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COOPERATIVE MISSION SETTING
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DIFFERENT COOPERATIVE MISSION TYPES

» RENDEZ-VOUS AT SOME TARGET POINT

» FORMATION MAINTENANCE

» REWARD MAXIMIZATION

» COVERAGE CONTROL

Christos G. Cassandras CODES Lab. - Boston University



RENDEZ-VOUS MISSION
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FORMATION MAINTAINANCE MISSION
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REWARD MAXIMIZATION MISSION

TARGETS

WITH DIFFERENT
REWARDS AND DEADLINES
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MISSION OBJECTIVE: MAXIMIZE TOTAL REWARD
BY VISITING TARGETS BEFORE THEIR “DEAD
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REWARD MAXIMIZATION MISSION

CONTINUED
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COVERAGE CONTROL MISSION

SENSOR FIELD WITH
UNKNOWN DATA SOURCES
- ONLY DENSITY

FUNCTION ASSUMED

Qs - Meguerdichian et al, INFOCOM, 2001,
Q - Cortes et al, IEEE Trans. on Robotics and Auto., 2004
O o V - Cassandras and Li, Euro. J. of Control, 2005
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COOPERATIVE REWARD MAXIMIZATION MISSION
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COOP. REWARD MAXIMIZATION MISSION

CONTINUED

This is like the notorious TRAVELING SALESMAN
problem, except that...

> ... there are multiple (cooperating) salesmen

> ... there are deadlines + time-varying costs

> ... environment Is stochastic
(vehicles may fall, threats damage vehicles, etc.)

Christos G. Cassandras CODES Lab. - Boston University



SOLUTION APPROACHES

» Stochastic Dynamic Programming — Wohletz et al, 2001
Extremely complex...

» Functional Decomposition:
= Dynamic Resource Allocation — castanon and Wohletz, 2002
= Assignment Problems through Mixed Integer Linear
Programming - Bellingham et al, 2002
Combinatorially complex...

= Path Planning — Hu and Sastry, 2001, Lian and Murray 2002, Gazi and
Passino, 2002, Bachmayer and Leonard, 2002

Christos G. Cassandras CODES Lab. - Boston University



COMBINATORIAL + STOCHASTIC COMPLEXITY

1. Target Assignmexn - — Path Control
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RECEDING HORIZON (RH) CONTROL: MAIN IDEA

* Do not attempt to assign nodes to targets
« Cooperatively steer nodes
towards “high expected reward” regions
* Repeat process periodically/on-event A A
 Worry about final node-target assignment  Tyrns out nodes
at the IaSt pOSSible inStant Converge o targets

———————— = - A | .
l on their own!

HORIZON, h

Solve optimization problem
by selecting all u; to maximize
total expected rewards over H
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CONTRAST APPROACHES

HEDGE-AND-REACT ESTIMATE-AND-PLAN
» Delay decisions until » Need accurate

last possible instant stochastic models
» No stochastic model » Curse of dimensionality

» Simpler opt. problems

! ]

Compare to
Model Predictive Control (MPC)
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CRH CONTROL PROBLEM FORMULATION
= Target positions (i = 1,...,N): y, €ER?

= Node dynamics (j = 1,...,M):

e State: x(t) ER? position of jth node at time ¢
* Control:  u,(7) Node heading at time ¢
cosu . (¢) |
x.(t) =V, o x,(0)=x
0=V, sinu, () 10)=x;

= At kth iteration, time ¢, (k=1,2,...):
» Planning Horizon: H,

- Node position attime #,+H,:  x,(t, +H,)=x,(t,)+x,(t,)H,

Christos G. Cassandras CODES Lab. - Boston University



RH PROBLEM FORMULATION CONTINUED
= At kth iteration (k=1,2,...):

Earliest time node ; can reach target i under control u(z,):
le'(uj(tk)ltk) — (tk +Hk)+|| xj(tk +Hk)_yi ”/I/]

= Sl Lig oy,
, ’ < S . ,A V;
/ | \ -
/ ) \
| x(&) / \
| N T 1y
\ uj(tk) |
\ R
' B ()
~ ~ _ 7’ /,’

' Probability vehicle ;

Ty A Ve assigned to target
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CRH PROBLEM FORMULATION CONTINUED

= QObjective at kth iteration:
Maximize EXPECTED REWARD over horizon H,

Target 7 value attainable by node j node ; value
[depends on u,(7)]

Prob. node ; Prob. node ;
Control Eatf gggﬁt%&%&éhqi%%;d assigned to target i destroyed by target i
node { e 0 [depends on u,(7)] [depends on u ()]
headings fid tg?gléfl( !
[depends on uj(t)]
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THE FUNCTION ¢ (t) [REWARD DISCOUNTING FUNCTION]

* Targets with deadlines:

 Targets with time
windows:
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THE FUNCTION g(t)

CONTINUED

*Sequencing targets:

* A general purpose
@—function:
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THE FUNCTION d;; [TARGET ASSIGNMENT FUNCTION]

* Node-to-target distance: d;; =ij Y

_ _ g or: b closest nodes
 Relative distance: y to j only

» Target assignment function Q;;(&;):

Monotonically non-increasing and s.t.

q, (O) =1, q, (1) =0

Christos G. Cassandras CODES Lab. - Boston University



THE FUNCTION g;;

CONTINUED

+ A example of g;; function (M=2):

1

1 .
@[(1—@—517] if A<5, <1-A

0 otherwise

q; (51]) —

. <+ Capture Radius (A)

0.8
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CONTINUED

THE FUNCTION g;;

q,(¢) defines DYNAMIC RESPONSIBILITY REGIONS for vehicle ;
* S; — Full Responsibility Region (FR) ¢, < A
» C; - Cooperative Region (CR) A <6, <1-A

* I, —Invisibility Region (IR) 6,>1-A

Vehicle

Targets in IR

Targets in FR ignored by

committed to | node

node

Christos G. Cassandras CODES Lab. - Boston University



THE FUNCTION g;;

CONTINUED

<=

Voronoi partition

/

Partition of a plane with into n convex polygons such that
What happens as each polygon contains exactly one point and every point
parameter A Increases ? in a given polygon is closer to its central point than to any other.
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2-VEHICLE CASE — DYNAMIC PARTITIONING

Possible

Target
Location

Vehicle
Locations

[1: Only vehicle 1 goes to target [11: Both vehicles go to target

IV: Only vehicle 2 goes to target (1 is repelled !)
Christos G. Cassandras CODES Lab. - Boston University



PLANNING AND ACTION HORIZONS

PLANNING Horizon H(t):

H(t)=d

(1) = mind, (1)

min

ACTION Horizon h(t):

h(it)=a, +p,H({), a, >0, 04, <1

OR: Whenever next EVENT occurs

Christos G. Cassandras CODES Lab. - Boston University



TARGET ASSIGNMENT

MAIN IDEA IN CRH APPROACH:
Replace complex Discrete Stochastic Optimization problem
by a sequence of simpler Continuous Optimization problems

But how do we guarantee that vehicles ultimately
head for the desired DISCRETE TARGET POINTS?

Christos G. Cassandras CODES Lab. - Boston University



STABILITY ANALYSIS

* TARGETS: y, » UAVS: x;

DEFINITION: Node trajectory — x(¢) = [x,(),..., x,, (¢)]
generated by a controller Is stationary, If there
exists some ¢, < o, such that ij (,)—y|[<s; for
some i=1,...,N,;j=1...,M.

Y
Target Size

QUESTION:
Under what conditions is a CRH-generated
trajectory stationary ?

Wei Li CISE - Boston University



STABILITY ANALYSIS

CONTINUED

Recall objective function:

1 o
qjj(gij)z ﬁ[(l_A)_@]] If] EBi;A<é:-j <1-A

0 otherwise

1
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STABILITY ANALYSIS

CONTINUED
N M

Objective function reduces to: ~ J(x) = > > Ri|lx, — y,[g;
i=1 j=1

CRH controller solves ) xeF,
optimization problem: F = {W : HW — (tk)H _ VHk}

Wei Li CISE - Boston University



MAIN STABILITY RESULT

Local minima of J(x): x' = (x;,...,x},) e R™, [=1,...,L

Vector of node positions
at kth iteration of CRH controller:  x,

Theorem: Suppose H, —mlnd i ().

If, forall /=1,..., Lx ylforsomez—l ..... N,j=1,...M,
then J(X,)—-J(X.,,)>b (b>0isaconstant).

]

If all local minima coincide with targets,
the CRH-generated trajectory Is stationary

Wei Li CISE - Boston University



MAIN STABILITY RESULT

QUESTION:
When do all local minima coincide with target points?

ZN: Rj—yi_yj >0

1 Vehicle, N targets | Ifthereexistsay,st. R - =]
j=Lj= | Vi ™Y

2 Vehicles, 1 target

2 Vehicles, 2 targets

Wei Li CISE - Boston University



TO RECAP...

Limited look-ahead — control optimizes expectation
over “planning horizon”

Control updates — event-driven (events are deterministic or random)
or time-driven (for a given *“action horizon”)

Target assignment — done implicitly, not explicitly:
No combinatorial problem involved

Assignment + Routing + Path Control — all done together

Christos G. Cassandras CODES Lab. - Boston University



RH CONTROLLER FEATURES

CONTINUED

Target values change — deadlines, target sequencing, return to base

« Node capabilities change - resource depletion, failures, damage

« Threat capabilities change - radar on/off, threat damage
 Target locations change - new targets, moving targets

e Obstacle avoidance - targets with negative values

« Randomness - new control actions in response to random events

 Constraints — heading change, heading-dependent costs,
sensing tasks

Christos G. Cassandras CODES Lab. - Boston University



DISTRIBUTED COOPERATIVE CONTROL

Construct GRADIENT FIELD instead of artificial potential field

=) S0

- Ox ;

1 if y, €S,

(1_ 517)(2517 _1)

Ci('xj) - qzj _W If Vi € C

0 if y el | otherwise

Cooperation coefficient Force exerted by target ;
on node j given that it is the

only node in the mission space
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OTHER ISSUES

» Local optima in the CRH optimization problem

» Oscillatory vehicle behavior (instabilities)

» Additional path constraints,
e.g., rendez-vous at targets

» Does CRH control generate optimal
assignments?

Christos G. Cassandras CODES Lab. - Boston University



REWARD MAXIMIZATION MISSION DEMO

MOVIES OF SUCH MISSIONS WITH SMALL ROBOTS:
e e http://frontera.bu.edu/CoopCtrl.html

visiting 8 targets with
different rewards and
deadlines. Robots
communicate wirelessly

Christos G. Cassandras CODES Lab. - Boston University



COVERAGE CONTROL MISSION

GOAL: Deploy mobile nodes to maximize data source detection
probability
— unknown data sources
— data sources may be mobile

Perceived data source density
over mission space
Christos G. Cassandras CODES Lab. - Boston University



PROBLEM FORMULATION

= N mobile sensors, each located at s,e R?

= Data source at x emits signal with energy £

= Signal observed by sensor node i (at s )

= Sensing model:
p;(x) = p(Detected by i | A(x),s,)
(A(x) = data source emits at x )

= Sensing attenuation:
p,(x) Is a decreasing function of d(x) = ||x - 5|
(distance between x and s

Christos G. Cassandras CODES Lab. - Boston University



PROBLEM FORMULATION CONTINUED

= Joint detection prob. assuming sensor independence:

= OBJECTIVE:
Determine locations s, (i=1,...,N)
to maximize total detection probability:

max j R\(x){l—l__[[l—pi (x)]}dx

Perceived data source density

Christos G. Cassandras CODES Lab. - Boston University



DISTRIBUTED COOPERATIVE SCHEME

= Denote

F(Sy,...,8y) = j R(x){l—H[l— D (x)]}dx

=

= Maximize F(s,,...,s,) by forcing nodes to move using
gradient information:

orF _ X = ~ b (x @pk(x)sk_xx
. j R( )Z-Ek[l () AEYICE

Christos G. Cassandras CODES Lab. - Boston University



DISTRIBUTED COOPERATIVE SCHEME CONTINUED

Op, (x) s, —x
@—Sk J E[R(X) ];!&:k I (X)]adk (x) d, (x)dx

This has to be evaluated numerically.

Not doable for a mobile sensor with limited
computation capacity.

» Approximate p.(x) by truncating sensing attenuation
» Discretize p(x) using a grid

DTN - Cassandras and Li, Euro. J. of Control, 2005

Christos G. Cassandras CODES Lab. - Boston University



COVERAGE CONTROL MISSION DEMO

SOFTWARE DEMO OF COVERAGE CONTROL ALGORITHM:
http://frontera.bu.edu/Applets/CoverageContr/index.html

No communication cost

/

Sensing Range

Christos G. Cassandras CODES Lab. - Boston University



POLYGONAL OBSTACLES...

« Constrain the navigation of mobile nodes

* Interfere with the sensing P
p.(x,s;) 1fxisvisible froms.

0 otherwise

B (x.s,) ={

obstacle Visibil |ty
Region

Christos G. Cassandras CODES Lab. - Boston University



GRADIENT CALCULATION WITH OBSTACLES

N - . Q(Si)
28 j R(x) | [1—ﬁk(x,sk)]api(x’si) T e [+ > A
i =

5,) k=1, ki /

. {pi visible

od,(x) d,(x)

O(s,): # of occluding corner points

New term captures change in visibility region of s;

0 nvisible

Mathematically: use an extension of the
Leibnitz rule for differentiating an integral
where both the integrand and the integration
domain are functions of the control variable

Christos G. Cassandras CODES Lab. - Boston University




DEPLOYMENT DEMO — WITH OBSTACLES

Low Detection Boost # Bvaluate Objective Funclione 416.4269_.

25 30 50 54 60 | ID}

lag g &9

Event detection
probability P(x,s)
B o.97

0. 97

http://codescolor.bu.edu/coverage

Sensing Rangea |20

Integration Resohiion 1 0 Max Speed 70 Sensing Decay 0082 0 Max Morm |00 Cosmam. Weedght 00 Est.

Christos G. Cassandras CODES Lab. - Boston University



A "FAIRNESS" ISSUE...

Some areas covered extremely well, while others not
covered at all

SOLUTION: Assign higher reward to the same amount of marginal gain
In P(X,s) in low coverage region

H(s) = IR(x)P(x,S)dx p 1), (S) = IR(X@P(X,S))dX

M():[0,1] = R
concave non-decreasing function

Christos G. Cassandras CODES Lab. - Boston University



DEPLOYMENT DEMO —

Continue Nodes # Low Detection Boost 3.01117664E8

5 10 25 30 45 50

Continue Nodes # Low Detection Boost 3.00983168E8

5 10 25 30 45 50

Christos G. Cassandras

REACTION TO EVENTS

Continue Nodes # Low Detection Boost 3.01033984E8

5 10 25 30 45 50

Event

detected

Continue Modes # Low Detection Boost

5 10 25 30

CODES Lab. - Boston University




ONGOING WORK:
SCALABLE, ASYNCHRONOUS, DISTRIBUTED OPTIMIZATION

» Small, cheap cooperating devices cannot handle complexity
= we need DISTRIBUTED control and optim. algorithms

» Cooperating agents operate asynchronously
= we need ASYNCHRONOUS control/optimization schemes

» Too much communication kills node energy sources

= communicate ONLY when necessary
= we need ASYNCHRONOUS control/optimization schemes

» Networks grow large, sensing tasks grow large
—> we need SCALABLE control and optim. algorithms

Christos G. Cassandras CODES Lab. - Boston University
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