +— k—1.
-}

ALGO 2:
Initialize :

Set m=0 and set By = By = {Cx_1}-

-Solve Q(k — 1,k — 1) to obtain ux_;, and compute zx_; = ar_1 + he_1/ur_1.

Set k(0) = n(0)=k-1.
Main loop : .
While (Tn(m) 2 @n(m)+1) {
Set By «+ B1 UBp 1.

~ Solve the problem Q(k — 1,n(m + 1)) to compute g1, , Un(m+1),

and compute Tp(m+1) = ak—1 + >

mem+1.

}

n(m+1)
i=k—1

h,’/’u,;.

Output : Set u; =u; foralli=n(m)+1,---,N.

is not combinationally explosive as it would appear. In
fact, as shown in [6], this number is bounded by 2N -1,
where N is the number of jobs processed.

The derivation of the backward recursive algorithm
is based on the following fundamental observation:
Even though the overall optimization problem P is
nonconvex, the optimal state trajectory can be decom-
posed into segments called “blocks” such that the con-
trols within each block can be obtained by solving a
much simpler convex optimization problem with termi-
nal constraints on the departure time of the last job in
the block. A busy period on the optimal state trajec-
tory (i-e., a period during which the server is busy and
is preceded and followed by idle periods of strictly pos-
itive length) defines such a “block”. More generally, a
busy period may contain two or more blocks if it con-
tains a job indexed by ¢ such that x; = a;+;. The ith
job would then end one block and the next one would
start with job ¢ + 1.

For example, consider a busy period consisting of
jobs Cg,---,C, and suppose that this busy period con-
tains two blocks, C,---,C; and Cj,,,--+,Cy. Then,

. by the idle period decoupling property (Lemma 3.1 in

[6]) and the partial coupling property (Lemma 3.2 in -

[6]), we can determine the optimal controls for the jobs
in this busy period by solving two independent con-
vex problems. The first for jobs, Cy,---,C; with ter-
minal constraint z; = a; 41 and the second for jobs
C; 410" *»Cn with no terminal constraint on the de-
parture time z,,.

In short, if we can identify the busy period structure
of the optimal solution, and the block structure within
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the busy period, then we can decompose the solution
of a computationally difficult non-convex optimization
problem into a collection of simpler, convex optimiza-
tion problems.

To outline the backward recursive algorithm as ap-
plied to our steel annealing optimal control problem P,
it is necessary to define_two sub-problems as follows.

First, consider a problem, denoted by P(k,n), where
(k,n) ranges over the set {1 < k < n < N}. P(k,n)
is the same as P except that the jobs, Cy,---,Cn are
replaced by the subset Ck,---,Cy, (note that P(1,N)
is identical to P). Then, P(k,n) has the following form:

> 6(u)

i=k

P(k,n) :  min_ { J(kym) = " ¢(y,->}

subject to

h;
z; = max(zi-1,a:) + V=Tt
and Umin <% < Umaz 1=k, -*,n
and the boundary condition zx— < a.

A second optimization problem denoted by Q(k,n)
is the following:

ukmut { J(k,n) = Z 8(us) + d(yi) } 9
3"t Un i=k
subject to

Y
7

Ti=ak+ Y — > aip,
—k Ui

uminsuigumazy i:—k,"',n“l,
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Figure 4: An optimal state trajectory and computational
_complexity data.

where
L+ h;
Us

: 2
Y =ag+ Z
i=k
Since the cost functional is continuously differentiable
and strictly convex, Q(k,n) is also a convex problem
with linear constraints and has a unique solution at a
finite point.

The backward recursive algorithm for solving the
optimal control problem P is described in ALGO 1
and ALGO 2 in Table 1.

3.1 Typical numerical results

A typical result from the application of the back-
ward recursive algorithm to the optimal control prob-
lem P for a single heating furnace and the environ-
ment given in Fig. 3 is shown in Fig. 4. Here,
we have used @(y;) = (v:)? in (6), 8 = 1/f(u;) and
h; = 1000 m for all ¢ = 1,---,5 in (7), the arrival
sequence is {0.2 2 4 7 10}[min], furnace reference tem-
perature F' = 600 °C and furnace length L = 500[m],
Umin = 100, Umez = 700 [m/min]. The computational
complexity data shown are in terms of the number of
problems of the form Q(k,n) that were involved in each
of the 5 iterations required to solve P.

In Fig 4, ‘queue length’ and ‘system length’ rep-
resent the number of jobs waiting at the queue and
the number of jobs remaining in the system (queue +
server) respectively. These trajectories are determined
by the arrival time a;, process starting time z; , and
completion time y; of each job.

4 Multiple Furnace Model

The algorithm has been extended to solve the op-
‘timal control problem involving multiple furnaces con-
sisting of heating, soaking, cooling furnaces (see Fig.

1), where heating and cooling processes are co-existent
and typical features of the steel annealing process are
exploited.

Consider an annealing process consisting of M fur-
naces. The furnace reference temperatures, F,-- -, Fyr,
and the furnace lengths, L,, - - -, Ly, for M furnaces are
given. It is assumed that the thermal dynamics in each
furnace are governed by the approximated model of (2)

with corresponding initial states.
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Letting u; ; be the line speed of the ith strip at the
Jjth furnace, the starting time z; is described as

b
z; = max(a;,Ti1) + —, 1<i<N

i,1

(10)

where 2o = —00. The completion time of the ith strip
through the multiple furnace model y; is described as

.3

k=2

L,
Uil

h; + va

, 1L
Ui,k

i<N (11

Yyi=zi +

The optimal control problem of interest in tHe mul-
tiple furnace system, denoted by Py, is

N
=3
=1

min
{u1,un}

M
> 0(ui;) | + bw)

=1

Py

(12)
subject to (2), (10)-(11) and umin < U; < Upmee fOr
i=k,---,n.

As in the single furnace model, consider a problem,
denoted by Pas(k,n), where (k,n) ranges over the set
{1 <k <n < N} Py(k,n) is the same as P s except
that the jobs, Cy,---,Cn are replaced by the subset
Cy,---,Cr (note that Pa(1,N) is identical to Ppy).
Then, Pps(k,n) has the following form:

n

2

i=k

M
D 0(uiy) | +b(w:)

=1

Py(k,n): min .

Uk, "y Un

subject t0 Umin < U; < Umgs, for ¢ = k,---,n and
(10)-(11) and the boundary condition zz_; < ag.

A second optimal problem denoted by Qar(k,n) is
the following:

n

M
Qum(k,n): min S 0wy | + o)
koyttyUn i—r o
subject t0 Umin < u; 5 Umaz for i = k,---,n and
;= t=k,---,n—-1, (14)
where

L+ hg

Uq,j

wmae 33 Lkl

g=k j=1

(13)



Table 2: Simulation result of a multiple furnace system (M=3)

Job Index 1 2 3 4 5 6
arrival time [sec] 48 480 720 960 1440 1680

u*;1 [m/min 307.69 | 396.29 | 397.60 | 346.47 | 465.30 | 498.89

u*;2 [m/min 280.73 | 293.90 | 315.51 | 405.94 | 485.81 | 546.91

u*;3 [m/min 318.88 | 388.81 | 363.06 | 700.00 | 700.00 | 700.00

x;[sec 406.13 | 785.92 | 1089.72 | 1333.74 | 1642.90 | 1869.41

y; [sec 585.88 | 938.59 | 1240.19 | 1464.49 | 1748.67 | 1967.58
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Figure 5: An optimal state trajectory and computational
complexity data for a multiple furnace (M=3).

Since the cost functional is continuously differen-
tiable and strictly convex, Qp(k,n) is also a convex
problem with linear constraints and has a unique solu-
tion at a finite point. The backward recursive algorithm
for solving the optimal control problem for multiple fur-
nace system, P s, can be described as in ALGO 1 and
ALGO 2 in Table 1. We omit the detailed algorithm
here.

4.1 Typical numerical results
A typical result from the application of the back-

ward recursive algorithm to the optimal control prob-

lem Pz for a triple-furnace (M = 3) and the environ-
ment given in Fig. 3 is shown in Table 2 and Fig. 5.
Here, we have used ¢(y;) = y? in (6), 8 = 1/ f(u;) and
h; =600 m for all i = 1,---,6 in (10), the arrival se-
quence is {0.8 8 12 16 24 28}[min], furnace reference
temperature F = {500 400 200}[°C], furnace length
L = {400 300 200}{m] and umin = 100, umaz = 700
[m/min].

5 Conclusion

This paper has formulated and solved an optimal
control problem for steel annealing manufacturing pro-
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work. The resulting nonconvex and nondifferentiable
problem is solved by an efficient backward recursive
algorithm [6]. Also, the problem for multiple furnace
models is solved by the extension of the single furnace
case. Ongoing work is aimed at extending our approach
to systems with an infinite number of sequential jobs or
with uncertainties in arrival times of jobs.

References

[1] D. L. Pepyne and C. G. Cassandras. Modeling,
analysis, and optimal control of a class of hybrid sys-
tems.

Theorey and Applications, 8:175-201, 1998.

[2] C. G. Cassandras, D. L. Pepyne and Y. Wardi.
Optimal control of a class of hybrid systems. to appear
in IEEE Trans. on Automatic Control, 2000.

[3] C.D. Kelly, D. Watanapongse and K.M Gaskey.
Application of modern control to a continuous anneal
line. IEEE Control System Magazine, pages 32-37,
April, 1988.

[4] T. Kawaguchi and T. Ueyama, Editors. Steel In-
dustry II: Control System. Janapese Technology Re-
views. Gordon and Breach Science Publ., New York, -
1989.

[6] N. Yoshitani. Model-based control of strip tem-
perature for the heatimg furnace in continuous anneal-
ing. IEEE Control System Technology, pages 146~156,
March, 1998.

[6] Y. Wardi, C. G. Cassandras and D. L. Pepyne.
Algorithm for computing optimal controls for single-
stage hybrid manufacturing systems. to appear in Intl.
J. of Production Research, 2000. '

[7] F.H. Clarke. Optimization and Nonsmooth Anal-
ysis. Wiley-Interscience, 1983.

Journal of Discreter Event Dynamic Systems:



