EVENT-DRIVEN CONTROL AND OPTIMIZATION:
WHERE LESS IS OFTEN MORE...

C. G. Cassandras
Division of Systems Engineering
and Dept. of Electrical and Computer Engineering
and Center for Information and Systems Engineering
Boston University
OUTLINE

- Reasons for EVENT-DRIVEN Control and Optimization
- EVENT-DRIVEN Control in Distributed Systems
- EVENT-DRIVEN Control in Managing Uncertainty
- EVENT-DRIVEN Sensitivity Analysis
EVENT-DRIVEN CONTROL: Act only when needed (or on TIMEOUT) - not based on a clock
Many systems are naturally **Discrete Event Systems (DES)** (e.g., Internet) → *all* state transitions are event-driven

Most of the rest are **Hybrid Systems (HS)** → *some* state transitions are event-driven

Many systems are **distributed** → components interact asynchronously (through events)

Time-driven sampling inherently inefficient ("open loop" sampling)
Many systems are stochastic → actions needed in response to random events

Event-driven methods provide significant advantages in computation and estimation quality

System performance is often more sensitive to event-driven components than to time-driven components

Many systems are wirelessly networked → energy constrained → time-driven communication consumes significant energy UNNECESSARILY!

Christos G. Cassandras
CODES Lab. - Boston University
TIME-DRIVEN v EVENT-DRIVEN SYSTEMS

TIME-DRIVEN SYSTEM

STATES

\[x(t) \]

STATE SPACE:
\[X = \mathbb{R} \]

DYNAMICS:
\[\dot{x} = f(x, t) \]

EVENT-DRIVEN SYSTEM

STATES

\[s_1, s_2, s_3, s_4 \]

STATE SPACE:
\[X = \{ s_1, s_2, s_3, s_4 \} \]

DYNAMICS:
\[x' = f(x, e) \]
SYNCHRONOUS v ASYNCHRONOUS BEHAVIOR

- Indistinguishable events
- Wasted clock ticks
- More wasted clock ticks
- Even more wasted clock ticks

Christos G. Cassandras
CODES Lab. - Boston University
SYNCHRONOUS v ASYNCHRONOUS COMPUTATION

- Time-driven (synchronous) implementation:
 - Sum repeatedly evaluated unnecessarily
 - When evaluation is actually needed, it is done at the wrong times!

SYNCHRONOUS v ASYNCHRONOUS COMPUTATION

Christos G. Cassandras
CODES Lab. - Boston University
EVENT-DRIVEN CONTROL IN DISTRIBUTED SYSTEMS
MOTIVATIONAL PROBLEM: **COVERAGE CONTROL**

Deploy sensors to maximize “event” detection probability

- unknown event locations
- event sources may be mobile
- sensors may be mobile

Perceived event density (data sources) over given region (mission space)

Meguerdichian et al, IEEE INFOCOM, 2001

Cortes et al, IEEE Trans. on Robotics and Automation, 2004

Cassandras and Li, Eur. J. of Control, 2005

Ganguli et al, American Control Conf., 2006

Hussein and Stipanovic, American Control Conf., 2007

Hokayem et al, American Control Conf., 2007
OPTIMAL COVERAGE IN A MAZE

http://codescolor.bu.edu/coverage

Zhong and Cassandras, 2008

Christos G. Cassandras

CODES Lab. - Boston University
COVERAGE: PROBLEM FORMULATION

- N mobile sensors, each located at $s_i \in \mathbb{R}^2$
- Data source at x emits signal with energy E
- Signal observed by sensor node i (at s_i)

SENSING MODEL:

$$p_i(x, s_i) \equiv P[\text{Detected by } i \mid A(x), s_i]$$

($A(x) =$ data source emits at x)

- Sensing attenuation:

$$p_i(x, s_i) \text{ monotonically decreasing in } d_i(x) \equiv \|x - s_i\|$$
Joint detection prob. assuming sensor independence
(s = [s₁,...,sₙ] : node locations)

\[P(x,s) = 1 - \prod_{i=1}^{N} [1 - p_i(x,s_i)] \]

OBJECTIVE: Determine locations s = [s₁,...,sₙ] to maximize total Detection Probability:

\[\max_s \int_{\Omega} R(x) P(x,s) dx \]
DISTRIBUTED COOPERATIVE SCHEME

- Set

\[H(s_1, \ldots, s_N) = \int_{\Omega} R(x) \prod_{i=1}^{N} \left(1 - p_i(x) \right) dx \]

- Maximize \(H(s_1, \ldots, s_N) \) by forcing nodes to move using gradient information:

\[\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} \left(1 - p_i(x) \right) \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx \]

\[s_i^{k+1} = s_i^k + \beta_k \frac{\partial H}{\partial s_i^k} \]

Desired displacement = \(V \cdot \Delta t \)

Cassandras and Li, 2005
Zhong and Cassandras, 2011
… has to be autonomously evaluated by each node so as to determine how to move to next position:

\[
\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} [1 - p_i(x)] \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx
\]

- Use truncated \(p_i(x) \) \(\Rightarrow \Omega \) replaced by node neighborhood
- Discretize \(p_i(x) \) using a local grid
N system components
(processors, agents, vehicles, nodes),
one common objective:

\[\min_{s_1, \ldots, s_N} H(s_1, \ldots, s_N) \]
\[\text{s.t. constraints on each } s_i \]

\[\min_{s_1} H(s_1, \ldots, s_N) \]
\[\text{s.t. constraints on } s_1 \]

\[\vdots \]

\[\min_{s_N} H(s_1, \ldots, s_N) \]
\[\text{s.t. constraints on } s_N \]
Controllable state \(s_i, i = 1, \ldots, n_i \)

\[
 s_i(k + 1) = s_i(k) + \alpha_i d_i(s(k))
\]

- **Step Size**
- **Update Direction**, usually
 \[
 d_i(s(k)) = -\nabla_i H(s(k))
 \]

\(i \) requires knowledge of all \(s_1, \ldots, s_N \)

Inter-node communication

\[
 \min_{s_i} H(s_1, \ldots, s_N) \\
 s.t. \text{ constraints on } s_i
\]
SYNCHRONIZED (TIME-DRIVEN) COOPERATION

Drawbacks:
- Excessive communication (critical in wireless settings!)
- Faster nodes have to wait for slower ones
- Clock synchronization infeasible
- Bandwidth limitations
- Security risks
Nodes not synchronized, delayed information used

Update frequency for each node is bounded + technical conditions

\[s_i(k+1) = s_i(k) + \alpha_i d_i(s(k)) \]

converges

Bertsekas and Tsitsiklis, 1997
UPDATE at i : locally determined, arbitrary (possibly periodic)

COMMUNICATE from i : only when absolutely necessary
Node state at any time t: $x_i(t)$

Node state at t_k: $s_i(k)$

$\Rightarrow s_i(k) = x_i(t_k)$

AT UPDATE TIME t_k:

$s_j^i(k)$: node j state estimated by node i

Estimate examples:

$\rightarrow s_j^i(k) = x_j(\tau^j(k))$
Most recent value

$\rightarrow s_j^i(k) = x_j(\tau^j(k)) + \frac{t_k - \tau^j(k)}{\Delta_j} \cdot \alpha_i \cdot d_j\left(x_j(\tau^j(k))\right)$
Linear prediction
WHEN SHOULD A NODE COMMUNICATE?

AT ANY TIME t:

- $x_i^j(t)$: node i state estimated by node j

- If node i knows how j estimates its state, then it can evaluate $x_i^j(t)$

- Node i uses
 - its own true state, $x_i(t)$
 - the estimate that j uses, $x_i^j(t)$

... and evaluates an ERROR FUNCTION $g(x_i(t), x_i^j(t))$

Error Function examples:

$$\|x_i(t) - x_i^j(t)\|_1, \quad \|x_i(t) - x_i^j(t)\|_2$$
WHEN SHOULD A NODE COMMUNICATE?

Compare ERROR FUNCTION \(g(x_i(t), x_j^i(t)) \) to THRESHOLD \(\delta_i \)

Node \(i \) communicates its state to node \(j \) only when it detects that its true state \(x_i(t) \) deviates from \(j\)'s estimate of it \(x_j^i(t) \) so that \(g(x_i(t), x_j^i(t)) \geq \delta_i \)

\(\Rightarrow \) \textbf{Event-Driven} Control
Asynchronous distributed state update process at each i:

\[s_i(k + 1) = s_i(k) + \alpha \cdot d_i(s^i(k)) \]

Estimates of other nodes, evaluated by node i

\[\delta_i(k) = \begin{cases} K_\delta \| d_i(s^i(k)) \| & \text{if } k \text{ sends update} \\ \delta_i(k - 1) & \text{otherwise} \end{cases} \]

THEOREM: Under certain conditions, there exist positive constants α and K_δ such that

\[\lim_{k \to \infty} \nabla H(s(k)) = 0 \]

INTERPRETATION:

Event-driven cooperation achievable with minimal communication requirements \Rightarrow energy savings

Zhong and Cassandras, IEEE TAC, 2010
Error function trajectory with NO DELAY

Red curve: $g(x_i, x_i')$
Black curve: $g(x_i, \tilde{x}_i')$

DELAY

COONVERGENCE WHEN DELAYS ARE PRESENT
Add a boundedness assumption:

ASSUMPTION: There exists a non-negative integer D such that if a message is sent before t_{k-D} from node i to node j, it will be received before t_k.

INTERPRETATION: at most D state update events can occur between a node sending a message and all destination nodes receiving this message.

THEOREM: Under certain conditions, there exist positive constants α and K_δ such that

$$
\lim_{{k \to \infty}} \nabla H(s(k)) = 0
$$

NOTE: The requirements on α and K_δ depend on D and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010
SYNCHRONOUS v ASYNCHRONOUS
OPTIMAL COVERAGE PERFORMANCE

SYNCHRONOUS v ASYNCHRONOUS:
No. of communication events for a deployment problem with obstacles

SYNCHRONOUS v ASYNCHRONOUS:
Achieving optimality in a problem with obstacles

Energy savings + Extended lifetime

Christos G. Cassandras
CODES Lab. - Boston University
DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH OBSTACLES – SIMULATED AND REAL

Christos G. Cassandras

CODES Lab. - Boston University
Important to note:
There is no external control causing this behavior. Algorithm includes tracking functionality automatically.
EVENT-DRIVEN CONTROL IN MANAGING UNCERTAINTY
UNCERTAINTY: CONTRAST TWO APPROACHES

ESTIMATE-AND-PLAN
- Decisions planned ahead
- Need accurate stochastic models
- Curse of dimensionality

- Dynamic Programming (DP)
- Markov Decision Processes (MDP)

HEDGE-AND-REACT
- Delay decisions until last possible instant
- No (detailed) stochastic model
- Simpler opt. problems

- Receding Horizon Control (RHC)
- Model Predictive Control (MPC)

Christos G. Cassandras
CODES Lab. - Boston University
UNCERTAINTY: CONTRAST TWO APPROACHES

ESTIMATE-AND-PLAN VS HEDGE-AND-REACT

Christos G. Cassandras

CODES Lab. - Boston University
TIME-DRIVEN: \[\Delta \text{ must be small,}
\text{Computationally intensive} \]

EVENT-DRIVEN: \[\text{Computational intensity}
\text{depends on event frequency} \]
COOPERATIVE RECEDING HORIZON (CRH) CONTROL: MAIN IDEA

- Do not attempt to assign nodes to targets
- Cooperatively steer nodes towards “high expected reward” regions
- Repeat process when event occurs
- Worry about final node-target assignment at the last possible instant

Turns out nodes converge to targets on their own!

Solve optimization problem by selecting all u_i to maximize total expected rewards over H
MAIN IDEA IN CRH APPROACH:

- Replace complex *Discrete Stochastic Optimization* problem by a sequence of simpler *Continuous Optimization* problems
- Solve each new problem whenever a PREDEFINED EVENT occurs (e.g., some node gets to some target)
- ... or when a RANDOM EVENT (or a TIMEOUT) occurs

But how do we guarantee that nodes ultimately head for the desired DISCRETE TARGET POINTS?
STABILITY ANALYSIS

TARGETS: y_i
NODES: x_j
DISTANCE: d_{ij}

DEFINITION: Node trajectory $x(t) = [x_1(t), \ldots, x_M(t)]$ generated by a controller is **stationary**, if there exists some $t_v < \infty$, such that $\|x_j(t_v) - y_i\| \leq s_i$ for some $i = 1, \ldots, N$, $j = 1, \ldots, M$.

QUESTION:
Under what conditions is a CRH-generated trajectory stationary?
Local minima of objective function \(J(x) : x^l = (x^l_1, \ldots, x^l_M) \in \mathbb{R}^{2M}, \ l = 1, \ldots, L \)

Vector of node positions at \(k \)th iteration of CRH controller: \(x_k \)

Theorem: Suppose \(H_k = \min d_{ij}(t_k) \).
If, for all \(l = 1, \ldots, L \), \(x^l_j = y_i \) for some \(i = 1, \ldots, N, j = 1, \ldots, M \), then \(J(x_k) - J(x_{k+1}) > b \) \((b > 0 \text{ is a constant}) \).

If all local minima coincide with targets, the CRH-generated trajectory is stationary
MAIN STABILITY RESULT

QUESTION:

When do all local minima coincide with target points?

1 Node, \(N \) targets

2 Nodes, 1 target

2 Nodes, 2 targets

If there exists a \(y_i \) s.t.

\[
R_i - \left| \sum_{j=1, j \neq i}^{N} R_j \frac{y_i - y_j}{\| y_i - y_j \|} \right| > 0
\]

Li and Cassandras, IEEE TAC, 2006
BOSTON UNIVERSITY TEST BEDS

Christos G. Cassandras

CISE - CODES Lab. - Boston University
II. 2 Robots, 4 Targets Case
EVENT-DRIVEN SENSITIVITY ANALYSIS
REAL-TIME STOCHASTIC OPTIMIZATION

CONTROL/DECISION
(Parameterized by θ)

SYSTEM

PERFORMANCE
$E[L(\theta)]$

GOAL:
$max_{\theta \in \Theta} E[L(\theta)]$

$\theta_{n+1} = \theta_n + \eta_n \nabla L(\theta_n)$

GRADIENT ESTIMATOR

$\nabla L(\theta)$

$x(t)$

$\nabla L(\theta)$

DIFFICULTIES:
- $E[L(\theta)]$ NOT available in closed form
- $\nabla L(\theta)$ not easy to evaluate
- $\nabla L(\theta)$ may not be a good estimate of $\nabla E[L(\theta)]$

Christos G. Cassandras

CISE - CODES Lab. - Boston University
REAL-TIME STOCHASTIC OPTIMIZATION FOR DES: INFINITESIMAL PERTURBATION ANALYSIS (IPA)

CONTROL/DECISION (Parameterized by θ) → Discrete Event System (DES) → PERFORMANCE $E[L(\theta)]$

$\theta_{n+1} = \theta_n + \eta_n \nabla L(\theta_n)$

IPA

$\nabla L(\theta)$

For many (but NOT all) DES:
- Unbiased estimators
- General distributions
- Simple on-line implementation

A general framework for an IPA theory in Hybrid Systems?

\[\theta_{n+1} = \theta_n + \eta_n \nabla L(\theta_n) \]
Performance metric (objective function):

\[J(\theta; x(\theta,0), T) = E[L(\theta; x(\theta,0), T)] \]

\[L(\theta) = \sum_{k=0}^{N} \int_{\tau_k}^{\tau_{k+1}} L_k(x, \theta, t) dt \]

IPA goal:

- Obtain unbiased estimates of \(\frac{dJ(\theta; x(\theta,0), T)}{d\theta} \), normally \(\frac{dL(\theta)}{d\theta} \)

- Then: \(\theta_{n+1} = \theta_n + \eta_n \frac{dL(\theta_n)}{d\theta} \)

NOTATION:

\[x'(t) = \frac{\partial x(\theta,t)}{\partial \theta}, \quad \tau_k' = \frac{\partial \tau_k(\theta)}{\partial \theta} \]
HYBRID AUTOMATA

$$G_h = (Q, X, E, U, f, \phi, Inv, guard, \rho, q_0, x_0)$$

- **Q**: set of discrete states (modes)
- **X**: set of continuous states (normally \mathbb{R}^n)
- **E**: set of events
- **U**: set of admissible controls
- **f**: vector field, $f : Q \times X \times U \to X$
- **ϕ**: discrete state transition function, $\phi : Q \times X \times E \to Q$
- **Inv**: set defining an invariant condition (domain), $Inv \subseteq Q \times X$
- **guard**: set defining a guard condition, $guard \subseteq Q \times Q \times X$
- **ρ**: reset function, $\rho : Q \times Q \times X \times E \to X$
- **q_0**: initial discrete state
- **x_0**: initial continuous state
HYBRID AUTOMATA

Unreliable machine with timeouts

\[x(t) : \text{physical state of part in machine} \]
\[\tau(t) : \text{clock} \]

\[\alpha : \text{START}, \beta : \text{STOP}, \gamma : \text{REPAIR} \]
THE IPA CALCULUS
IPA: THREE FUNDAMENTAL EQUATIONS

System dynamics over \((\tau_k(\theta), \tau_{k+1}(\theta)) \):
\[
\dot{x} = f_k(x, \theta, t)
\]

NOTATION:
\[
x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}, \quad \tau'_k = \frac{\partial \tau_k(\theta)}{\partial \theta}
\]

1. Continuity at events:
\[
x(\tau_k^+) = x(\tau_k^-)
\]

Take \(d/d\theta \):
\[
x'(\tau_k^+) = x'(\tau_k^-) + [f_{k-1}(\tau_k^-) - f_k(\tau_k^+)]\tau'_k
\]

If no continuity, use reset condition \(\Rightarrow \)
\[
x'(\tau_k^+) = \frac{d\rho(q, q', x, \nu, \delta)}{d\theta}
\]
IPA: THREE FUNDAMENTAL EQUATIONS

2. Take \(d/d\theta \) of system dynamics \(\dot{x} = f_k(x, \theta, t) \) over \((\tau_k(\theta), \tau_{k+1}(\theta))\):

\[
\frac{dx'(t)}{dt} = \frac{\partial f_k(t)}{\partial x} x'(t) + \frac{\partial f_k(t)}{\partial \theta}
\]

Solve

\[
\frac{dx'(t)}{dt} = \frac{\partial f_k(t)}{\partial x} x'(t) + \frac{\partial f_k(t)}{\partial \theta}
\]

over \((\tau_k(\theta), \tau_{k+1}(\theta))\):\

\[
x'(t) = e^{\int_{\tau_k}^{t} \frac{\partial f_k(u)}{\partial x} du} \left[\int_{\tau_k}^{t} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_k}^{v} \frac{\partial f_k(u)}{\partial x} du} dv + x'(\tau_k^+) \right]
\]

NOTE: If there are no events (pure time-driven system), IPA reduces to this equation

initial condition from 1 above
3. Get τ'_k depending on the event type:

- **Exogenous event**: By definition, $\tau'_k = 0$

- **Endogenous event**: occurs when $g_k(x(\theta, \tau_k), \theta) = 0$

$$\tau'_k = -\left[\frac{\partial g}{\partial x} f_k(\tau^-_k)\right]^{-1}\left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x} x'(\tau^-_k)\right)$$

- **Induced events**:

$$\tau'_k = -\left[\frac{\partial y_k(\tau_k)}{\partial t}\right]^{-1} y'_k(\tau^+_k)$$
IPA: THREE FUNDAMENTAL EQUATIONS

Ignoring resets and induced events:

1. \(x'(\tau_k^+) = x'(\tau_k^-) + [f_{k-1}(\tau_k^-) - f_k(\tau_k^+)] \cdot \tau_k' \)

2. \(x'(t) = e^{\int_{\tau_k}^{t} \frac{\partial f_k(u)}{\partial x} \, du} \left[\int_{\tau_k}^{t} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_k}^{v} \frac{\partial f_k(u)}{\partial x} \, du} \, dv + x'(\tau_k^+) \right] \)

3. \(\tau_k' = 0 \quad \text{or} \quad \tau_k' = -\left[\frac{\partial g}{\partial x} f_k(\tau_k^-) \right]^{-1} \left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x} x'(\tau_k^-) \right) \)

Recall:

\[
\begin{align*}
 x'(t) &= \frac{\partial x(\theta, t)}{\partial \theta} \\
 \tau_k' &= \frac{\partial \tau_k(\theta)}{\partial \theta}
\end{align*}
\]
IPA PROPERTIES

Back to performance metric: \[L(\theta) = \sum_{k=0}^{N} \int_{\tau_k}^{\tau_{k+1}} L_k(x, \theta, t) \, dt \]

NOTATION: \[L'_k(x, \theta, t) = \frac{\partial L_k(x, \theta, t)}{\partial \theta} \]

Then: \[
\frac{dL(\theta)}{d\theta} = \sum_{k=0}^{N} \left[\tau'_{k+1} \cdot L_k(\tau_{k+1}) - \tau'_k \cdot L_k(\tau_k) + \int_{\tau_k}^{\tau_{k+1}} L'_k(x, \theta, t) \, dt \right]
\]

What happens at event times

What happens between event times
IPA PROPERTIES

THEOREM 1: If either 1,2 holds, then \(dL(\theta)/d\theta\) depends only on information available at event times \(\tau_k\):

1. \(L(x, \theta, t)\) is independent of \(t\) over \([\tau_k(\theta), \tau_{k+1}(\theta)]\) for all \(k\)

2. \(L(x, \theta, t)\) is only a function of \(x\) and for all \(t\) over \([\tau_k(\theta), \tau_{k+1}(\theta)]\):

\[
\frac{d}{dt} \frac{\partial L_k}{\partial x} = \frac{d}{dt} \frac{\partial f_k}{\partial x} = \frac{d}{dt} \frac{\partial f_k}{\partial \theta} = 0
\]

[**IMPLICATION**: - Performance sensitivities can be obtained from information limited to event times, which is easily observed

- **No need to track system in between events**!]

Christos G. Cassandras

CISE - CODES Lab. - Boston University
Evaluating $x(t; \theta)$ requires full knowledge of w and f values (obvious)

However, $\frac{dx(t; \theta)}{d\theta}$ may be independent of w and f values (NOT obvious)

It often depends only on:
- event times τ_k
- possibly $f(\tau_{k+1}^-)$

Christos G. Cassandras

CISE - CODES Lab. - Boston University
IPA PROPERTIES

In many cases:

- **No need for a detailed model** (captured by f_k) to describe state behavior in between events.

- This explains why **simple abstractions of a complex stochastic system** can be adequate to perform sensitivity analysis and optimization, as long as event times are accurately observed and local system behavior at these event times can also be measured.

- This is true in **abstractions of DES as HS** since:

 Common performance metrics (e.g., workload) satisfy THEOREM 1.
SOLVING PROBLEMS WITH LINEAR TIME-DRIVEN DYNAMICS

\[\min_{u_1, \ldots, u_K} \sum_{k=0}^{K} \left[\int_{\tau_k}^{\tau_{k+1}} L_k(x(t), u(t)) dt + \psi_i(\tau_k) \right] \]

s.t.

\[\dot{x} = a_k x + b_k u_k, \quad t \in (\tau_k, \tau_{k+1}] \]

Common to parameterize controls using basis functions \(\beta_l(t) \):

\[u_k(t) = \sum_{l=0}^{L} \theta_{k,l} \beta_l(t) \]
Recall IPA equations:

1. \(x'(\tau_k^+)=x'(\tau_k^-)+[f_{k-1}(\tau_k^-)-f_k(\tau_k^+)] \cdot \tau_k' \)

2. \(x'(t)=e^{\alpha_k} \left[\int_{\tau_k}^{t} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_k}^{v} \frac{\partial f_k(u)}{\partial \theta} du} dv + x'(\tau_k^+) \right] \)

3. \(\tau_k'=0 \) or \(\tau_k' = \left[\frac{\partial g}{\partial x} f_k(\tau_k^-) \right]^{-1} \left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x} x'(\tau_k^-) \right) \)

When endogenous event \([g(x(\theta, \tau_k), \theta) = 0]\) occurs at \(\tau_k\):

1. \(\frac{\partial x(\tau_k^+)}{\partial \theta_{k,l}} = \frac{\partial x(\tau_k^-)}{\partial \theta_{k,l}} + \left(a_{k-1} - a_k \right) x(\tau_k^-) + b_{k-1} \sum_{l=0}^{L} \theta_{k-1,l} \beta_l(\tau_k^-) - b_k \sum_{l=0}^{L} \theta_{k,l} \beta_l(\tau_k^-) \frac{\partial \tau_k}{\partial \theta_{k,l}} \)

2. \(\frac{\partial x(t)}{\partial \theta_{k,l}} = e^{a_k(t-\tau_k)} \left[\frac{b_k \beta_l}{a_k} \left[1-e^{-a_k(t-\tau_k)} \right] + \frac{\partial x(\tau_k^+)}{\partial \theta_{k,l}} \right] \)
Data collection: relatively easy...

Control: a challenge...