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a b s t r a c t

We address the problem of optimally controlling connected and automated vehicles (CAVs) crossing an
urban intersection without any explicit traffic signaling, so as tominimize energy consumption subject to
a throughput maximization requirement. We show that the solution of the throughput maximization
problem depends only on the hard safety constraints imposed on CAVs and its structure enables a
decentralized optimal control problem formulation for energy minimization. We present a complete
analytical solution of these decentralized problems and derive conditions under which feasible solutions
satisfying all safety constraints always exist. The effectiveness of the proposed solution is illustrated
through simulation which shows substantial dual benefits of the proposed decentralized framework by
allowing CAVs to conserve momentum and fuel while also improving travel time.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Next generation transportation networks are typical cyber–
physical systems where event-driven components monitor and
control physical entities online.We are currently witnessing an in-
creasing integration of energy, transportation, and cyber networks,
which, coupled with human interactions, is giving rise to a new
level of complexity in the transportation network and necessitates
new control and optimization approaches.

The alarming state of current transportation systems is well
documented. In 2014, congestion caused vehicles in urban areas
to spend 6.9 billion additional hours on the road at a cost of an
extra 3.1 billion gallons of fuel, resulting in a total cost estimated
at $160 billion; see Schrank, Eisele, Lomax, and Bak (2015). From a
control and optimization standpoint, the challenge is to develop
mechanisms that expand capacity without affecting the existing
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road infrastructure, specifically by tighter spacing of vehicles in
roadways and better control at the weakest links of a transporta-
tion system: the bottleneck points defined by intersections, merg-
ing roadways, and speed reduction zones; see Malikopoulos and
Aguilar (2013) and Margiotta and Snyder (2011). An automated
highway system (AHS) can alleviate congestion, reduce energy
use and emissions, and improve safety by significantly increasing
traffic flow as a result of closer packing of automatically controlled
vehicles. Forming ‘‘platoons’’ of vehicles traveling at high speed
is a popular system-level approach to address traffic congestion
that gained momentum in the 1990s; see Rajamani, Tan, Law, and
Zhang (2000) and Shladover et al. (1991). More recently, a study
in Tachet et al. (2016) indicated that transitioning from intersec-
tions with traffic lights to autonomous ones has the potential of
doubling capacity and reducing delays.

Connected and automated vehicles (CAVs) provide the most
intriguing opportunity for enabling users to better monitor trans-
portation network conditions and to improve traffic flow. CAVs
can be controlled at different transportation segments, e.g., inter-
sections, merging roadways, roundabouts, speed reduction zones
and can assist drivers in making better operating decisions to
improve safety and reduce pollution, energy consumption, and
travel delays. One of the very early efforts in this direction was
proposed inAthans (1969) and Levine andAthans (1966)where the
merging problem was formulated as a linear optimal regulator to
control a single string of vehicles. Varaiya (1993) has also discussed
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extensively the key features of an automated intelligent vehicle-
highway system (IVHS) and proposed a related control system
architecture.

In this paper, we address the problem of optimally control-
ling CAVs crossing an urban intersection without any explicit
traffic signaling so as to minimize energy consumption subject
to a throughput maximization requirement and to hard safety
constraints. The implications of this approach are that vehicles
do not have to come to a full stop at the intersection, thereby
conserving momentum and fuel while also improving travel time.
Moreover, by optimizing each vehicle’s acceleration/deceleration,
we minimize transient engine operation, thus we have additional
benefits in fuel consumption. Several research efforts have been
reported in the literature proposing either centralized (if there is
at least one task in the system that is globally decided for all
vehicles by a single central controller) or decentralized approaches
for coordinating CAVs at intersections. Dresner and Stone (2004)
proposed the use of a centralized reservation scheme to control
a single intersection of two roads with no turns allowed. Since
then, numerous centralized approaches have been reported in the
literature, e.g., de La Fortelle (2010), Dresner and Stone (2008) and
Huang, Sadek, and Zhao (2012), to achieve safe and efficient control
of traffic through intersections. Some approaches have focused
on coordinating vehicles to improve the travel time, e.g., Yan,
Dridi, and El Moudni (2009), Zhu and Ukkusuri (2015) and Zohdy,
Kamalanathsharma, and Rakha (2012). Others have considered
minimizing the overlap in the position of vehicles inside the in-
tersection rather than arrival time; see Lee, Park, Malakorn, and
So (2013). Kim and Kumar (2014) proposed an approach based
on model predictive control that allows each vehicle to optimize
its movement locally with respect to any objective of interest.
Miculescu andKaraman (2014) used queueing theory andmodeled
the problem as a polling system that determines the sequence of
times assigned to the vehicles on each road.

In decentralized approaches, each vehicle determines its own
control policy based on the information received from other ve-
hicles on the road or from a coordinator. Alonso et al. (2011)
proposed two conflict resolution schemes inwhich an autonomous
vehicle canmake a decision about the appropriate order of crossing
the intersection to avoid collision with other manually driven ve-
hicles. Colombo and Del Vecchio (2014) constructed the invariant
set for the control inputs that ensure lateral collision avoidance.
A detailed discussion of research efforts in this area can be found
in Rios-Torres and Malikopoulos (2017a).

The first contribution of the paper is the formulation of an
energy minimization optimal control problem for CAVs where the
time for each CAV to cross the intersection is first determined
as the solution of a throughput maximization problem. We show
that the solution structure of the latter problem enables a decen-
tralized energy minimization optimal control problem formula-
tion whose terminal time depends only on a ‘‘neighboring’’ CAV
set. An analytical solution of each CAV’s optimal control problem
without considering state and control constraints was presented
in Ntousakis, Nikolos, and Papageorgiou (2016), Rios-Torres and
Malikopoulos (2017b) and Rios-Torres, Malikopoulos, and Pisu
(2015) for CAVs at highway on-ramps, and in Zhang, Malikopou-
los, and Cassandras (2016) for two adjacent intersections. Unlike
all these prior formulations, we specify the explicit connection
between the energy minimization and throughput maximization
problems, do not impose constraints on the terminal CAV speeds,
and present a complete analytical solution that includes all state
and control constraints. Ensuring that a feasible solution to each
CAV decentralized optimal control problem exists is nontrivial, as
discussed in Zhang, Cassandras, and Malikopoulos (2017). Thus,
another contribution is showing that this solution depends on the
arrival time of a CAV at a ‘‘control zone’’ defined for the intersection

Fig. 1. Intersection with connected and automated vehicles.

and on its initial speed and then providing a proof (not given in
Zhang, Cassandras et al. (2017)) of the existence of a nonempty
feasibility region in the space defined by this arrival time and initial
speed.

The paper is organized as follows. In Section 2, we introduce
the modeling framework, formulate the energy-minimization op-
timal control problem and establish its connection to throughput
maximization. In Section 3, we present the decentralized control
framework, derive a closed-form analytical solution for each de-
centralized problem, and show the existence of feasible solutions
ensuring that all safety constraints remain inactive. Finally,wepro-
vide simulation results in Section 4 illustrating the effectiveness
of the proposed solution in terms of significant reductions in both
fuel consumption and travel time. Concluding remarks are given in
Section 5.

2. Problem formulation

We consider an intersection (Fig. 1) where the region at its cen-
ter is called Merging Zone (MZ) and is the area of potential lateral
collision of vehicles. Although this is not restrictive, we consider
the MZ to be a square of side S. The intersection has a Control Zone
(CZ) and a coordinator that can communicate with the vehicles
traveling inside the CZ. Note that the coordinator is not involved
in any decision for any CAV and only enables communication of
appropriate information among CAVs. The distance from the entry
of the CZ to the entry of theMZ is L and it is assumed to be the same
for all CZ entry points. The value of L depends on the coordinator’s
communication range capability with the CAVs, while S is the
physical length of a typical intersection. In this paper, we limit
ourselves to the case of no lane changes and no turns allowed.

LetN(t) ∈ N be the number of CAVs inside the CZ at time t ∈ R+

and N (t) = {1, . . . ,N(t)} be a queue which designates the order
in which these vehicles will be entering the MZ. Thus, letting tmi be
the assigned time for vehicle i to enter the MZ, we require that

tmi ≥ tmi−1, ∀i ∈ N (t), i > 1. (1)

There is a number of ways to satisfy (1). For example, we may
impose a strict first-in-first-out queueing structure, where each
vehiclemust enter theMZ in the sameorder it entered the CZ.More
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generally, however, tmi maybedetermined for each vehicle i at time
t0i when the vehicle enters the CZ and N (t0i ) = {1, . . . , i − 1}.
If tmi > tmi−1, then the order in the queue is preserved. If, on the
other hand, there exists some j ∈ N (t0i ), where j < i − 1, such
that tmj > tmi > tmj−1, then the order is updated so that CAV
i is placed in the jth queue position. The policy through which
the order (‘‘schedule’’) is specified may be the result of a higher
level optimization problem as long as the condition tmi ≥ tmi−1 is
preserved in between CAV arrival events at the CZ. Inwhat follows,
we will adopt a specific scheme for determining tmi (upon arrival
of CAV i) based on our problem formulation, without affecting
tm1 , . . . , tmi−1, butwe emphasize that our analysis is not restricted by
the policy designating the order of the vehicles within the queue
N (t).

2.1. Vehicle model, constraints, and assumptions

For simplicity, we represent the dynamics of each CAV i ∈ N (t),
moving along a specified lane through second order dynamics

ṗi = vi(t), pi(t0i ) = 0

v̇i = ui(t), vi(t0i ) given
(2)

where t0i is the time when CAV i enters the CZ, and pi(t) ∈ Pi,
vi(t) ∈ Vi, ui(t) ∈ Ui denote the position, speed and accelera-
tion/deceleration (control input) of each CAV i inside the CZ. The
sets Pi, Vi and Ui, i ∈ N (t), are complete and totally bounded
subsets of R. The state space Pi × Vi is closed with respect to the
induced topology, thus, it is compact.

We need to ensure that for any initial time and state (t0i , p
0
i , v

0
i )

and every admissible control u(t), the system (2) has a unique
solution (pi(t), vi(t)) on some interval [t0i , t

m
i ], where tmi is the time

that vehicle i ∈ N (t) enters the MZ. To ensure that the control
input and vehicle speed are within a given admissible range, the
following constraints are imposed:

ui,min ⩽ ui(t) ⩽ ui,max, and

0 ⩽ vmin ⩽ vi(t) ⩽ vmax, ∀t ∈ [t0i , t
m
i ],

(3)

where ui,min, ui,max are the minimum and maximum control inputs
(maximum deceleration/acceleration) for each vehicle i ∈ N (t),
and vmin, vmax are the minimum and maximum speed limits re-
spectively. For simplicity, in the sequel we do not consider vehicle
diversity and thus set ui,min = umin and ui,max = umax.

Definition 1. Depending on its physical location inside the CZ, CAV
i − 1 ∈ N (t) belongs to only one of the following four subsets of
N (t) with respect to CAV i: (1)Ri(t) contains all CAVs traveling on
the same road as i and towards the same direction but on different
lanes (e.g.,R6(t) contains CAV4 in Fig. 1), (2)Li(t) contains all CAVs
traveling on the same road and lane as vehicle i (e.g.,L6(t) contains
CAV 5 in Fig. 1), (3) Ci(t) contains all CAVs traveling on different
roads from i and having destinations that can cause collision at the
MZ, (e.g., C6(t) contains CAV 2 in Fig. 1), and (4) Oi(t) contains all
CAVs traveling on the same road as i and opposite destinations that
cannot, however, cause collision at theMZ (e.g.,O6(t) contains CAV
3 in Fig. 1).

Based on this definition, it is clear that a rear-end collision can
only arise if CAV k ∈ Li(t) is directly ahead of i. Thus, to ensure
the absence of any rear-end collision, we assume a predefined safe
distance δ < S and impose the rear-end safety constraint

si(t) = pk(t) − pi(t) ⩾ δ, ∀t ∈ [t0i , t
f
i ], k ∈ Li(t) (4)

where t fi is the time that CAV i ∈ N (t) exits the MZ. The rear-
end safety constraint is usually expressed in terms of the allowable

headway (Rajamani, 2012), i.e., a time gap that is a function of
speed. However, since we consider urban intersections, the aver-
age speed does not exhibit significant variations. Therefore, we can
translate the allowable headway to a safe inter-vehicle distance. In
the rest of the paper, we reserve the symbol k to denote the CAV
which is physically immediately ahead of i in the same lane.

A lateral collision involving CAV i may occur only if some CAV
j ̸= i belongs to Ci(t). This leads to the following definition:

Definition 2. For each CAV i ∈ N (t), we define the set Γi that
includes all time instants when a lateral collision involving CAV i is
possible:

Γi ≜
{
t | t ∈ [tmi , t fi ]

}
. (5)

Consequently, to avoid a lateral collision for any two vehicles
i, j ∈ N (t) on different roads, the following constraint should hold

Γi ∩ Γj = ∅, ∀t ∈ [tmi , t fi ], j ∈ Ci(t). (6)

This constraint implies that no two CAVs from different roads
which may lead to a lateral collision are allowed to be in the MZ at
the same time. If the length of the MZ is large, then this constraint
might not be realistic, but it can be modified appropriately as
described in Remark 2.

In the modeling framework described above, we impose the
following assumptions:

Assumption 1. For CAV i, none of the constraints (3)–(4) is active
at t0i .

Assumption 2. The speed of the CAVs inside the MZ is constant,
i.e., vi(t) = vi(tmi ) = vi(t

f
i ), ∀t ∈ [tmi , t fi ] This implies that

t fi = tmi +
S

vi(tmi )
. (7)

Assumption 3. Each CAV i has proximity sensors and canmeasure
local information without errors or delays.

Assumption 1 ensures that the initial state and control input
are feasible. Enforcing this is nontrivial andwe address the issue in
Section 3.2. The second assumption is intended to enhance safety
awareness, but it could be modified appropriately, if necessary,
as discussed in Section 2.2. The third assumption may be strong,
but it is relatively straightforward to relax as long as the noise in
the measurements and/or delays is bounded. For example, we can
determine upper bounds on the state uncertainties as a result of
sensing or communication errors anddelays, and incorporate these
into more conservative safety constraints.

For simplicity of notation in the remainder of the paper, wewill
write vi(t0i ) ≡ v0

i , vi(tmi ) ≡ vm
i and vi(t

f
i ) ≡ v

f
i .

2.2. Energy minimization problem formulation

We begin by considering the controllable acceleration/
deceleration ui(t) of each CAV iwhichminimizes the following cost
functional:

Ji(ui(t), tmi ) =

∫ tmi

t0i

Ci(ui(t))dt, (8)

subject to : (2), (3), (4), (6), pi(t0i ) = 0, pi(tmi ) = L,
and given t0i , v

0
i , t

m
i .

We view Ci(ui(t)) as a measure of the energy, which is a function
of the control input (acceleration/deceleration) consumed by CAV
i in traveling between pi(t0i ) = 0 and pi(tmi ) = L; see Malikopoulos
(2011). A special case arises when the cost function is the L2-norm
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of the control input in [t0i , t
m
i ] and Ci(ui(t)) =

1
2u

2
i (t). In this

case, we minimize transient engine operation, thus we can have
direct benefits in fuel consumption and emissions since internal
combustion engines are optimized over steady state operating
points (constant torque and speed); see Malikopoulos (2013) and
Rios-Torres and Malikopoulos (2017b). In this problem, t0i , v

0
i are

known upon arrival of CAV i at the CZ and tmi is also specified.
Clearly, not all tmi can satisfy the safety constraints (4) and (6).
Moreover, in general, a value of tmi that satisfies (4) and (6) may
depend on other CAVs j ̸= i; therefore, it may not be possible for
CAV i to solve (8) in a decentralizedmanner, i.e., based only on local
information. We address the question of specifying appropriate tmi
for each instance of (8) in what follows.

Before proceeding, we note that the obvious unconstrained
solution to (8) is u∗

i (t) = 0 for all t ∈ [t0i , t
m
i ]. This applies to i = 1

since, in this case, (4) and (6) are inactive, since it is not constrained
by any prior CAV in the queue, and tm1 variable. This also implies
that v∗

1 (t) = v0
i for all t ∈ [t0i , t

m
i ] and tm1 = L/v0

i .
We now turn our attention to the problem of maximizing the

traffic throughput at the intersection, in terms of minimizing the
gaps between the vehicles in a given queueN (t) (see Fig. 1), under
the hard safety constraints (4) and (6). Thus, setting t(2:N(t)) =

[tm2 . . . tmN(t)], we define the following optimization problem:

min
t(2:N(t))

N(t)∑
i=2

(
tmi − tmi−1

)
= min

tN(t)

(
tmN(t) − tm1

)
, (9)

subject to : (1), (3), (4), (6)

where tm1 is not included since it is obtained from the solution of
(8) when i = 1, i.e., tm1 = L/v0

i . The equivalence between the
two expressions in (9) (due to the cancellation of all terms in the
sum except the first and last) reflects the equivalence between
minimizing the total time to process all CAVs in the queue and the
average interarrival time of CAVs at the MZ.

As stated in (9), the problem does not incorporate constraints
on tmi , i = 2, . . . ,N(t), that are imposed by the CAV dynamics. In
other words, we should write tmi = tmi (u(1:i)(t)) where u(1:i)(t) =

[u1(t; tm1 ) . . . ui(t; tmi )] denotes the controls applied to all CAVs i =

1, . . . ,N(t) over [t0i , t
m
i ] for any given t0i , t

m
i . Let Ai denote a set of

feasible controls:

Ai ≜
{
ui(t; tmi ) ∈ Ui subject to: (10)

(1), (2), (3), (4), (6), pi(t0i ) = 0, pi(tmi ) = L,

and given t0i , v
0
i , t

m
i

}
.

Then, we rewrite (9) as

min
t(2:N(t))

N(t)∑
i=2

(
tmi (u(1:i)(t)) − tmi−1(u(1:i−1)(t))

)
(11)

= min
tN(t)

(
tmN(t)(u(1:N(t))(t)) − tm1 (u(1)(t))

)
,

subject to : ui(t; tmi ) ∈ Ai, ∀i ∈ N (t), (1), (3), (4), (6).

Remark 1. As pointed out earlier, the solution of (8) for i = 1
is u∗

1(t) = 0 resulting in v∗

1 (t) = v0
i and tm∗

1 = L/v0
i . On the

other hand, if we were to solve (11) for i = 1 setting tm0 = 0,
the solution would be tm∗

1 = tm1 = L/vmax. This indicates a
degree of freedom in the selection of tm1 which can be used to
trade off the energy minimization and throughput maximization
(congestion reduction) objectives. Thus, tm1 may be viewed as a
parameter one can adjust to solve the subsequent CAV problems
placing a desired amount of emphasis on throughput relative to
energy consumption.

The solution of (11) provides a sequence {tm∗

2 , . . . , tm∗

N(t)} which
designates the MZ arrival times of all CAVs in the current queue so
as to minimize the total time needed for them to clear the inter-
section (recalling Assumption 2, the time through the MZ is fixed),
hencemaximizing the throughput over the currentN(t) CAVs. This
solution may then be used in (8) to specify the terminal time of
each energy minimization problem. In what follows, we show that
this solution has a simple iterative structure and depends only on
the hard safety constraints (4) and (6), as well as the state and
control constraints (3). We begin by ignoring the latter to obtain
the following result.

Lemma 1. Suppose that the constraints (3) are inactive in (11).
Then, the solution t∗ = [tm

∗

2 , . . . , tm
∗

N ] of problem (11) is determined
through the following recursive structure over i = 2, . . . ,N:

tm
∗

i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max{tm
∗

i−1, t
m∗

k +
δ

vm
k

} if i − 1 ∈ Ri(t) ∪ Oi(t)

tm
∗

i−1 +
δ

vm
i−1

if i − 1 ∈ Li

tm
∗

i−1 +
S

vm
i−1

if i − 1 ∈ Ci

(12)

where k = max{j : j ∈ Li(t), j = 1, . . . , i − 2} < i is the CAV which
is physically immediately ahead of i in the same lane.

Proof. See Appendix.

Remark 2. The lateral collision constraint (6) allows only one CAV
at a time to be inside the MZ. If the length of the MZ is large, how-
ever, then this constraint may become overly conservative, since it
results in dissipating space and road capacity. The constraint can be
modified appropriately and (52) in Case 3 above can be rewritten
as

tm
∗

i = tm
∗

i−1 +
r

vm
i−1

(13)

with any desired distance r < S between CAVs inside the MZ.

Next, we relax the assumption made in Lemma 1 that con-
straints (3) are inactive in (11) and derive a recursive equation for
the determination of t∗ = [tm

∗

2 , . . . , tm
∗

N ].

Theorem 1. The solution t∗ = [tm
∗

1 , . . . , tm
∗

N ] of problem (11) is
recursively determined through

tm
∗

i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tm
∗

1 if i = 1

max{tm
∗

i−1, t
m∗

k +
δ

vm
k

, tci } if i − 1 ∈ Ri(t) ∪ Oi(t)

max{tm
∗

i−1 +
δ

vm
i−1

, tci } if i − 1 ∈ Li

max{tm
∗

i−1 +
S

vm
i−1

, tci } if i − 1 ∈ Ci

(14)

where tci = t1i 1vmi =vmax + t2i (1 − 1vmi =vmax ) and

t1i = t0i +
L

vmax
+

(vmax − v0
i )

2

2ui,maxvmax
(15)

t2i = t0i +
[2Lui,max + (v0

i )
2
]
1/2

− v0
i

ui,max
. (16)

Proof. See Appendix.

It follows from Theorem 1 that tm
∗

i is always recursively deter-
mined from tm

∗

i−1 and vm
i−1 and possibly tm

∗

k , vm
k where vm

i−1 and vm
k

depend on the specific controls used when solving problem (11).
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However, note that there is no guarantee that there exist feasible
controls satisfying all constraints in (10) over all t ∈ [t0i , t

m
i ]. In fact,

as we will discuss in Section 3.2, it is easy to see that the safety
constraint (4) may not hold depending on the initial conditions
(t0i , v

0
i ) for CAV i. We will show, however, in Theorem 2 that there

exists a nonempty feasible region Fi ⊂ R2 of initial conditions
(t0i , v

0
i ) such that si(t) ⩾ δ for all t ∈ (t0i , t

m
i ) so that all safety

constraints are guaranteed to hold throughout [t0i , t
m
i ].

We are now in a position to return to the energy minimization
problem (8) with the value of tmi for any i = 1, . . . ,N(t) specified
through (14) in a recursive manner. This allows us to solve these
problems in a decentralizedmanner as detailed in the next section.

3. Decentralized framework

The results in the previous section allow us to address the
optimal control problem (8) within a decentralized framework.
However, to establish this framework, we need a communication
structure between CAVs with a ‘‘coordinator’’ whose task is to
handle the information between them. In particular, when a CAV i
reaches the CZ of the intersection at some instant t , the coordinator
assigns to it a unique identity as follows.

Let M(t) ∈ N be the cumulative number of CAVs that have
entered the CZ by time t . Note that M(t) is increasing in t and can
be reset to M(t) = 0 only if no CAVs are inside the CZ. The unique
identity that the coordinator assigns to each CAV is a triplet (w, i, j)
where w = M(t) + 1 is a unique index, i is the position of the
vehicle in the current queue N (t), and j ∈ {1, . . . , 4} is an integer
based on a one-to-onemapping from {Ri(t),Li(t), Ci(t),Oi(t)} onto
{1, . . . , 4} that indicates the positional relationship between CAVs
i−1 and i. If two or more CAVs enter the CZ at the same time, then
the coordinator assigns randomly the index w.

Definition 3. For each vehicle i entering a CZ, we define the
information set Yi(t) as

Yi(t) ≜
{
pi(t), vi(t), w,Qi, si(t), tm

∗

i

}
, ∀t ∈ [t0i , t

m∗

i ], (17)

where pi(t), vi(t) are the position and speed of CAV i inside the
CZ; w and Qi ∈ {1, . . . , 4} are the unique index and the queue
subset (Definition 1) assigned to CAV i by the coordinator; and
si(t) = pk(t) − pi(t) is the distance between CAV i and some CAV
k which is immediately ahead of i in the same lane (recall that we
reserve the symbol k to denote such a CAV relative to i). The last
element above, tm

∗

i , is the time targeted for CAV i to enter the MZ
and is given in (14) depending on the value of Qi.

Note that once CAV i enters the CZ, then immediately all infor-
mation in Yi(t) becomes available to i: pi(t), vi(t) are read from its
sensors;Qi is assigned by the coordinator, as is the value of k based
on which si(t) is also evaluated; tm

∗

i can also be computed at that
time based on the information the vehicle i receives from i−1. The
recursion on tm

∗

i is initialized whenever a vehicle enters the CZ. In
this case, tm1 can be externally assigned as the desired exit time of
this vehicle whose behavior is unconstrained (as discussed in the
previous section). Thus, the time tm1 is available through Y1(t).

Since the coordinator is not involved in any control decision,
from Theorem 1 we can formulate N(t) sequential decentralized
tractable problems of the form (8) that may be solved online. As
alreadydiscussed, a special case of (8) ariseswhen the cost function
is the L2-norm of the control input in [t0i , t

m∗

i ] which we shall
henceforth consider. Thus, the decentralized problem for each CAV
i is formulated as follows:

min
ui(t)

1
2

∫ tm
∗

i

t0i

u2
i (t) dt, (18)

subject to : (2), (3), (14), pi(t0i ) = 0, pi(tm
∗

i ) = L, and
given t0i , v

0
i .

Observe that we have omitted the rear end safety constraint
(4) and the lateral collision constraint (6). The latter applies to the
MZ and affects (18) only at t = tm

∗

i which is implicitly handled by
the selection of tm

∗

i in (14). The former, on the other hand, must be
satisfied for all t ∈ [t0i , t

m∗

i ], whereas (14) only guarantees that it
is satisfied at t = tm

∗

i . It is omitted here because we will show that
the solution of (18) guarantees that this constraint indeed holds
throughout [t0i , t

m∗

i ] under proper initial conditions (t0i , v
0
i ); note

that the constraint also holds in [tm
∗

i , t fi ] under Assumption 2.

3.1. Analytical solution of the decentralized optimal control problem

For the analytical solution of (18) and its online implementa-
tion,we applyHamiltonian analysis under Assumption 1, i.e., when
the CAVs enter the CZ none of the constraints is active. We stress
that this is not in general true. For example, a CAV may enter the
CZwith speed higher than the speed limit. In this case, a solution of
the optimal control problem is infeasible. A feasibility analysis for
CAVs to satisfy such initial conditions is discussed in Section 3.2
where we show that a feasible region Fi ⊂ R2 of initial conditions
(t0i , v

0
i ) for CAV i exists such that si(t) ⩾ δ for all t ∈ [t0i , t

m
i ]; a

feasibility enforcement analysis to ensure the existence of feasible
and optimal solutions is given in Zhang, Cassandras et al. (2017).

From (18), the state Eqs. (2), and the control/state constraints
(3), for each vehicle i ∈ N (t) the Hamiltonian function with the
state and control constraints adjoined is

Hi
(
t, p(t), v(t), u(t)

)
=

1
2
u2
i + λ

p
i · vi + λv

i · ui

+ µa
i · (ui − umax) + µb

i · (umin − ui) + µc
i · (vi − vmax)

+ µd
i · (vmin − vi), (19)

where λ
p
i and λv

i are the costates, and µT is a vector of Lagrange
multipliers with

µa
i =

{
> 0, ui(t) − umax = 0,
= 0, ui(t) − umax < 0, (20)

µb
i =

{
> 0, umin − ui(t) = 0,
= 0, umin − ui(t) < 0, (21)

µc
i =

{
> 0, vi(t) − vmax = 0,
= 0, vi(t) − vmax < 0, (22)

µd
i =

{
> 0, vmin − vi(t) = 0,
= 0, vmin − vi(t) < 0. (23)

The Euler–Lagrange equations become

λ̇
p
i = −

∂Hi

∂pi
= 0, (24)

and

λ̇v
i = −

∂Hi

∂vi
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−λ

p
i , vi(t) − vmax < 0 and

vmin − vi(t) < 0,
−λ

p
i − µc

i , vi(t) − vmax = 0,

−λ
p
i + µd

i , vmin − vi(t) = 0,

(25)

with boundary conditions pi(t0i ) = 0, pi(tmi ) = L, λv
i (t

m
i ) = 0, given

initial conditions t0i , vi(t0i ), and tmi specified by (14). The necessary
condition for optimality is
∂Hi

∂ui
= ui + λv

i + µa
i − µb

i = 0. (26)

To address this problem, constrained and unconstrained arcs need
to be pieced together to satisfy (24) through (26). Based on our
state and control constraints (3) and boundary conditions, the opti-
mal solution is the result of different combinations of the following
possible arcs.
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1. Control and State Constraints not Active. In this case, we
have µa

i = µb
i = µc

i = µd
i = 0. Applying (26), the optimal control

is given by

ui + λv
i = 0, i ∈ N (t) (27)

and the Euler–Lagrange equations yield (24) and

λ̇v
i = −

∂Hi

∂vi
= −λ

p
i . (28)

From (24) we have λ
p
i = ai and (28) implies λv

i = −(ait +

bi), where ai and bi are integration constants. Consequently, the
optimal control input (acceleration/deceleration) as a function of
time is given by

u∗

i (t) = ait + bi. (29)

Substituting this equation into the vehicle dynamics (2)we can find
the optimal speed and position for each vehicle, namely

v∗

i (t) =
1
2
ait2 + bit + ci (30)

p∗

i (t) =
1
6
ait3 +

1
2
bit2 + cit + di, (31)

where ci and di are integration constants. These fours constants
above can be computed by using the initial and final conditions in
(18). In particular, using (30) with the initial condition vi(t0i ) = v0

i ,
(31) with the initial and terminal conditions pi(t0i ) = 0, pi(tmi ) = L,
and the boundary condition of the costate λv

i (t
m
i ) = −ui(tmi ) = 0,

we can form the system of four equations of the form Tibi = qi:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
6
(t0i )

3 1
2
(t0i )

2 t0i 1

1
2
(t0i )

2 t0i 1 0

1
6
(tmi )3

1
2
(tmi )2 tmi 1

−tmi −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

⎡⎢⎣ai
bi
ci
di

⎤⎥⎦ =

⎡⎢⎢⎢⎣
pi(t0i )

vi(t0i )
pi(tmi )
λv
i (t

m
i )

⎤⎥⎥⎥⎦ (32)

where tmi is specified by (14). Note that since (32) can be computed
online, the controller may re-evaluate the four constants in the
form ai(t, pi, vi), bi(t, pi, vi), ci(t, pi, vi), and di(t, pi, vi) at any time
t > t0i to get

bi(t, pi(t), vi(t)) = (Ti)−1.qi(t, pi(t), vi(t)) (33)

and update (29) as follows

u∗

i (t, pi(t), vi(t)) = ai(t, pi(t), vi(t))t + bi(t, pi(t), vi(t)). (34)

Thus, feedback can be indirectly provided through the re-
calculation of the vector bi(t, pi(t), vi(t)) in (33).

2. Control Constraint Active,u∗

i (t) = umax. Suppose that at time
t = t1, (29) becomes

u∗

i (t) = umax, ∀t ≥ t1 (35)

while vmin < vi(t) < vmax. In this case, the Hamiltonian is
continuous at t = t1 (entry point of the control constrained arc).
Substituting the last equation into the vehicle dynamics (2), we can
find the optimal speed and position of each vehicle, namely

v∗

i (t) = umax t + fi, (36)

p∗

i (t) =
1
2
umax t2 + fi t + ei, ∀t ≥ t1 (37)

where fi and ei are constants of integration that can be computed
easily since we know the speed and position of the vehicle at time
t = t1.

3. Control and State Constraints Active, ui(t) = umax and
vi(t) = vmax. Suppose that at time t = t2 > t1 (exit point of
the control constrained arc and entry point of the state variable
constrained arc), (36) becomes v∗

i (t) = vmax. Then from (2)wehave
v̇∗

i = u∗

i (t) = 0 for t > t2, and the Hamiltonian is discontinuous
at t = t2 (entry point of the state constrained arc v∗

i (t) = vmax);
see Bryson (1975). It follows from (2) that for t ≥ t2

p∗

i (t) = vmax t + ri, (38)

where ri is the constant of integration that can be computed from
the position of the vehicle at t = t−2 .

Given certain terminal constraints, it is possible that the state
variable constraint becomes inactive again; see Bryson (1975). If
this happens at time t = t3 > t2 (exit point of the corner) the
state variable constraint becomes inactive again, i.e., vmin < vi(t) <
vmax, then the Hamiltonian and costates are continuous at t = t3,
i.e., H(t−3 ) = H(t+3 ), λp

i (t
−

3 ) = λ
p
i (t

+

3 ) = gi, and λv
i (t

−

3 ) = λv
i (t

+

3 ) =

−(git + hi), where gi and hi are constants of integration. Hence

−
1
2
u∗

i (t) = gi(vmax − vi(t)). (39)

The optimal control input, speed, and position are

u∗

i (t) = git + hi, (40)

v∗

i (t) =
1
2
git2 + hit + qi, (41)

p∗

i (t) =
1
6
git3 +

1
2
hit2 + qit + si, (42)

where the constants of integration gi, hi, qi, and si can be computed
from the control, speed, and position of the vehicle at t = t−3 and
(39) at t = t+3 .

4. Control Constraints Active, ui(t) = umin. Suppose that at
time t = t1, (29) becomes u∗

i (t) = umin while vmin < vi(t) < vmax.
In this case, the Hamiltonian is continuous at t = t1 (entry point of
the control constrained arc). It follows from (2) that for t ≥ t1

v∗

i (t) = umin t + fi, (43)

p∗

i (t) =
1
2
umin t2 + fi t + ei, (44)

where fi and ei are constants of integration that can be computed
easily since we know the speed and position of the vehicle at time
t = t1.

5. Control and State Constraints Active, ui(t) = umin and
vi(t) = vmin. Suppose that at time t = t2 > t1 (exit point of
the control constrained arc and entry point of the state variable
constrained arc), (43) becomes equal to vmin. Then from (2)wehave
v̇∗

i = u∗

i (t) = 0 for t > t2, and the Hamiltonian is discontinuous at
t = t2 (corner). Substituting u∗

i (t) = 0 for t > t2 into the vehicle
dynamics equations (2) we can find the optimal speed and position
of each vehicle for t ≥ t2, namely

p∗

i (t) = vmin t + ri (45)

where ri is the constant of integration that can be computed from
the position of the vehicle at t = t−2 .

If at time t = t3 > t2 (exit point of the corner) the state variable
constraint becomes inactive again, i.e., vmin < vi(t) < vmax, then
theHamiltonian and costates are continuous at t = t3. The analysis
follows the discussion at the exit point of the corner in the case
where ui(t) = umax and vi(t) = vmax, and the optimal control input,
speed, and position are given by (40)–(42).

6. State Constraints Active, vi(t) = vmax. Suppose that at time
t = t1, (30) becomes v∗

i (t) = vmax while umin < ui(t) < umax. Then
from (2) we have v̇∗

i = u∗

i (t) = 0 for t > t1, and the Hamiltonian
is discontinuous at t = t1. Substituting u∗

i (t) = 0 into the vehicle
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dynamics equations (2) we can also find the optimal position of
each vehicle for t ≥ t1, namely

p∗

i (t) = vmax t + ri (46)

where ri is the constant of integration that can be computed from
the position of the vehicle at t = t−1 .

If at time t = t3 > t2 (exit point of the state constrained arc) the
state variable constraint becomes inactive again, i.e., vmin < vi(t) <
vmax, then the Hamiltonian and costates are continuous at t = t3.
The analysis follows the discussion at the exit point of the state
constrained arc in the case where ui(t) = umax and vi(t) = vmax,
and the optimal control input, speed, and position are given by
(40)–(42).

7. State Constraints Active, vi(t) = vmin. Suppose that at time
t = t1, (30) becomes v∗

i (t) = vmin (entry point of the state variable
constrained arc) while umin < ui(t) < umax. Then from (2) we have
v̇∗

i = u∗

i (t) = 0 for t > t1, and the Hamiltonian is discontinuous at
t = t1. It follows from (2) that for t ≥ t1

p∗

i (t) = vmin t + ri (47)

where ri is the constant of integration that can be computed from
the position of the vehicle at t = t−1 . The analysis is similar to the
case where ui(t) = umax and vi(t) = vmax, and the optimal control
input, speed, and position are given by (40)–(42).

To derive the analytical solution of (18), we follow the stan-
dard methodology used in optimal control problems with interior
point state and/or control constraints. Namely, we first start with
the unconstrained arc and derive the solution using (32). If the
solution violates any of the state or control constraints, then the
unconstrained arc is pieced together with the arc corresponding
to the violated constraint, and we re-solve the problem with the
two arcs pieced together. The two arcs yield a set of algebraic
equations which are solved simultaneously using the boundary
conditions of (18) and interior conditions between the arcs. If the
resulting solution,which includes the determination of the optimal
switching time from one arc to the next one, violates another
constraint, then the last two arcs are pieced together with the
arc corresponding to the new violated constraint, and we re-solve
the problem with the three arcs pieced together. The three arcs
will yield a new set of algebraic equations that need to be solved
simultaneously using the boundary conditions of (18) and interior
conditions between the arcs. The resulting solution includes the
optimal switching time from one arc to the next one. The process
is repeateduntil the solution does not violate any other constraints.

Remark 3. The simple nature of the optimal control and states
in (29) through (31) makes the online solution of (18) compu-
tationally feasible, even with the additional burden of checking
for active constraints in Cases 2) through 7). However, there is
an additional feature of the solution that we can exploit, i.e., the
fact that the control structure for CAV i remains unchanged un-
til an ‘‘event’’ e.g., unexpected braking by the preceding vehicle,
rescheduling of the crossing order by the coordinator, etc.) occurs
that affects its behavior. Therefore, there is no need for a time-
driven controller implementation such that u∗

i (t) is repeatedly re-
evaluated. Rather, an event-driven controller may be usedwithout
affecting its optimality properties under conditions such as those
described in Zhong and Cassandras (2010).

3.2. Feasibility analysis for safety constraints

As already pointed out, the decentralized problem (18) does not
explicitly include the safety constraints (4) and (6).While the latter
holds by the construction of tmi in (14) and is needed only over
[tmi , t fi ], the former is not guaranteed to hold for all t ∈ [t0i , t

m
i ].

Fig. 2. Example of safety constraint violation by CAV 3 when δ = 10.

We begin with a simple example of how (4) may be violated under
the optimal control (29). This is illustrated in Fig. 2 with δ = 10 for
two CAVs that follow each other in the same lanewithin the CZ.We
can see that while (4) is eventually satisfied, due to the constraints
imposed on the solution of (18) through (6), the controller (29)
is unable to maintain (4) throughout the CZ. What is noteworthy
in Fig. 2 is that (4) is violated by CAV 3 at an interval which is
interior to [t03 , t

f
3], i.e., the form of the optimal control solution (29)

causes this violation even though the constraint is initially satisfied
at t03 = 5 in Fig. 2.

Recall that we use k to denote the CAV physically preceding i on
the same lane, and that i − 1 is the CAV ahead of i in the queue.
Clearly, k ⩽ i − 1; when k = i − 1, then i follows i − 1 in the same
lane, whereas if i − 1 is on a different lane from i, then k < i − 1.
Using this notation, the following theorem asserts that we can
always find initial conditions (t0i , v

0
i ) which guarantee the safety

constraint (4) holds throughout the CZ under the decentralized
optimal control, even though (4) is not explicitly included in (18).

Theorem2. There exists a nonempty feasible regionFi ⊂ R2 of initial
conditions (t0i , v

0
i ) for CAV i such that, under the decentralized optimal

control, si(t) ⩾ δ holds for all t ∈ [t0i , t
m
i ] given initial and final

conditions t0k , v
0
k , t

m
k , vm

k for CAV k.

Proof. See Appendix.

For any set of initial conditions which are feasible, our analysis
gives an optimal control solution, possibly with a constrained arc.
The case which applies depends on the choice of initial conditions.
In other words, our analysis provides a map from the feasible
region to a set of optimal controls for CAV i which all satisfy the
safety inequality. Theorem2 asserts that as long aswe can drive the
CAV to a feasible initial point, there exists a solution satisfying the
safety inequality over the entire CZ and MZ which may or may not
include a constrained arc. There are two possible ways to deal with
the feasibility issue. One approach is to guide the CAV through an
appropriately designed ‘‘Feasibility Enforcement Zone’’ (FEZ) that
precedes the CZ and to make adjustments so as to attain a feasible
initial condition when it reaches the CZ. The associated feasibility
enforcement analysis and the design process of a FEZ are exten-
sively discussed in Zhang, Cassandras et al. (2017). Alternatively, if
a FEZ is not realizable and a CAV arrives with (t0i , v

0
i ) ̸∈ Fi, then the

decentralized nature of (18) allows us to forego its optimal control
and settle for a non-optimal but safe control instead with some tmi
which is supplied to CAV i + 1 so as to continue the use of (29) for
all subsequent CAVs.
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Fig. 3. Optimal control input signal of the first 20 vehicles in the queue.

Fig. 4. Speed of the first 20 vehicles in the queue.

4. Simulation results

To evaluate the effectiveness of the proposed solution, we
considered the following two case studies: (1) coordination of 20
vehicles, (2) coordination of 448 vehicles. For the first study we
used MATLAB and for the second one we used VISSIM, a micro-
scopic multi-modal traffic flow commercial simulation software
package. The proposed solution was compared to a baseline sce-
nario, where the intersection has traffic lights with fixed switch-
ing times. To quantify the impact of the vehicle coordination on
fuel consumption, we used the polynomial metamodel proposed
in Kamal, Mukai, Murata, and Kawabe (2013) that yields vehicle
fuel consumption as a function of the speed, v(t), and control input,
u(t).

In the first case study, we considered a single intersection,
where the length of the MZ, S, is 30 m and the length of the CZ,
L, is 400 m. The minimum safe distance, δ, between two vehicles
was set to be 10 m. The maximum and minimum speed limits are
13 m/s and 0, respectively. The maximum acceleration limit is 0.2
m/s2 and the maximum deceleration is set to be arbitrarily large.
The control input and the optimal speed for each vehicle in the
queue is shown in Figs. 3 and4.Note that CAV#16violates both the
control constraint u(t) ≤ umax and the state constraint v(t) ≤ vmax.

In the second case study, we considered two actual intersec-
tions in tandem located in Boston. For each direction, only one
lane is considered. We set L = 245 m and S = 35 m for both
intersections. As the shapes of the actual intersections are not
regular, the distance between them is not the same for different
directions; in particular, the distance in the lane where the traffic
flow coming from the east is 160 m, whereas the distance in
the lane where the traffic flow goes from the west is 145 m. In
this study, we do not consider the coupling of the two intersec-
tions. The vehicle arrival rate is assumed to be given by a Poisson
process with λ = 450 veh/h for each lane. A comparison to the
baseline scenario using traffic lights is shown in Fig. 5. The fuel
consumption improvement was 46.6%, while the travel time was
improved by 30.9%. The fuel consumption improvement is due
to the following reasons: (1) the vehicles do not come to a full
stop, thereby conserving momentum, and (2) each vehicle travels
with the minimum acceleration/deceleration inside the CZ so that
transient engine operation isminimizedwith direct benefits in fuel
consumption.

5. Concluding remarks and future work

We have addressed the problem of optimally controlling CAVs
crossing an urban intersection without any explicit traffic signal-
ing. The objective was to minimize energy consumption subject
to a throughput maximization requirement and hard safety con-
straints. We have shown that the solution of the latter depends
only on the hard safety constraints imposed on CAVs and that
its structure enables a decentralized energy minimization optimal
control problem formulationwhose terminal timedepends only on
a ‘‘neighboring’’ set of CAVs. We presented a complete analytical
solution of these decentralized problems and derived conditions
under which feasible solutions satisfying all safety constraints
always exist. The effectiveness of the proposed solution was val-
idated through simulation which showed that the benefits of the
proposed framework are substantial.

In our decentralized framework, we considered full penetration
of identical CAVs having access to perfect information (no errors or
delays). We also did not consider lane changing, turns or pedestri-
ans. Ongoing research is considering turns [see Zhang, Malikopou-
los, and Cassandras (2017)] and lane changing in the intersection
with a diverse set of CAVs and exploring the associated tradeoffs
between the intersection throughput and fuel consumption of each
individual vehicle. Another issue that we are considering is the
potential rear-end collision that would occur inside the MZ if the
terminal speeds of two vehicles i and k traveling on the same lane
are different. If this case arises, there are two possible approaches
to adopt. The first approach is to set vi(tmi ) = vk(tmk ) and solve the
optimal control problem for CAV iwith a specified terminal speed.
Alternatively, we can simply forgo the assumption of constant
speed in the MZ and ensure the absence of rear-end collision. We
are also investigating the implications of the proposed approach to
adjacent intersections and a feasibility enforcement to ensure that
each CAV starts from a feasible state; see Zhang, Cassandras et al.
(2017). The fact that the control structure for each CAV remains
unchanged until an ‘‘event’’ occurs that affects its behavior is an
additional feature of the solution that is being exploited andwhich
will eventually lead to event-driven controllers.

The first-in-first-out queue imposes several limitations that can
become even more apparent in heavy-volume traffic situations.
An important direction for future research is to relax the first-in-
first-out queue and establish a higher-level dynamic optimization
problem the solution of which would yield online the optimal
‘‘scheduling’’ for the CAVs to cross the intersection. Future research
should also consider different penetrations of CAVs, which can al-
ter significantly the efficiency of the entire system, e.g., what is the
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Fig. 5. Fuel consumption and average travel time improvement.

critical traffic flow rate beyond which the benefits of CAVs reach
their limit? In fact, as the arrival rates increase, the optimization
process may result in occasional stopping and restarting due to
the implicit state constraint vi(t) ≥ 0. Although it is relatively
straightforward to extend our results to the case where the perfect
information assumption is relaxed, future research needs to be
directed at the implications of errors and/or delays.

Appendix A. Proof of Lemma 1

Using the second form of the objective function in (11) and
recalling that tm

∗

1 is fixed by the unconstrained control u1(t) ∈

U1, the solution t∗ is obtained by minimizing tm∗

i for every i =

2, . . . ,N . There are three cases to consider:
Case 1: If i−1 ∈ Ri(t)∪Oi(t), then (6) cannot become active. On

the other hand, (4)may become active if there exists some k ∈ Li(t)
such that k ∈ Ri−1(t) ∪ Oi−1(t), thus creating an interdependence
between i and i − 1 through k. If this happens, (4) implies that
pk(tmi ) − pi(tmi ) = L + vm

k (t
m
i − tmk ) − L ⩾ δ, hence tmi − tmk ≥

δ
vmk

.
Therefore, tmi is minimized by setting

tmi = tmk +
δ

vm
k

. (48)

Recalling that tmi − tmi−1 ≥ 0 from (1), it follows that the optimal
value of tmi in this case is given by

tm
∗

i = max{tm
∗

i−1, t
m∗

k +
δ

vm
k

}. (49)

Case 2: If i−1 ∈ Li(t), then (6) cannot become active, but constraint
(4) can. It follows that (49) applies with k = i − 1, yielding

tm
∗

i = tm
∗

i−1 +
δ

vm
i−1

. (50)

Case 3: If i − 1 ∈ Ci(t), then constraint (6) can become active. It
follows that tmi ≥ t fi−1 = tmi−1 +

S
vmi−1

. Including the possibility
that (4) becomes active if there exists some k ∈ Li(t) such that
k ∈ Ri−1(t) ∪ Oi−1(t), and recalling (1), we have

tm
∗

i = max{tm
∗

i−1 +
S

vm
i−1

, tm
∗

k +
δ

vm
k

}. (51)

Observe that if such k ∈ Li(t) exists, then k ∈ Ci−1(t), since k and i
are in the same lane. Therefore, i−1 and k < i−1must also satisfy
(6), i.e., tm

∗

i−1 ≥ tm
∗

k +
S

vmk
, hence tm

∗

i−1 +
S

vmi−1
≥ tm

∗

k +
S

vmk
+

S
vmi−1

>

tm
∗

k +
δ

vmk
, since S > δ. It follows that

tm
∗

i = tm
∗

i−1 +
S

vm
i−1

. (52)

Combining (49), (50) and (52) we obtain (12). □

Appendix B. Proof of Theorem 1

When constraints (3) are allowed to be active in (11), then the
values of tmi determined through Lemma 1 may not be attainable
in minimizing tmi − tm1 . Thus, we seek a lower bound to tmi , which is
independent of these constraints. There are two cases to consider
depending on t0i and on whether CAV i can reach vmax prior to tmi−1
or not:

(i) If CAV i enters the CZ at t0i , accelerates with umax until it
reaches vmax and then cruises at this speed until it leaves the MZ
at time t1fi , it was shown in Zhang et al. (2016) that t1fi = t0i +

L+S
vmax

+
(vmax−v0i )

2

2umaxvmax
. From Assumption 2, the time it reaches the MZ is

t1fi −
S

vmax
= t1i in (15).

(ii) If CAV i accelerates with umax but reaches the MZ at tmi
with speed vi(tmi ) < vmax, it was shown in Zhang et al. (2016)

that it leaves the MZ at time t2fi = t0i +
vi(tmi )−v0i

umax
+

S
vi(tmi ) where

vi(tmi ) =

√
2Lui,max + (v0

i )2. FromAssumption 2, the time it reaches

the MZ is t2fi −
S

vi(tmi ) = t2i in (16).

Thus, tci = t1i 1vmi =vmax + t2i (1 − 1vmi =vmax ) (1 is the indicator
function) is a lower bound of t fi regardless of the solution of
(11). Combining this lower bound with Lemma 1, we immediately
obtain (14) including tm

∗

1 which is a free variable dependent on
A1. □

Appendix C. Proof of Theorem 2

To prove the existence of the feasible region, there are two cases
to consider, depending on whether any state or control constraint
for either CAV i or k becomes active in the CZ.

Case 1: No state or control constraint is active for either k or i
over [t0i , t

m
i ]. By using (31), (32) and the definition si(t) = pk(t) −
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pi(t), under optimal control we can write

si(t; t0i , v
0
i ) = si(t, tmi , vm

i , t0k , v
0
k , t

m
k , vm

k ; t0i , v
0
i )

= A(t, tmi , vm
i , t0k , v

0
k , t

m
k , vm

k ; t0i , v
0
i )t

3

+ B(t, tmi , vm
i , t0k , v

0
k , t

m
k , vm

k ; t0i , v
0
i )t

2

+ C(t, tmi , vm
i , t0k , v

0
k , t

m
k , vm

k ; t0i , v
0
i )t

+ D(t, tmi , vm
i , t0k , v

0
k , t

m
k , vm

k ; t0i , v
0
i ), (53)

where A, B, C and D are functions defined over t ∈ [t0i , t
m
i ]. Recall

that CAV k is cruising in the MZ, so that (29) through (31) do not
apply for k over [tmk , tmi ] leading to different expressions for A, B, C
andD. Therefore, we consider two further subcases, one for [t0i , t

m
k ]

and the other for [tmk , tmi ]. For ease of notation, in the sequel we
replace (t0i , v

0
i ) by (τ , υ).

Case 1.1: t ∈ [t0i , t
m
k ]. In this case, si(t; τ , υ) is a cubic polynomial

inheriting the cubic structure of (31). We can solve (32) for the
coefficients ak, bk, ck, dk, ai, bi, ci and di using the initial and final
conditions of CAVs k and i. Then, denoting A, B, C and D as A1(τ , v),
B1(τ , v), C1(τ , v) and D1(τ , v) for t ∈ [t0i , t

m
k ], these are explicitly

given by

A1(τ , υ) =
1

(t0k − tmk )3
(2L + (vm

k + v0
k )(t

0
k − tmk ))

−
1

(τ − tmi )3
(2L + (vm

i + υ)(τ − tmi )),

B1(τ , υ) = −
1

(t0k − tmk )3
[3L(t0k + tmk )

+ (v0
k (t

0
k + 2tmk ) + vm

k (2t
0
k + tmk ))(t0k − tmk )]

+
1

(τ − tmi )3
[3L(τ + tmi )

+ (υ(τ + 2tmi ) + vm
i (2τ + tmi ))(τ − tmi )],

C1(τ , υ) =
1

(t0k − tmk )3
[6t0k t

m
k L + [(v0

k ((t
m
k )2 + 2t0k t

m
k )

+ vm
k ((t

0
k )

2
+ 2tmk t0k ))](t

0
k − tmk )]

−
1

(τ − tmi )3
[6τ tmi L + [(υ((tmi )2 + 2τ tmi )

+ vm
i ((τ )

2
+ 2tmi τ ))](τ − tmi )],

D1(τ , υ) =
1

(t0k − tmk )3
[L((t0k )

3
− 3(t0k )

2tmk )

− (v0
k t

0
k (t

m
k )2 + vm

k (t
0
k )

2tmk )(t0k − tmk )]

−
1

(τ − tmi )3
[L((τ )3 − 3(τ )2tmi )

− (υτ (tmi )2 + vm
i (τ )

2tmi )(τ − tmi )]. (54)

Note that in (53) we write si(t; τ , v) (recall that (t0i , v
0
i ) ≡

(τ , v)) to emphasize the dependence of si(t) on these initial con-
ditions for CAV i, i.e., we give a parametric characterization of si(t)
through (τ , v). Aside from (τ , v), the function si(t) also depends on
two groups of arguments: (i) t0k , v

0
k , t

m
k and vm

k ≡ vk(t
f
k ) = vk(tmk )

are quantities associated with CAV k. Since k < i, all information
related to this CAV is available and is fixed throughout [t0i , t

m
i ].

(ii) tmi and vm
i ≡ vi(t

f
i ) = vi(tmi ) are quantities which can also be

determined through CAV k or i − 1.
To summarize, si(t; τ , v) varies only with t and (τ , v) with all

remaining arguments being known to CAV i. First, observing that
the first half of each of the coefficient expressions in (54) (which
is derived by solving (31) and (32) for CAV k) is a constant fully
determined by information provided by CAV k, we can rewrite
these as KA1 , KB1 , KC1 , KD1 . Therefore, p

∗

k(t) in (31) can be expressed

as

p∗

k(t) = KA1 t
3
+ KB1 t

2
+ KC1 t + KD1 . (55)

Next, the second half of the coefficients can be expressed through
polynomials in either τ or υ explicitly derived by solving (31) and
(32) for CAV i. Wewill use the notation PX,n(τ ), PX,n(υ) to represent
polynomials of degree n = 1, 2, 3 and X ∈ {A1, B1, C1,D1}.
Similarly, we set Q3(τ ) = (τ − tmi )3. Thus, for the coefficients in
Eq. (54), we get

A1(τ , υ) = KA1 +
PA1,1(τ )PA1,1(υ)

Q3(τ )
,

B1(τ , υ) = KB1 +
PB1,2(τ )PB1,1(υ)

Q3(τ )
,

C1(τ , υ) = KC1 +
PC1,3(τ ) + PC1,2(τ )PC1,1(υ)

Q3(τ )
,

D1(τ , υ) = KD1 +
PD1,3(τ ) + PD1,2(τ )PD1,1(υ)

Q3(τ )
. (56)

Note that p∗

k(t) in (55) involves only the K terms, while the analo-
gous cubic polynomial for p∗

i (t) involves only the P and Q terms.
Our goal is to ensure that si(t; τ , υ) ⩾ δ for all t ∈ [τ , tmk ]

(recall that t0i ≡ τ ). We can guarantee this by ensuring that
s∗i (τ , υ) ≡ mint∈[τ ,tmk ]{si(t; τ , υ)} ⩾ δ. Thus, we shift our attention
to the determination of s∗i (τ , υ). We can obtain expressions for the
first and the secondderivative of si(t; τ , υ), ṡi(t; τ , υ) and s̈i(t; τ , υ)
respectively, from (53), as follows:

ṡi(t; τ , υ) = vk(t) − vi(t) = 3A1(τ , υ)t2 + 2B1(τ , υ)t

+ C1(τ , υ), (57)

s̈i(t; τ , υ) = uk(t) − ui(t) = 6A1(τ , υ)t + 2B1(τ , υ). (58)

Clearly, we can determine t∗i ≡ argmint∈[τ ,tmk ]{si(t; τ , υ)} as the
solution of ṡi(t; τ , υ) = 0 with s̈i(t; τ , υ) ⩾ 0, unless s∗i (τ , υ)
occurs at the boundaries, i.e., t∗i = τ or t∗i = tmk . Thus, there are
three cases to consider:

Case 1.1.A: t∗i = τ . In this case,

s∗i (τ , υ) = si(τ ; τ , υ) (59)
= A1(τ , υ)τ 3

+ B1(τ , υ)τ 2
+ C1(τ , υ)τ + D1(τ , υ) ⩾ δ

and we can satisfy si(τ , υ) ⩾ δ for any υ as long as a feasible τ
is determined. Since at t = τ , we have pi(τ ) = 0 and using the
definition of si(t) = pk(t) − pi(t) and (55), we get

si(τ ) = p∗

k(τ ) = KA1τ
3
+ KB1τ

2
+ KC1τ + KD1 .

Observe that if

pk(τ ) ⩾ δ

then CAV i enters the CZ at a safe distance from its preceding CAV
k and since t∗i = τ , we have si(t; τ , υ) ⩾ δ for all t ∈ [τ , tmk ]. Thus,
it suffices to select τ ⩾ tδk , where tδk is the smallest real root of
pk(τ ) − δ = 0.

Case 1.1.B: t∗i = tmk . In this case,

s∗i (τ , υ) = si(tmk ; τ , υ) (60)
= A1(τ , υ)(tmk )3 + B1(τ , υ)(tmk )2 + C1(τ , υ)tmk

+ D1(τ , υ) ⩾ δ.

Thus, the feasibility region Fi is defined by all (τ , υ) such that
si(tmk ; τ , υ) − δ ≥ 0 in the (τ , υ) space.

Case 1.1.C: t∗i = t1 ∈ (τ , tmk ). This case only arises if the
discriminant Di(τ , υ) of (57) is positive, i.e.,

Di(τ , υ) = 4B1(τ , υ)2 − 12A1(τ , υ)C1(τ , υ) > 0 (61)
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and we get

t1 =
−2B1(τ , υ) ±

√
Di(τ , υ)

6A1(τ , υ)
. (62)

In addition, we must have

τ < t1 < tmk , ṡi(t1; τ , υ) = 0, s̈i(t1; τ , υ) ⩾ 0. (63)

Therefore, the feasibility regionFi is defined by all (τ , υ) such that

s∗i (τ , υ) = si(t1; τ , υ)

= A1(τ , υ)(t1)3 + B1(τ , υ)(t1)2 + C1(τ , υ)t1 (64)
+ D1(τ , υ) ⩾ δ

in conjunction with (62)–(63).
Case 1.2: t ∈ (tmk , tmi ]. Over this interval, vk(t) = vm

k by
Assumption 2. Therefore, (29)–(31) no longer apply: (29) becomes
u∗

k(t) = 0, (30) becomes v∗

k (t) = vm
k and (31) becomes p∗

k(t) =

L + vm
k (t − tmk ). Evaluating si(t) = pk(t) − pi(t) in this case yields

the following coefficients in (54):

A2(τ , υ) = −
1

(τ − tmi )3
(2L + (vm

i + υ)(τ − tmi )),

B2(τ , υ) =
1

(τ − tmi )3
[3L(τ + tmi ) + (υ(τ + 2tmi )

+ vm
i (2τ + tmi ))(τ − tmi )],

C2(τ , υ) = vm
k −

1
(τ − tmi )3

[6τ tmi L + [(υ((tmi )2 + 2τ tmi )

+ vm
i ((τ )

2
+ 2tmi τ ))](τ − tmi )],

D2(τ , υ) = L − vm
k t

m
k −

1
(τ − tmi )3

[L((τ )3 − 3(τ )2tmi )

− (υτ (tmi )2 + vm
i (τ )

2tmi )(τ − tmi )].

(65)

It follows that KA1 , KB1 , KC1 and KD1 in (56) should be modified
accordingly, giving KA2 = KB2 = 0, KC2 = vm

k and KD2 = L − vm
k t

m
k .

Since we are assuming that no control or state constraints are
active for CAV i, the designated final time tmi under optimal control
satisfies (12), i.e., si(tmi ) ≥ δ. Thus, we only need to consider the
subcase where s∗i (τ , υ) occurs in (tmk , tmi ) and we have

t∗i = t2, t2 ∈ (tmk , tmi ).

Proceeding as in Case 1.1.C, the feasibility regionFi is defined by all
(τ , υ) such that

s∗i (τ , υ) = si(t2; τ , υ) (66)
= A2(τ , υ)(t2)3 + B2(τ , υ)(t2)2 + C2(τ , υ)t2

+ D2(τ , υ) ⩾ δ

in conjunction with (62)–(63), with A1, B1, C1 and D1 replaced by
A2, B2, C2 and D2, and with τ < t1 < tmk replaced by tmk < t2 < tmi .

Case 2: At least one of the state and control constraints is active
over [τ , tmi ]. As discussed in Section 3.1, there are several cases
to consider when state and/or control constraints are active. Since
one or both CAVs k and i may experience an active constraint, all
different combinations need to be considered. We analyze a few in
what follows since it is clear that the remaining cases are handled
in a similar fashion.

Case 2.1: v∗

k (t) = vmax over an optimal trajectory arc, while CAV
i is unconstrained. In this case, (29)–(31) no longer apply for CAV k
and the coefficients in (54) are affected similar to Case 1.2, except
that the fixed speed vm

k is now vmax.
First, consider the interval [τ , tmk ]. Following the Hamiltonian

analysis in Section 3.1, let t Ik be the time CAV k enters the con-
strained arc with v∗

k (t) = vmax and tEk be the time it exits this
arc (see subfigure (a) in Fig. 6). The trajectory of CAV k consists

of three arcs as follows. First, for t ∈ [τ , t Ik], A1, B1, C1 and D1
are defined exactly as in (54). Second, for t ∈ [t Ik, t

E
k ], (29)–(31)

are replaced by u∗

k(t) = 0, and v∗

k (t) = vmax and (31) becomes
p∗

k(t) = pk(t Ik) + vmax(t − t Ik), where pk(t Ik) can be determined
before CAV i enters the CZ. The form of the coefficients in (54) is
modified the same way as in (65), with vm

k and L replaced by vmax
and pk(t Ik). It follows that KA1 , KB1 , KC1 and KD1 in (56) should also
be modified accordingly, with KA2 = KB2 = 0, KC2 = vmax and
KD2 = pk(t Ik) − vmaxt Ik. The final arc is for t ∈ [tEk , tmk ], when CAV k
returns to an unconstrained arc. The form of the coefficients in (54)
does not change, except that A1, B1, C1 and D1 should be replaced
by A3, B3, C3 and D3 since the value of the coefficients may differ
for different unconstrained arcs.

As in Case 1.1, we next consider t∗i ≡ argmint∈[τ ,tmk ] {si(t; τ , υ)}
and there are three cases.

Case 2.1.A: t∗i = τ . As in Case 1.1.A, it suffices to select τ ⩾ tδk
where tδk is the smallest real root of p∗

k(τ ) = δ.
Case 2.1.B: t∗i = tmk . As in Case 1.1.B, the feasibility region Fi is

defined by all (τ , υ) such that si(tmk ; τ , υ) − δ ≥ 0 in the (τ , υ)
space, with A1, B1, C1 and D1 being replaced by A3, B3, C3 and D3.

Case 2.1.C: t∗i = t1 ∈ (τ , tmk ). This case may only arise for
t ∈ (τ , t Ik). As in Case 1.1.C, the feasibility region Fi is defined by

s∗i (τ , υ) = si(t1; τ , υ) (67)
= A1(τ , υ)(t1)3 + B1(τ , υ)(t1)2 + C1(τ , υ)t1

+ D1(τ , υ) ⩾ δ

in conjunction with (62)–(63) with τ < t1 < tmk being replaced by
τ < t1 < t Ik.

For t ∈ (tmk , tmi ], the analysis is exactly the same as the way we
handle Case 1.2, with A2, B2, C2 and D2 being replaced by A4, B4, C4
and D4. The feasibility region Fi is defined by

s∗i (τ , υ) = si(t2; τ , υ) (68)
= A4(τ , υ)(t2)3 + B4(τ , υ)(t2)2 + C4(τ , υ)t2

+ D4(τ , υ) ⩾ δ

in conjunction with (62)–(63).
Case 2.2: CAV k is unconstrained and u∗

i (t) = umin over an
optimal trajectory arc. Since there are many subcases and each can
be similarly handled, we only consider one subcase where CAV i
enters the constrained arc at tmk (see subfigure (b) in Fig. 6).

Since both CAV k and i are unconstrained in [τ , tmk ], the form of
the coefficients in (54) does not change, and the feasibility region
for Cases 2.2.A, 2.2.B and 2.2.C can be derived in the same way as
Case 1.1.A, 1.1.B and 1.1.C. For t ∈ (tmk , tmi ], CAV i is decelerating
at a constant value u∗

i (t) = umin. Thus, (29)–(31) are replaced by
u∗

i (t) = umin, v∗

i (t) = vi(tmk )+umin(t − tmk ) and p∗

i (t) = L+vi(t)(t −
tmk ), where vi(tmk ) can be determined given (τ , v). The coefficients
in (54) are modified as follows:

A2(τ , υ) = 0,

B2(τ , υ) = −
1
2
umin,

C2(τ , υ) = vm
k − vi(tmk ) + umintmk ,

D2(τ , υ) = −vm
k t

m
k .

(69)

For t ∈ (tmk , tmi ], CAV k is cruising at the speed vm
k and CAV i keeps

decelerating until it reaches vm
i . Therefore, s

∗

i may only occur at tmi
and we have

s∗i (τ , υ) = si(tmi ; τ , υ) (70)
= A2(τ , υ)(tmi )3 + B2(τ , υ)(tmi )2 + C2(τ , υ)tmi

+ D2(τ , υ) ⩾ δ.

Thus, the feasibility region Fi is defined by all (τ , υ) such that
si(tmi ; τ , υ) − δ ≥ 0 in the (τ , υ) space.
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Fig. 6. Cases when the state and/or control constraints are active.

Fig. 7. Feasible and infeasible region. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

All remaining cases are similarly handled and in each case a
feasibility region Fi is defined by all (τ , υ) satisfying an inequality
of the form si(σ ; τ , υ) − δ ≥ 0 for an appropriate value of σ and
coefficients in (53).

To complete the proof, we show that feasibility region Fi is
always nonempty. This is easily established by considering a point
(τ , υ) such that vmin < υ < vmax (which is possible by Assump-
tion 1) and τ = t fk : since p∗

k(t
f
k ) = L + S and p∗

i (τ ) = 0, it follows
that si(τ ) > S > δ. Obviously, any such (τ , υ) is feasible. □

Remark 4. To illustrate the feasible region and provide some
intuition, we give a numerical example (see Fig. 7), with δ = 10,
L = 400, and CAV k is the first vehicle in the CZ and is driving
at the constant speed v0

k = vm
k = 10. The color bar in Fig. 7

indicates the value of s∗i (t) and the yellow region, determined by
(64), represents the feasible region, while the non-yellow region
represents the infeasible region. The black curve is the boundary
between the two regions and is not linear in general. This boundary
curve shifts depending on the different cases we have considered
in the proof of Theorem 2. This example also illustrates that we can
always find a nonempty feasible region since we can select points
to the right of the curve corresponding to CAV i entry times in the
CZ which can be arbitrarily large.
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