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Abstract

We consider optimal control problems for hybrid
systems with a separable cost structure allowing
us ‘to decompose them into two components: a
lower-level component with time-driven dynam-
ics (describing the physical state of the system)
interacting with a higher-level component with
event-driven dynamics (describing the changes in
the operating modes of the system). We develop
a hybrid controller which aims at jointly opti-
mizing the performance of both hierarchical com-
ponents. We demonstrate this approach on two
problems: a linear system switching from one op-
erating mode to another and a multistage manu-
facturing system. In the first problem, the main
difficulty is due to the coupling of the physical
states across modes, whereas in the second it is
due to the nondifferentiable event-driven dynam-
ics.

1 Introduction

The term “hybrid” is used to characterize sys-
tems that combine time-driven and event-driven
dynamics. The former are represented by dif-
ferential (or difference) equations, while the lat-
ter may be described through various frameworks
used for Discrete Event Systems (DES), such as
timed automata, max-plus equations, or Petri
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nets (see [2]). Broadly speaking, two categories
of modeling frameworks have been proposed to
study hybrid systems: Those that extend event-
driven models to include time-driven dynamics;
and those that extend the traditional time-driven
models to include event-driven dynamics; for an
overview, see [1].

The hybrid system modeling framework we con-
sider in this paper is motivated by the fact that it
is often natural to hierarchically decompose sys-
tems into a lower-level component representing
physical processes characterized by time-driven
dynamics and a higher-level component repre-
senting discrete events related to these physical
processes (e.g., switching from one mode of oper-
ation to another, as in shifting gears in an auto-
motive system). Our objective is to formulate and
solve optimal control problems associated with
trade-offs between the operation of physical pro-
cesses and timing issues related to the overall per-
formance of the system. For a class of such opti-
mal control problems, a hierarchical decomposi-
tion method was introduced in [6]. This method
enables us to design a hybrid controller which
has the task of communicating with both com-
ponents and jointly solving coupled optimization
problems, one for each component. In 6], this ap-
proach was used in the context of a single-stage
manufacturing system where discrete entities (re-
ferred to as jobs) are processed to change their
physical characteristics according to certain spec-
ifications. Associated with each job is a temporal
state and a physical state. The temporal state of

- a job evolves according to event-driven dynam-
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ics and includes information such as the waiting
time or departure time of the job at various work-



centers. The physical state evolves according to
time-driven dynamics modeled through differen-
tial (or difference) equations which, depending on
the particular problem being studied, describe
changes in such quantities as the temperature,
“size, weight, chemical composition, or some other
measure of the “quality” of the job. The inter-

action of time-driven with event-driven dynamics . .

leads to a natural trade-off between temporal re-
quirements on job completion times and physical
requirements on the quality of the completed jobs.

A feature of the manufacturing system consid-
ered in [6] is that the physical states of jobs are
independent, i.e., the initial physical state of the
ith job is decoupled from the final physical state
of the (¢ — 1)th job. In this paper, we extend the

method to allow for physical state coupling and il- -

lustrate it through an optimal control-problem for
a simple linear system switching between two op-
erating modes. Similar optimal control problems
are tackled in [7] and [8] using dynamic program-
ming techniques. Moreover, we extend the work
_ in [6] to optimal control problems for multistage
manufacturing systems. In the single-stage prob-
lem it was possible to overcome the difficulty due
to nondifferentiabilities in the event-driven state
dynamics by decomposing the optimal state tra-
jectory into segments over which smaller and sim-
pler constrained convex problems can be solved
(see [4]). Identifying these segments is a com-
binatorially explosive task. However, it was re-
cently shown [5] that it is possible to reduce this
complexity from 2V~! to at most N such convex
problems (where N is the number of jobs pro-
cessed). Since it seems unlikely that the same
can be accomplished in multistage models, we
commit instead to a Bezier approximation (as in
[3]) to construct surrogate event-driven dynamics
that avoid the nondifferentiability issue, so that
a standard gradient-based procedure for solving
a Two Point Boundary Value Problem (TPBVP)
can be applied.

2 Problem Formulation

In the hybrid system model that we consider, the
state of the system consists of temporal and phys-
ical components. The temporal components keep
track of the time information for system events
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that may cause switches in the operating mode of
the system. Let ¢ = 1,2,... index these events.
We denote the ith physical state of the system by
2i(t) with dynamics:

ey

where u;(t) is the control applied over an inter-
val [z;—1, ;) defined by two event occurrences at
times z;_1 and z;. In the case of a single event
process in the system, the event-driven dynamics
characterizing the temporal states x; are given by

2

for i = 1,2,..., where v,(2i,u;) represents the
amount of time between switches which generally
depends on the physical state and control. In the
case of multiple asynchronous event processes in
the system indexed by j7 = 1,... , M, the event-
driven dynamics are of the general form

% = gizi,ui,t),  zi(zio1) = 20

Ty = i1 + v4(2, us)

Ty =Zim1 + filyan, .- Y, Y2, ui), t) (3)

where y;1,...,% M are the event clocks of a
timed automaton which determines which of the
M events in the system triggers the next switch
and at what precise time (for details see [2]). The
exact way in which the timed automaton works
is not essential to the presentation that follows.
We note, however, that f;(-) above usually in-
volves max and/or min operations (as illustrated
in the model of Section 4), introducing nondif-
ferentiabilities which can significantly complicate
our problem. Looking at (1) and (3), note also
that the choice of control u; affects both the phys-
ical state z; and the temporal state z;. Thus, the
switches at times z1,z9, ... are generally not ex-
ogenous events that dictate changes in the state
dynamics, but rather temporal states intrically
connected to the control of the system; this is
one of the crucial elements of a “hybrid” system.

The optimal control problem we consider has the
general form

N
rr{linJ = E (@ (20, i, T3, To-1) + ()]

i=1

Here, ¢;(zi,ui,x;, ;1) is the cost of operating
the system with control u;(t) resulting with the
physical state 2;(t) over the interval [z;—1,;),



and 9,(z;) is the cost associated with the occur-
rence time z; of the ith event. As an example,

4)

2
f d
2 =% “

1
¢i(zi7ui7xi, xi—l) = —z'h

is a quadratic cost imposed on the deviation of
the final state zif = z;(z;) from the desired value
z¢ and on the control and state variables over a
processing interval [z;_1,z;). Similarly,

Yi(xi) = (2 ~ 1‘1-1)2

is a quadratic cost associated with the deviation
of the ith event time from a desired target z¢.

Assuming stationarity of the cost ¢;(-) in the
sense that ¢;(2;, ui, z;, Ti—1) = ¢;(z;,ui, s;) where
Si=x; —T;—1 >0,1=1,2,..., the optimal con-
trol problem we consider can be written as

N
min J = Z (@ (26, ui, 83) + i(zs)]  (5)

i=1

subject to (1) and (3), where u = {uy,... ,un}.

2.1. Hierarchical Decomposition

Since u;(t), t € [x;—1,%:), is a function of z(2)
and s; (constrained to be non-negative), we can
rewrite (5) as :

min
z,8

)¢i(zi7ui: 8:) +¢i(Ii)]

N
min
P ui(2i,8;

Moreover, given u;(t) along with the initial and fi-
nal physical states, zf = z;(z;—1) and zif = zi(x:)
and the ith time interval duration s;, the physi-
cal state z;(t), t € [z;-1,2;), is specified through
(1). Therefore, we can simplify the optimal con-
trol problem as follows:

N
min min  ¢;(z;, s, ;) + Y (x:)
20,28, i=1 u.;(z?,zif,si)
and impose a decomposition into a collection of
inner minimization problems subject to (1), and
an outer minimization problem subject to (3). At
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the lower level of this decomposition we first seek
to determine the cost
0,‘ (z(-) Z~f

1%

Si) = Hlllln ¢i(zi, Ui, Si) (6)
subject to (1) forall¢ = 1,2, ..., which we view as
the minimal cost for a given time interval s; and
boundary conditions z{ and zif for the physical
state. Accordingly, the optimal control is

u (e, 50) = argming(zi, uinss) (1)

Note that u}(2?, zif ,8;) is in general time-varying
over [z;—1,Zi—1 + s;). Once u}(2?, z{, s;) and
0;(22, zif , 8;) are determined, we can proceed with
the higher-level optimization problem:

N

min Z[O,-(z?, 2,

2z0,zf s -1

5i) + ¥;(24)] (8)

subject to (3) where we try to determine the op-
timal event times and physical states at these
times. Once these are known, the relationship
(7) is used to determine the optimal controls for
the N time intervals involved in the operation of
the system.

The hybrid controller for coordinating the two
problems above operates as follows (see Figure 1):
(i) System Identification: the physical dynamics,
g, the costs associated with the physical dynam-
ics, ¢, the temporal dynamics, f, and the costs
associated with the temporal dynamics, v, are
all input to the controller. - (i) The lower level
controller solves (6) to determine 6;(29,2],s;)
and u}(20,2],s;) for all i = 1,... ,N. (4i5) The
higher level controller solves (8) to determine the
optimal values s?, (29)*, and (zf)* for all i
1,...,N. (%) The lower level controller evalu-
ates uf = ur((20)*, (2f)*,s7) foralli=1,... ,N.

3 Two-mode Linear System
Problem

Consider the linear system

21(20) = 2o
z22(z1) = z1(z1)

2 ug,

22 azz + ug,



lxi =X, + f,(®) l
I
Higher-level Controller
To[ Jsl
Lower-level Controller

irS

Zi =g,.(z,.,ul.)

Figure 1: Hybrid Controller Operation

where the event-driven dynamics have the simple
form given in (2): :

xo + s1(21, 1)
z1 + 82(22, u2)

z

T2
The cost to minimize is
J = ¢y (21,81, u1) + Ppa(22, 52, u2) + PYo(x2)

where

¢1(zl1ula 31)

/ lrluf (t)dt
o 2

1
Po(22,uz,82) = 5h(z{—z£)2
321 2
+ —rouj(t)dt
0 2
Yo(z2) = ,Bzg

Note that the cost is separable so the decom-
position approach previously described may be
applied. The Hamiltonian for the first stage
[0, zo + 81) is

Hi(t) = 5rad(t) + (O (0

where p1 () is the costate for the first stage, hence
the optimality conditions for the first stage are

z21(t) = wm()
pi(t) = 0
0 = ru(t)+pi(t)
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Therefore, the optimal control in the first stage is
constant and we get

_ 2(z) = 21(z0)

ui(t) = uz 5
and
. 1,
01(s1,21) = I{LIL11H¢1(21,81,U1) = 5Tuis
1r .
= §i [21 (1) — 21(w0)]”

Similarly for the second stage the Hamiltonian is

Lrsu3(8) + pa(t)us(t) + apa(t)za(t)

Hy(t) = >

where p2(¢) is the costate for the second stage,
hence the optimality conditions for the second
stage are

z(t) = OtZz(t)-i-UQ(t)
p2(t) = —apa(t)
0 = raug(t) + pa(t)
Therefore,
2o (zg — zge""’)
Up(t) = ————r——~ —ot
(o —e)
and
O2(s2,22) = mingy(22, 82, u2)

1
Shied —20)?

f 0 2
(s X}
ToQ (22 — 25€ 2) sy

(easz — e—as;)

+

The higher-level optimization problem hence be-

comes
2 2
i (,f_ 0 1 f_f
min 281 (zl zl) +3h (z2 %
f_,0,as3)\2
0 Z5 —2n€ ary
81,852,217, 472 2 + 2
zg,z{yzzf (e*>°2-1) ﬁ 2

subject to z? = 2zg, zg = z{, s1,82 > 0, and
T9 = 81+82. The simplified optimization problem
is

2 2
irn (,f _ 1 f_ f
min | 2% (21 zo) + sh (zz zy
51,82, z;—z{e‘”2 arg 2
z{,zéf + (e?>s2 1) + ﬁ(sl + 32)



where 81,52 > 0.

The optimality conditions are given in terms of
four algebraic equations which can be solved to
yield s1, s, z{, and zgz

r g 2 (z{ - z{ e"”) ary
;(Zl - ZO) = (6082 — 6‘“52)
2 (zgf - zlfe"‘s?) ors
h(zzf - zf) = -
d (62032 _ 1)
For s; > 0 and s > 0, we get:
rl(z{ - zo)2 = 4,65%(51 + s2)
a’ry (zgf - z{e‘“"’) (zlfe‘”?)
B(sl + 32) = (eéasz _ 1)
2
a2r2e2asz (Zg — z{easz)
+ (e2as2 — 1)2

For s5; = 0 and s, = 0, we get z{ zg and

z{; = z{ , respectively. For a numerical example,
setting r1 = 2, 10 =10, h = 10, 24 = 10, 29 = 0,
o =1 and § = 10, yields the following solution:
it is optimal to start operating in the first mode

with constant control u,(t) = 5.72 and switch to
the second mode at time z; = 0.4 when z{
2.29. The system operates in the second mode
with control uz(t) = 1.66e~* until time z, = 1.64
when zJ = 9.67.

4 Multistage Manufacturing
System Problem

Consider an M-stage hybrid manufacturing sys-
tem which incurs the cost '

N M
J(u,s,x) = Z Z[¢i,j(zi,j’ Ui,j, Sij) + ‘/’i,j(zi,j)]

i=1 j=1

while processing N jobs. In this case, it is con-
veniént to replace (3), which is based on a global
event counter i, by M equations describing the
well-known event-driven dynamics at each stage
in terms of a local event counter. We will assume
that, for i = 1,...,N and j = 1,..., M, the tem-
poral state z; ; for the ith job at the jth stage of

the process evolves according to the well-known
event-driven dynamics

Tij; = max(Ti-yj,Tij-1)+ 8i;(usij) (9)
Ti0 = 04 , Tg; = —00 \
where «; is the ith job arrival time. The cost

¥ij (z:,;) associated with the temporal state Z; 5
is

B(zi,; — ai)?
0

(2) = j=M
¥ii(Ti5) = { otherwise

which penalizes the total system time of the ith
job. The physical state 2; j, on the other hand,
evolves according to the time-driven dynamics
= ui,j s

0, 2;(%i;) =2

21,3
2ij(®i-1) =
where the initial and the final states are all fixed.
For simplicity, we assume that u;; = 0 during
the waiting time, i.e., the state 2; ; changes only
during the process and not while being queued at
any of the stages. The cost of processing the ith
job at the jth stage is

2

$i,3 1
575%i;

¢i,j(z,-,j,ui,j,s,-,j)=/ 57

0

Following the four basic steps of the hybrid con-
troller described in Section 2, first the dynam-
ics and the cost information above are provided
to the controller. Since the initial and the final
states are provided the higher level optimization
task is simplified.

Next, the lower-level controller evaluates 6; ;(s; ;)
and wu; ;(s; ;) for all ¢ 1,...,N and j
1,...,M. Using calculus of variations as in the
previous section, u; ;(t) = uj; which is a con-
stant, and integrating the state equation 3; ; =
u; ; gives

Zj

*

u. .=
1,
T i

The optimal control, therefore, will incur a cost
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(29)?

i
84,5

0(si.5) = /Si,j L urtdt = tr; =
%3/ o 2 J%4,5 - 2 J -

Sij



where v; = 373(2§)?. The higher level optimiza-
tion problem now becomes

M

Vi
8,5

J=1

} + B(zim — )?

subject to (9).
fixed physical states at times zg ;,...zn; for all
j =1,...,M. The nondifferentiable dynamics
due to the max operation in (9), on the other
hand, introduce an additional difficulty common
in the analysis of many discrete event systems.

Forming the augmented cost

M v
i} N Yimas
J(s,x,A) = Z + A j (max(z; 1,5, T j-1)
i=1 +8ij — Tij)
+B(zi,m — o4)?
the optimality equations for ¢ = 1,..., N and j =
1,....,M are ’

8F - -
J —0, aJ ~0, aJ ~0
s, ONij 9z, ;
The first equation gives
aJ Vi
= M=
0s; 7 =0

The second equation gives (9), while the third
equation yields the following:

Fori<Nandj< M

0 max(w.-,j, xi_1,j+1)

Aij = A1
al‘,',]'
+X ) 6max(:ci+1,j_1,zi,j)
41,7
! 0z; 5
Forj <M

Omax(zn,j, TN-1,j+1)
BIIJN‘]‘

AN,j = AN,j+1

Fori< N
Oy Omax(z;41,M-1,Ti, M)
i = + dig,M
axi,M Bzi,M

Note the simplification due to
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Finally, Avvy = Wy M /Oxn pr.  Using the
Bezier approximation approach described in (3],
this TPBVP can be solved effectively to evalu-
ate the optimal service time sequence {s] ;}. The
last remaining step is for the hybrid controller to
evaluate u; ; foralli=1,...,Nandj=1,..., M.
In particular, the lower-level controller evaluates
ul; = uii(si;) = z{;j/s;‘,j foralli=1,... ,N
and j = 1,..., M. The optimal control input u;
is fed to the jth stage while processing the ith
job (during the [max(z;1j, Z: j—1), T ;) interval)
which departs at time x; ;.
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