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a b s t r a c t

Motivated by the increasing dependence of many systems on battery energy, we study the problem of
optimally controlling how to discharge and recharge a non-ideal battery so as to maximize the work it
can perform over a given time period and still maintain a desired final energy level. Modeling a battery
as a dynamic system, we adopt a Kinetic Battery Model (KBM) and formulate a finite-horizon optimal
control problemwhen recharging is always feasible under the constraint that discharging and recharging
cannot occur at the same time. The solution is shown to be of bang–bang type with the property that the
battery is always in recharging mode during the last part of the interval. When the length of the time
horizon exceeds a critical value, we also show that the optimal policy includes chattering. Numerical
results are included to illustrate our analysis. We then extend the problem to settings where recharging
is only occasionally feasible and show that it can be reduced to a nonlinear optimization problem which
can be solved at least numerically.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing importance of energy management in
wireless environments, batteries are playing a critical role in
fields such as consumer electronics, public transportation, and
military applications. The same is true for energy-aware systems
encountered in robotics, mobile sensor networks and embedded
computer systems. Systems of thiskind have been studied through
techniques such as Dynamic Voltage Scheduling (DVS) (Mao,
Cassandras, & Zhao, 2007; Rao, Singhal, & Kumar, 2004; Yao,
Demers, & Shenker, 1995) where a battery is often modeled
as a queueing system with the possibility of recharging (Kar,
Krishnamurthy, & Jaggi, 2006). In these studies, it is normally
assumed that the battery is ideal, i.e., it maintains a constant
voltage throughout the discharge process and a constant capacity
for all discharge profiles, which is not generally true. To date,
most batteries are electrochemical with complex dynamics
characterizing nonlinear discharge behaviors (Chiasserini & Rao,
2001; Rao, Vrudhula, & Rakhmatov, 2003). In fact, the energy
amount delivered by the battery heavily depends on the discharge
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profile and it is generally not possible to extract all the capacity
stored in the battery (Panigrahi et al., 2001). This is due to the
rate capacity effect (Doyle & Newman, 1997) that leads to the
loss of capacity with increasing load current and to the recovery
effect (Martin, 1999) which would make the battery appear to
regain portions of its capacity after some resting time. Therefore,
in order to optimize the use of battery power, it is necessary to take
these factors into account which incurs significant computational
complexity for the purpose of real-time power control. Thus, to
use an efficient battery model in energy-aware systems requires a
combination of accuracy and speed in expressing battery discharge
behaviors under various profiles.

In early models, the electrochemical processes in a battery
were described by partial differential equations (PDE) (Fuller,
Doyle, & Newman, 1993; Panigrahi et al., 2001). Other efforts
include an approximate Single Particle Model (Chaturvedi, Klein,
Christensen, Ahmed, & Kojic, 2010), Ning and Popov (2004),
Santhanagopalan, Guo, Ramadass, and White (2006) and a
diffusion-basedmodel (Vrudhula&Rakhmatov, 2003) transformed
into an equivalent linear state space model (Zhang & Shi, 2009),
which facilitates energy optimization but is still computation-
intensive (Barbarisi, Vasca, & Glielmo, 2006; Rao, Singhal, Kumar,
& Navet, 2005). More recent work Chandy, Low, Topcu, and Xu
(2010) takes advantage of renewable energy in optimal power
flow problems, but a battery is still modeled as a simple linear
system. A Kinetic Battery Model (KBM) was originally proposed
to provide a fast and comprehensive battery model for embedded
systems (Manwell & McGowan, 1994). It takes into account
not only the recovery effect, but also the rate capacity effect.
The modification of the KBM in Rao et al. (2005) enhances
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model accuracy while still preserving computational speed. More
recently, the KBM was introduced in a lifetime maximization
problem for wireless sensor networks (Ning & Cassandras,
2009), revealing its applicability to large-scale systems, and to
introduce (Wang & Cassandras, 2010) the optimal control problem
we will analyze in what follows.

In this paper, we use the KBM to formulate a state-constrained
optimal control problem with the added feature of a battery
recharging capability.We seek tomaximize thework performedby
the battery over a given time interval [0, T ] with the requirement
that its energy is at a desired level at the end of this interval.
Our motivation comes from several application areas, including
(i) mobile battery-based robotic systems which must periodically
interrupt operation for recharging purposes; (ii) wireless sensor
nodes, which must also be periodically recharged, sometimes
through standard power sources or possibly energy harvesting
from sources such as solar, wind or vibrations (Beeby et al.,
2007); and (iii) electric vehicles, where the emerging ‘‘smart
grid’’ provides considerable flexibility for controlling the timing
of recharging intervals in between usage of the vehicle (Foster
& Caramanis, 2010). In many such applications, the desired
performance is directly controlled by the discharge rate of the
battery through DVS techniques mentioned earlier. By controlling
the discharge and recharge rates, we derive an optimal policy
shown to be of bang–bang type with the property that the battery
is always in rechargingmodeduring the last part of the interval and
there is an optimal time to switch from discharging to recharging,
within the constraints of the problem. We extend the analysis to
settings where recharging is only occasionally feasible in some
given time intervals contained within [0, T ] (e.g., during sunlight
intervals for solar recharging). We show that this can be reduced
to a nonlinear parametric optimization problem, which can be
efficiently solved at least numerically.

In Section 2, we briefly review the basics of battery dynamics
and propose a modified KBM to include a recharging capability. In
Section 3, a battery output maximization problem is formulated,
structural properties of the optimal solution are derived, and a full
solution is provided using a standard optimal control approach.
Numerical examples are included to illustrate the properties of the
optimal solution. In Section 4 we study an extension with a three-
interval optimal control problem where recharging is possible in
only one of them and derive a solution. Finally, conclusions and
further research directions are described in Section 5.

2. Battery model

An electrochemical battery cell consists of an anode, a cathode
and the electrolyte that separates the two electrodes. The electric
current derives from the electrochemical reactions occurring at
the electrode-electrolyte interface. The two important effects (Rao
et al., 2005) that make battery performance nonlinear (unlike an
ideal linear battery model) and sensitive to the discharge profile
are: (i) the Rate Capacity effect, and (ii) the Recovery effect. The
battery lifetime relies on the availability and reachability of active
reaction sites in the cathode. When the load current goes high,
the deviation of the concentration of active reaction sites from the
average increases, thus resulting in a lower state of charge as well
as less cell voltage, compared with the battery under a low load
current. This phenomenon is called the Rate Capacity Effect (Doyle
& Newman, 1997). On the other hand, the diffusion process could
compensate for the depletion of the active materials taking place
during the current drain, which results in voltage recovery after
resting. This nonlinearity in the battery is termed the Recovery
Effect (Martin, 1999).

The KBM, which was originally proposed in Manwell and
McGowan (1994), models the battery as two wells of charge, as

Fig. 1. Kinetic battery model modified to include recharging.

shown in Fig. 1 (except for the input h(t)). The available-charge
well (R-well) directly supplies electrons to the load while the
bound-charge well (B-well) only supplies electrons to the R-well.
The energy levels in the two wells are denoted by r(t) and b(t)
respectively. The rate of energy flow from the B-well to the R-well
is k(b(t) − r(t)), where k depends on the battery characteristics.
The output u(t) is theworkload of the battery at time t . The battery
is said to be depleted when r(t) becomes 0.

Since we are interested in a battery with rechargeability
capabilities, we modify the KBM by adding a controllable input
flow h(t). For the sake of generality, we distribute the inflow h(t)
to both wells by adding a constant coefficient β (0 ≤ β ≤ 1), as
seen in Fig. 1. The resulting model is as:

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t) − r(t))
ḃ(t) = c2(1 − β)h(t) − k(b(t) − r(t))

where c1 and c2 are battery-specific influencing factors for the
discharge outflow u(t) and the recharge inflow h(t) respectively;
since, in general, a battery discharges faster than it can recharge,
we assume c1 > c2 ≥ 0 where the special case c2 = 0 simply
means the battery is not rechargeable. Empirical evidence for the
accuracy of the KBM is provided in Rao et al. (2005) in terms of
capturing the recovery and rate capacity effects, which are the
basic phenomena affecting the solution of the optimal control
problem we will consider next. However, finding alternative
simple and accurate models for non-ideal batteries remains a
crucial research topic.

3. Output maximization problem

We will start with the assumption that the option to recharge
the battery is always available over [0, T ]; this will be relaxed in
Section 4 where this option will be available only occasionally.
Thus, we seek to control the discharging and recharging processes
so as to maximize the battery output over a finite time interval
[0, T ]. Note that the continuous operation of a battery is broken
down into periods of length T rather than considering the
infinite future. This provides the ability to periodically return
the total battery charge to a desired level and to control battery
performance over individual cycles. Then, the objective of our
problem is

min
(u(t),h(t))∈U

−qT = −

 T

0
u(t)dt (1)

where qT is the total output over [0, T ] and U is a feasible control
set defined as

U = {(u, h) ∈ R2
: 0 ≤ u(t) ≤ 1, 0 ≤ h(t) ≤ 1,

u(t)h(t) = 0}. (2)
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The constraint u(t)h(t) = 0 restricts the discharge and recharge
processes so that they cannot occur simultaneously. This require-
ment is application-dependent andmay be relaxed as shown later,
but we consider the problem in the presence of this constraint for
the sake of generality. The optimization problem in (1)–(2) is sub-
ject to the dynamics of the state variables r(t) and b(t) in the KBM
described in the previous section with appropriate constraints and
boundary conditions as follows:

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t) − r(t)) (3)

ḃ(t) = c2(1 − β)h(t) − k(b(t) − r(t)) (4)

r(T ) = r(0) (5)
0 ≤ r(t) ≤ B, t ∈ [0, T ] (6)
0 ≤ b(t) ≤ B, t ∈ [0, T ]. (7)

The boundary condition (5) reflects the requirement to end a
battery operating cycle of length T with the same energy level
as the initial one, so as to exercise periodic control allowing the
battery to be used over a potentially infinite horizon, asmentioned
above. Alternatively, we may set r(T ) = rf for any given rf ≥

0, adding flexibility without affecting the analysis that follows.
The constraints (6) and (7) capture the physical limitations of the
batterywhichmustmaintain a non-negative available-chargewell
level throughout the interval [0, T ] while not exceeding an upper
bound in each well level.

Before proceeding with a solution to the problem above, the
following lemma establishes simple properties of the KBM state
dynamics (proofs of all lemmas can be found in Wang and
Cassandras (2011)).

Lemma 1. Regarding the state bounds:

(1) b(τ ) = 0 for any τ ∈ (0, T ] if and only if b(0) = r(0) = 0 and
u(t) = h(t) = 0 for all t ∈ [0, τ ]; otherwise b(τ ) > 0.

(2) If β = 0 (β = 1), then r(τ ) = B (b(τ ) = B) for any τ ∈ (0, T ]

if and only if b(0) = r(0) = B and u(t) = h(t) = 0 for all
t ∈ [0, τ ]; otherwise r(τ ) < B (b(τ ) < B).

(3) r(τ ) = b(τ ) = B for any τ ∈ (0, T ] if and only if b(0) = r(0) =

B and u(t) = h(t) = 0 for all t ∈ [0, τ ]; otherwise either
r(τ ) < B when b(τ ) = B or b(τ ) < B when r(τ ) = B.

Remark 1. Given (1), it is obvious that u(t) = 0 is not an optimal
solution. Therefore an optimal trajectory is always characterized
by: (1) b(t) > 0; (2) r(t) < B (b(t) < B) if β = 0 (β = 1); and (3)
r(t) < B (b(t) < B) when b(t) = B (r(t) = B) for t ∈ (0, T ].

We begin by analyzing the unconstrained case in which (6) and (7)
are relaxed. We will then extend the analysis to incorporate these
constraints.
Unconstrained case. In this case, the optimal state trajectory
consists of an interior arc over the entire interval [0, T ]. Let
x(t) = (r(t), b(t))T and λ(t) = (λ1(t), λ2(t))T denote the state
and costate vector respectively. The Hamiltonian for this problem
is

H(x, λ, u, h) = −u(t) + λ1 ṙ(t) + λ2ḃ(t)
= [−c1λ1(t) − 1]u(t)

+ c2[βλ1(t) + (1 − β)λ2(t)]h(t)

+ k[λ1(t) − λ2(t)][b(t) − r(t)]. (8)

Note that we do not incorporate the constraint u(t)h(t) = 0 into
the Hamiltonian for the time being. Omitting function arguments
for simplicity, the corresponding Lagrangian is:

L = H + µeuh + µ1(u − 1) − µ2u + µ3(h − 1) − µ4h

where µi, i = 1, . . . , 4 and µe are the multipliers corresponding
to the constraints 0 ≤ u(t) ≤ 1, 0 ≤ h(t) ≤ 1 and u(t)h(t) = 0

respectively. The multipliers µi satisfy µi ≥ 0, i = 1, . . . , 4, and
the complementary slackness conditions: µ1(u − 1) = 0, µ2u =

0, µ3(h − 1) = 0, µ4h = 0. The costate (Euler–Lagrange) equ-
ations λ̇ = −

∂L
∂x give

λ̇1(t) = k(λ1(t) − λ2(t))
λ̇2(t) = −k(λ1(t) − λ2(t))

(9)

and, due to (5), we must satisfy λ(T ) =
∂Φ(x(T ))

∂x where Φ(x(T )) =

ν[r(T ) − r(0)] and ν is an unknown multiplier, so that

λ1(T ) = ν, λ2(T ) = 0. (10)

Solving (9) with the boundary conditions (10), we get

λ1(t) =
ν

2
[1 + e2k(t−T )

], λ2(t) =
ν

2
[1 − e2k(t−T )

]. (11)

Looking at (8), let us define the switching functions s1(t) and s2(t)
corresponding to u(t) and h(t):

s1(t) = −c1λ1(t) − 1,
s2(t) = c2[βλ1(t) + (1 − β)λ2(t)]

(12)

and apply the Pontryagin minimum principle:

H(x∗, λ∗, u∗, h∗) = min
(u,h)∈U

H(x, λ, u, h) (13)

where u∗(t), h∗(t), t ∈ [0, T ), denote the optimal controls. We can
then see that

u∗(t) =


1 s1(t) < 0
0 s1(t) > 0, h∗(t) =


1 s2(t) < 0
0 s2(t) > 0 (14)

where the singular case with s1(t) = s2(t) = 0 is excluded,
since, by (11)–(12), the monotonicity of s1(t) and s2(t) makes
it impossible to have s1(t) = s2(t) = 0 for any interval of finite
length. In addition, the case u∗(t) = h∗(t) = 0 can be immediately
excluded based on the following observation. If s2(t) > 0 in (14),
then h∗(t) = 0; in addition, by (11)–(12), we must have ν > 0,
which in turn implies λ1(t) > 0. It follows that s1(t) = −c1λ1(t)−
1 < 0, implying that u∗(t) = 0 cannot be optimal, therefore u∗(t)
= h∗(t) = 0 is not an optimal control pair. If, on the other hand,
s2(t) < 0, then h∗(t) = 0 cannot be optimal and u∗(t) = h∗(t) = 0
cannot be an optimal control pair.

Recall that the constraint u(t)h(t) = 0 was not included in
(8). Since we have established that u∗(t) = h∗(t) = 0 may be ex-
cluded, it follows that h∗(t) = 1−u∗(t) andwe can rewriteH(x, λ,
u, h) with h(t) = 1 − u(t) without affecting the optimality condi-
tions:

H(x, λ, u, h) = (−c1λ1 − 1 − c2[βλ1 + (1 − β)λ2])u
+ c2[βλ1 + (1 − β)λ2] + k(λ1 − λ2)(b − r).

We now define a new switching function

σ(t) = −c1λ1(t) − 1 − c2[βλ1(t) + (1 − β)λ2(t)] (15)

which, using (11), becomes

σ(t) = −
ν

2
[(c1 + c2) + (c1 − (1 − 2β)c2)e2k(t−T )

] − 1. (16)

Note that since c1 > c2 and |1 − 2β| ≤ 1, the bracketed term in
(16) is positive. Then, the optimal control on an interior arc is
u∗(t) = 0, h∗(t) = 1 if σ(t) > 0
u∗(t) = 1, h∗(t) = 0 if σ(t) < 0 (17)

where the singular case σ(t) = 0 can be excluded for the same
reason that the case s1(t) = s2(t) = 0 was excluded. The optimal
solution in (17) is a simple bang–bang control with a switch
occurring when (and if) σ(t) changes sign for some t ∈ [0, T ). In
view of (16), let us consider two cases regarding the sign of the
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unknown constant ν. First, suppose ν ≥ 0, in which case σ(t) < 0
for all t ∈ [0, T ]. It follows from (17) that u∗(t) = 1, h∗(t) = 0
for all t ∈ [0, T ]. Using these values in (3)–(4), we can solve the
two state equations with the added condition r(T ) = r(0) in (5)
and obtain the following equation which must be satisfied by r(0),
b(0) and T :

−
c1
2
T +

1
2


b(0) − r(0) −

c1
2k


(1 − e−2kT ) = 0. (18)

Clearly, (18) cannot be satisfied for arbitrary r(0), b(0), T and
constitutes a special case of little or no interest. Thus, in the sequel
we concentrate on the remaining case where ν < 0. We can then
have either σ(t) > 0 or σ(t) < 0 for t ∈ [0, T ] and there are two
possible cases to consider:
Case 1. σ(t) < 0 for all t ∈ [0, T ]. This case results in the exact
same analysis as ν ≥ 0 above and can only hold if (18) is satisfied,
which is only true for specific r(0), b(0), T and, hence, of little or
no interest.
Case 2. σ(t) < 0 for t ∈ [0, ts) and σ(t) > 0 for t ∈ (ts, T ], where
ts is a switching time. Since ν < 0 and recalling that c1 > c2, observe
in (16) that σ(t) is monotonically increasing, so if σ(t) > 0 this
must happen in an interval that ends at T , thus justifying the
assertion that σ(t) > 0 for t ∈ (ts, T ]. It then follows from (17)
that

u∗(t) =


1 t ≤ ts
0 t > ts,

h∗(t) =


0 t ≤ ts
1 t > ts

(19)

where ts can be obtained by solving the state equations:
ṙ(t) = −c1 + k(b(t) − r(t))
ḃ(t) = −k(b(t) − r(t)) for t ∈ [0, ts]
ṙ(t) = c2β + k(b(t) − r(t))
ḃ(t) = c2(1 − β) − k(b(t) − r(t)) for t ∈ (ts, T ]

with r(T ) = r(0), r(t−s ) = r(t+s ), and given r(0), b(0). Follow-
ing some straightforward calculations, the switching time ts is
obtained as the root of
c1 + c2

2
ts +

b(0) − r(0) −
c1
2k

2
(e−2kT

− 1)

+
c1 − c2(1 − 2β)

4k
(e−2k(T−ts) − 1) −

c2
2
T = 0. (20)

Remark 2. If c2 = 0 (i.e., no recharging is possible), then u(t) is the
only control variable. Our analysis still fully applies with c2 = 0 in
(20). In this case, the battery is discharged at full rate over [0, ts]
and remains idle over (ts, T ] while the R-well in the battery is
replenished through the B-well because of the battery’s recovery
effect (see Fig. 1).

Further, assuming that b(0) < B, we can easily see that (7) is
not relevant over the interval [0, ts) and we can proceed to
analyze whether the constraint r(t) ≥ 0 in (6) may become active
depending on the value of T , given the values of r(0), b(0), c1, c2.
Let t∗s be the switching time of the critical case r(t∗s ) = 0. Since we
can solve the state Eq. (3), setting r(t∗s ) = 0 allows us to obtain t∗s
as the root of the equation:

r(0) −
c1
2
t∗s −

1
2


b(0) − r(0) −

c1
2k


(e−2kt∗s − 1) = 0. (21)

Moreover, we can determine the associated critical value T ∗ by
solving (3) over (t∗s , T ] with r(t∗s ) = 0 and r(T ∗) = r(0), leading
to the equation:
1
2


b(0) − r(0) − c1t∗s −

c2(1 − 2β)

2k


[1 − e−2k(T∗

−t∗s )
]

+
c2
2

(T ∗
− t∗s ) − r(0) = 0. (22)

If T ≤ T ∗ (obtained through (22)), then the optimal solution is the
one derived from the unconstrained problem we have analyzed
up to this point. If T > T ∗, then it is necessary to consider
the constraint (6) and we expect that part of the optimal state
trajectorymust include one ormore boundary arcs. In addition, the
constraint (7) may also become active in this constrained optimal
trajectory. Next, we consider the constrained case with r(t) ≥ 0.
Constrained case. r(t) ≥ 0. Given that we can characterize whether
this constraint is active or not by checking the condition T ≤ T ∗

with T ∗ obtained through (22), we will now assume that the given
interval satisfies T > T ∗, i.e., r∗(t) = 0 for some t ∈ (0, T ). If this
happens, given that r(T ) = r(0) > 0, then the final part of the
optimal state trajectory r∗(t) must be such that r∗(t) > 0, t ∈

(tl, T ], over an interior arc that starts at some tl such that tl =

sup{t : t ∈ (0, T ), r∗(t) = 0}. We now employ the indirect ad-
joining approach (Hartl, Sethi, & Vickson, 1995) to deal with
the constrained optimal control problem under r(t) ≥ 0. The
Hamiltonian is still the same as (8), but the Lagrangian is modified
to incorporate the state constraint as follows:
L = H + η1(t)Ṡ1(x(t)) + µeu(t)h(t) + µ1(u(t) − 1)

− µ2u(t) + µ3(h(t) − 1) − µ4h(t) (23)
where S1 : R2

→ R is a function assumed to be analytic, which
in our case is S1(x(t)) = −r(t) ≤ 0, and η1(t) is an associated
multiplier satisfying η1(t) ≥ 0, η1(t)S1(x∗(t)) = 0, η̇1(t) ≤ 0.
Then, using the state dynamics (3), we get
Ṡ1(x(t)) = c1u(t) − c2βh(t) − k(b(t) − r(t)).
Given the introduction of η1(t), the costate equations λ̇ = −

∂L
∂x

become
λ̇1(t) = k[λ1(t) − λ2(t) − η1(t)]
λ̇2(t) = −k[λ1(t) − λ2(t) − η1(t)]

with the same boundary conditions as (10). Thus, when the state
belongs to an interior arc, η1(t) = 0 and it does not affect the
costate equations. However, when the state is on a boundary arc,
i.e., r(t) = 0, then η1(t) becomes some function dependent on
λ(t). The determination of η1(t) follows from the solution of ∂L

∂u =

0 and ∂L
∂h = 0. Proceeding backwards in time from T , as already

argued, the optimal solution consists of an interior arc (tl, T ]. The
first question we need to address is whether this interval includes
a switching time ts such that σ(ts) = 0, ts ∈ (tl, T ]. The following
lemma provides an important property that will allow us to show
this is not possible.

Lemma 2. Let t1 ∈ (0, T ) be such that u(t1) = 1 and ṙ(t1) > 0
regardless of h(t). Then, under (u(t), h(t)) ∈ U, ṙ(t) > 0 for all
t ∈ [0, t1].

Now, let us assume there exists a switching time ts ∈ (tl, T ]. Since
σ(t) > 0 for t ∈ (ts, T ], it follows from (17) thatu∗(t) = 0, h∗(t) =

1 for t ∈ (ts, T ], therefore u∗(t) = 1, h∗(t) = 0 for t ∈ (tl, ts]. Since
r(tl) = 0 and r(ts) > 0, there exists some t1 ∈ (tl, ts] such that
ṙ(t1) > 0. Thus, Lemma2 applies andwe conclude that ṙ(t) > 0 for
all t ∈ [0, t1]. This implies that ṙ(t) > 0 for some t < tl and since
r(tl) = 0 we must have r(t) < 0, hence violating the constraint
r(t) ≥ 0. Consequently, there can be no sign switch in σ(t) for
t ∈ (tl, T ] and the optimal control over the entire ending interior
arc (tl, T ] is

u∗(t) = 0, h∗(t) = 1, t ∈ (tl, T ]. (24)
Next, we consider the interval preceding the ending interior arc in
order to determine the optimal trajectory for t ≤ tl. There are two
possible cases: (i) there is a finite-length boundary arc ending at tl,
and (ii) the preceding arc is also an interior arc and tl is a contact
point. Here, we define a ‘‘contact point’’ tc ∈ (0, T ) to be such that
r(tc) = 0 and r(t) > 0 for t ≠ tc in a neighborhood of tc (Maurer,
1997). We study each of these cases next with the aid of one more
lemma regarding any finite-length boundary arc [ten, tex].
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Lemma 3. If there exists a finite-length boundary arc [ten, tex], ten <
tex, r(t) = 0 for all t ∈ [ten, tex], then

0 <
kb(t)
c1

< 1, t ∈ (ten, tex].

Case 1. There exists a finite-length boundary arc [tb, tl] ending at
tl with r(tl) = 0. In this case, ṙ(t) = 0, t ∈ (tb, tl). It follows
from (3) and the constraint u(t)h(t) = 0 that the control on
this boundary arc is ub(t) =

kb(t)
c1

and hb(t) = 0 for t ∈ (tb, tl).
Moreover, to satisfy the Pontryagin principle, the Hamiltonian
H(x, λ, u, h) must satisfy:

H(x∗, λ∗, ub, 0) ≤ min
0≤h≤1

H(x∗, λ∗, 0, h) (25)

H(x∗, λ∗, ub, 0) ≤ min
0≤u≤ kb(t)

c1

H(x∗, λ∗, u, 0). (26)

In addition, to account for a possible costate discontinuity at t = tl,
the following condition must be satisfied (Bryson & Ho, 1975):

λ(t−l ) = λ(t+l ) + π ·
∂S1
∂x

(tl)

where π = (π1(t), π2(t))T ≥ 0 is a multiplier. In view of
S1(x(t)) = −r(t) in our case,

λ1(t−l ) = λ1(t+l ) − π1, λ2(t−l ) = λ2(t+l ). (27)

Since ν < 0 and (11) applies at t+l , we have λ1(t+l ) < 0, λ2(t+l ) <

0, therefore, λ1(t−l ) < 0, λ2(t−l ) < 0. Using this fact along with (8)
in (25) gives

(−c1λ1(t−l ) − 1) ·
kb(t−l )

c1
≤ c2[βλ1(t−l ) + (1 − β)λ2(t−l )]

≤ 0.

The rightmost equality can only hold when c2 = 0. Since, by
Lemma 3, 0 < kb(t)

c1
< 1 for all t on the boundary arc, it follows that

− c1λ1(t−l ) − 1 ≤ c2[βλ1(t−l ) + (1 − β)λ2(t−l )]. (28)

Furthermore, recall that σ(t) ≥ 0 applies to the ending interior
arc, i.e., σ(t+l ) ≥ 0, so that

− c1λ1(t+l ) − 1 ≥ c2[βλ1(t+l ) + (1 − β)λ2(t+l )] (29)

which, combined with (27) and the fact that π1 ≥ 0, gives

− c1λ1(t−l ) − 1 ≥ c2[βλ1(t−l ) + (1 − β)λ2(t−l )] (30)

which contradicts (28) unless c2 = 0. Consequently, this case is
only feasible for the special case c2 = 0 (implying that there is no
recharging capability.).
Case 2. tl is a contact point. In this case, the preceding arc
is also an interior arc, say (tk, tl). Therefore, recalling the
constraint u(t)h(t) = 0, there are three possible cases regarding
u∗(t−l ), h∗(t−l ): u∗(t−l ) = 1, h∗(t−l ) = 0 or u∗(t−l ) = 0, h∗(t−l ) = 1
or u∗(t−l ) = h∗(t−l ) = 0. However, given that tl is a contact point
and r(t) is continuous, we have ṙ(t−l ) ≤ 0, r(t−l ) = 0, and since
b(t−l ) > 0 by Lemma 1, it follows from (3) that u(t−l ) > 0, which
excludes u∗(t−l ) = 0. Therefore, the only feasible case is u∗(t−l ) =

1, h∗(t−l ) = 0 and, in viewof (24), tl is a switching point. Next, there
are two cases regarding the existence of any additional control
switch in (tk, tl).

First, consider the case that there is no switch in (tk, tl). Then,
u∗(t) = 1, h∗(t) = 0 throughout t ∈ (tk, tl). If tk > 0 and since
r(tk) = 0, there must exist some t1 ∈ [tk, tl) such that ṙ(t1) > 0.
NowLemma2 applies and rules out this case by the same argument

used above to exclude u∗(t) = 1, h∗(t) = 0 on the ending interior
arc. Consequently, tk = 0, which would make the optimal control:
u∗(t) = 0, h∗(t) = 1 t ∈ (tl, T ]

u∗(t) = 1, h∗(t) = 0 t ∈ [0, tl].

This is identical to the critical case we identified in the
unconstrained case requiring that T = T ∗ in (22) and that tl = t∗s
in (21). Thus, it cannot be satisfied in general, sincewe assume that
T > T ∗, and this possibility is excluded.

This leaves only the second possible case, i.e., that there exists a
control switch in (tk, tl), in addition to the one at tl. Recalling that
an interior arc starts at tl, note that (29) applies and allowing for
a possible discontinuity of the costates at the contact point, (27)
still holds leading to (30). On the other hand, since (tk, tl) is also
an interior arc, the Hamiltonian is given by (8) and, recalling that
u∗(t−l ) = 1, this implies that −c1λ1(t−l ) − 1 ≤ c2[βλ1(t−l ) + (1 −

β)λ2(t−l )]. Comparing this with (30), we conclude that

− c1λ1(t−l ) − 1 = c2[βλ1(t−l ) + (1 − β)λ2(t−l )]. (31)

It follows from (27) and π1 ≥ 0 that (29) can only be satisfied
as an equality with π1 = 0, i.e., the costates λ1(t), λ2(t) are
both continuous at t = tl and, since (tk, tl) is an interior arc, (11)
continues to apply, hence (16) also applies. Recalling that ν < 0
and c1 > c2, one can easily see in (16) that σ(t) is monotonically
increasing regardless of β . In view of (31), this implies that
σ(t) < 0 for t < tl and there can be no further switch in (tk, tl).
Consequently, this possibility is excluded as well, leading to the
conclusion that tl cannot be a contact point in addition to the fact
that it can also not be the end of a boundary arc with r(t) = 0 over
some interval with t ≤ tl.

We can now conclude that an optimal trajectory always
includes a terminal interior arc over (tl, T ]with u∗(t) = 0, h∗(t) =

1 for all t ∈ (tl, T ] and r(tl) = 0. However, there can be no
boundary arc ending at tl nor can tl be a contact point. We can
further show that there exists no boundary arc satisfying r(t) = 0
over any segment of an optimal trajectory nor can there exist a
contact point anywhere in [0, T ]. This is established in Theorem 1
with the aid of the following lemma and leads to the conclusion
that the optimal trajectory when T > T ∗ includes an interval over
which the control variables chatter until the terminal arc over
(tl, T ] takes place. Lemma 4 is used to extend the argument made
under Case 1 above to exclude finite-length boundary arcs, while
the argument for excluding contact points is the same as the one
in Case 2 above.

Lemma 4. Let [τ , T ), τ ≥ 0, be an interval over which an optimal
trajectory contains no finite-length boundary arc. Then,

λ1(t) < λ2(t) < 0 for all t ∈ [τ , T ).

Moreover, λ1(t) is monotonically decreasing and λ2(t) is monotoni-
cally increasing for all t ∈ [τ , T ].

Theorem 1. Suppose T > T ∗, i.e., the constraint r(t) ≥ 0 is active
on the optimal trajectory. There exists no finite-length boundary arc
nor any contact point on the optimal trajectory when c2 > 0.

Proof. We first prove there can be no finite-length boundary arc.
Assuming there exists at least one finite-length boundary arc in the
optimal trajectory, we consider the last one, i.e., r(t) = 0 for t ∈

[ten, tex], ten < tex, and there exists no finite-length boundary arc in
(tex, T ]. Under these conditions, Lemma 4 applies over (tex, T ), i.e.,

λ1(t) < λ2(t) < 0, t ∈ (tex, T ). (32)

Now if the boundary arc [ten, tex] is part of the optimal trajectory,
then the Hamiltonian H(x, λ, u, h) must satisfy (25) and (26).
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Thus, (25) at t−ex implies that

min
0≤h≤1

c2[βλ1(t−ex) + (1 − β)λ2(t−ex)]h(t
−

ex)

≥ (−c1λ1(t−ex) − 1) ·
kb(t−ex)

c1
. (33)

Accounting for possible discontinuities in λ1(t), λ2(t) at t = tex,
it follows from (27) and (32) that λ2(t−ex) = λ2(t+ex) < 0 and (33)
becomes:

(−c1λ1(t−ex) − 1) ·
kb(t−ex)

c1
≤ c2[βλ1(t−ex) + (1 − β)λ2(t−ex)] < 0.

Moreover, since, by Lemma 3, on the boundary arc we have 0 <
kb(tex)

c1
< 1, we get

− c1λ1(t−ex) − 1 < c2[βλ1(t−ex) + (1 − β)λ2(t−ex)]. (34)

In the interior arc (tex, T ], in view of (8) and (32), h∗(t) = 1
and the possibility of u∗(t) = h∗(t) = 0 can be excluded. Further,
there is no finite-length boundary arc in (tex, T ]. We can thus
set h(t) = 1 − u(t) for t ∈ (tex, T ] and use the switching function
σ(t) = −c1λ1(t) − 1 − c2λ2(t). This implies that the optimal
control for t ∈ (tex, T ] is either u∗(t) = 1, h∗(t) = 0 or u∗(t) =

0, h∗(t) = 1. Since r(tex) = 0 and the last boundary arc ends at
tex, then ṙ(t+ex) ≥ 0, which, from (3), requires u∗(t+ex) ≤

kb(tex)
c1

< 1.
Therefore, u∗(t+ex) = 0, h∗(t+ex) = 1, which results in

σ(t+ex) = −c1λ1(t+ex) − 1 − c2[βλ1(t+ex) + (1 − β)λ2(t+ex)] ≥ 0.

Using (27) and the inequality above, we get:

− c1λ1(t−ex) − 1 − c2[βλ1(t−ex) + (1 − β)λ2(t−ex)]

= −c1λ1(t+ex) + c1π1 − 1 − c2[βλ1(t+ex) + (1 − β)λ2(t+ex)]

+ c2βπ1 ≥ 0 (35)

which implies that

−c1λ1(t−ex) − 1 ≥ c2[βλ1(t−ex) + (1 − β)λ2(t−ex)]

contradicting (34). Consequently, there is no finite-length bound-
ary arc in the optimal trajectory for the constrained optimal con-
trol problem. We now show that there can be no contact point. We
have already shown that there exists a terminal interior arc that
starts at tl. Since there can be no finite-length boundary interval, tl
could only be a contact point. However, this possibilitywas also ex-
cluded in our analysis of the constrained case r(t) ≥ 0 considered
earlier. The same argument can be used for any other possible con-
tact point tc , since it must be preceded and followed by an interior
arc and since Lemma 4 applies over [0, T ) precluding any control
switch other than the one at tl. �

In practice, chattering is clearly undesirable and it prevents us from
keeping track of the optimal state trajectory b∗(t) and, therefore,
the evaluation of at least the start time of the final interior arc
during which the battery is charging. The obvious way to avoid
chattering is to select an interval length T such that T ≤ T ∗,
specified through (22), if the problem setting allows it, e.g., if
one wishes to control the long-term behavior of the battery over
periods whose length is T . To summarize, the optimal control
solution for the general case with c2 > 0 is described byu∗(t) = 1, h∗(t) = 0, t ∈ [0, tj)
u∗(t) = uch, h∗(t) = hch t ∈ [tj, tl]
u∗(t) = 0, h∗(t) = 1, t ∈ (tl, T ]

(36)

where uch and hch are unspecified values corresponding to the
chattering interval [tj, tl]. The final step is to determine the two

critical times tj and tl. The former is analytically obtained by simply
solving the state Eq. (3)–(4) with given initial conditions r(0), b(0)
and u(t) = 1, h(t) = 0 for t ∈ [0, tj) with r(tj) = 0. This results in
the equation

r(0) −
c1
2
tj −

1
2


b(0) − r(0) −

c1
2k


(e−2ktj − 1) = 0 (37)

which can be solved for tj. On the other hand, determining tl
by a similar approach is not possible. This is because chattering
prevents us from keeping track of b(t) over [tj, tl], hence b(tl) is
unknown. Thus, we cannot fully solve (3)–(4) to determine tl such
that r(tl) = 0 knowing only that r(T ) = r(0), but not b(T ). What
we canmake use of, however, is the fact that tl is such that ṙ(tl) > 0
while ṙ(t−l ) ≤ 0. The optimal solution can still be obtained by
numerical techniques.

Remark 3. In the special case c2 = 0, we have u∗(t) =
kb(t)
c1

for the
optimal solution on the boundary, while h(t) is irrelevant since it
only affects the system through c2h(t) in (4).

Constrained case. 0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B. We begin by observ-
ing that in the special case c2 = 0, (3)–(4) imply r(t) < B, b(t) <
B, t ∈ [0, T ] regardless of the control. Thus, we consider only
c2 > 0. Moreover, according to Remark 1, the constraints b(t) ≤ B
and r(t) ≤ B cannot be active simultaneously in the optimal solu-
tion. We now allow all constraints 0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B to
become active on an optimal trajectory. The analysis is similar to
the unconstrained case and the constrained casewith only r(t) ≥ 0
active, and the only difference arises if in the terminal interior arc
(where r(t) and b(t) are increasing) the constraint b(t) − B ≤ 0
(r(t) − B ≤ 0) becomes active. If this happens, then the Hamil-
tonian is minimized by h∗(t) =

k(B−r(t))
c2(1−β)

(h∗(t) =
k(B−b(t))

c2β
) rather

than h∗(t) = 1. Thus, omitting derivation details, we can deter-
mine the full solution to the case with all the state constraints ac-
tive as:

u∗(t) = 1, h∗(t) = 0, t ∈ [0, tj)
u∗(t) = uch, h∗(t) = hch t ∈ [tj, tk]
u∗(t) = 0, h∗(t) = 1, t ∈ (tk, tl)

u∗(t) = 0, h∗(t) =
k(B − r(t))
c2(1 − β)


k(B − b(t))

c2β


, t ∈ [tl, T ].

(38)

An example where all constraints become active at some points
over [0, T ] is shown in Fig. 2. The optimal objective is q∗

T =

8.8243. The solution was obtained using the generic numerical
solver Tomlab/PROPT (Tomlab Optimization Inc.) and it can be seen
to be consistent with (38). Finally, we need to point out that once
chattering occurs, we lose track of the value of b(t), which prevents
us from analytically obtaining tk, tl. As already mentioned, the
obvious way to avoid chattering is to select an interval length T
such that T ≤ T ∗, specified through (22).

Remark 4. From an implementation standpoint, the optimal
control switching structure in (19) or (38) is very simple. However,
determining the exact value of switching times such as ts in
(20) requires knowledge of the battery characteristics expressed
through c1, c2, β and k. Measuring these values may not be an easy
task and involves a model identification process which represents
a research effort parallel to the one of optimal discharging and
recharging control. Alternatively, knowing the optimal control
structure one may empirically obtain the optimal value of ts (or
other switching times) by using a known type of battery so that
this value applies to all batteries of this type characterized by
parameters c1, c2, β and k; this can be done without any explicit
knowledge of the parameter values.

Solution with u(t)h(t) = 0 relaxed. When the constraint u(t)
h(t) = 0 is relaxed, the Hamiltonian in (8) is unaffected, but the
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Fig. 2. Optimal solution under r(0) = 100, b(0) = 120, c1 = 30, c2 = 10,
k = 0.05, β = 0, T = 40, and B = 150 with the constraints r(t) ≥ 0 and b(t) ≤ B.

Lagrangian no longer includes the termµeu(t)h(t). In addition, the
admissible control set becomes U

′

= {(u, h) ∈ R2
: 0 ≤ u(t) ≤

1, 0 ≤ h(t) ≤ 1}. The approach is exactly the same as before
and the solution can be categorized for each of the four cases:
(i) unconstrained, (ii) constrained case with r(t) ≥ 0, (iii) con-
strained case with b(t) ≤ B (r(t) ≤ B), and (iv) constrained case
with 0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B. In the unconstrained case,
the analysis is exactly the same. In the constrained cases, the only
difference arises when the state constraints are active, where it is
no longer required that one of u(t) and h(t) be zero. The analysis
is again the same and we omit details to give directly the optimal
solution as follows:

u∗(t) = 1, h∗(t) = 1, t ∈ [0, tj)

u∗(t) =
kb(t) + c2β

c1
, h∗(t) = 1 t ∈ [tj, tk]

u∗(t) = 0, h∗(t) = 1, t ∈ (tk, tl)

u∗(t) = 0, h∗(t) =
k(B − r(t))
c2(1 − β)


k(B − b(t))

c2β


,

t ∈ [tl, T ].

Since there is no chattering now, tj, tk, tl can be determined
numerically.

4. Output maximization with partial rechargeability

In this section, we extend our analysis to cases where
rechargeability is not always available; in particular, we consider
cases where a battery may be recharged only over a given
interval [a1, a2] ⊂ [0, T ]. This arises, for instance, in cases where
a device employs a solar cell and recharging is possible only
during daylight or known intervalswith expected light availability;
similarly, electric cars may only be recharged during intervals
where it is known that they are not needed for transportation.
In general, [0, T ] can be partitioned into alternating availability
and unavailability intervals. We will limit ourselves here to three
such intervals; it will be clear that a generalization is conceptually
straightforward. The problem we consider is formulated as
follows:

min
(u(t),h(t))∈U

−qT = −

 T

0
u(t)dt (39)

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t) − r(t)) (40)

Fig. 3. Solution structure in partial rechargeability problem.

ḃ(t) = c2(1 − β)h(t) − k(b(t) − r(t)) (41)

r(T ) = r(0) (42)
0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B, t ∈ [0, T ] (43)
where U = {(u, h) ∈ R2

: 0 ≤ u(t) ≤ 1, u(t)h(t) = 0, t ∈ [0, T ],
0 ≤ h(t) ≤ 1, t ∈ [a1, a2], h(t) = 0, t ∈ [0, a1) ∪ (a2, T ]} and
c1 > c2.

Compared to the fully available rechargeability case in (1)–(7),
the only difference here is in the admissible control set. To solve it,
we proceed by decomposing it into three subproblems:

min
(u(t),h(t))∈Ui

−qi = −

 ai

ai−1

u(t)dt (44)

ṙ(t) = −c1u(t) + c2βh(t) + k(b(t) − r(t))
ḃ(t) = c2(1 − β)h(t) − k(b(t) − r(t))
r(ai) = r̄i
0 ≤ r(t) ≤ B, 0 ≤ b(t) ≤ B, t ∈ [ai−1, ai]
i = 1, 2, 3
where U1 = U3 = {(u, h) ∈ R2

: 0 ≤ u(t) ≤ 1, h(t) = 0} and
U2 = {(u, h) ∈ R2

: 0 ≤ u(t) ≤ 1, 0 ≤ h(t) ≤ 1, u(t)h(t) = 0};
a0 = 0, a3 = T and r̄3 = r(T ) = r(0). If r̄1, r̄2 are assumed known,
then each subproblem is equivalent to our original problem (1)–
(7) while cases i = 1 and 3 correspond to the simpler special case
with c2 = 0 which we discussed in Remarks 2 and 3. Therefore,
the solution boils down to the determination of r̄1, r̄2. To avoid the
complication brought about by chattering, we will consider the
case where the constraint r(t) ≥ 0 never becomes active. It will
become clear that the possibility of chattering does not change the
essence of the solutions obtained.

Based on the solution to problem (1)–(7) thatwe have obtained,
the optimal solution structure corresponding to each subproblem
(44) is known. In particular, for subproblem 1 and 3, Remark 2
applies to (19), i.e., for t ∈ [ai−1, ai), i = 1, 3

u∗(t) =


1 t ∈ [ai−1, si]
0 t ∈ [si, ai),

h∗(t) = 0

where si are the switching times. For subproblem 2, the optimal
controls are given by (19) with some switching time s2 ∈ [a1, a2).
Fig. 3 illustrates this optimal solution structure for the problem.
Therefore, the objective function in (39) can be written as

J(s1, s2, s3) ≡

3
i=1

 ai

ai−1

u(t)dt =

3
i=1

si − a1 − a2 (45)

since u∗(t) = 0 in the intervals [s1, a1), [s2, a2), and [s3, T ). It
follows that the determination of r̄1, r̄2 can be replaced by the
determination of the optimal switching times s1, s2, s3. Using (19)
as the optimal solution in the state Eqs. (40) and (41) and solving
these equations over an interval [t0, tf ] gives:

r(tf ) =
c2
2

(tf − ts) −
b(t0) − r(t0) −

c1
2k

2
(e−2k(tf −t0) − 1)

+ r(t0) −
c1
2

(ts − t0)

−
c1 − c2(1 − 2β)

4k
(e−2k(tf −ts) − 1) (46)
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b(tf ) =
c2
2

(tf − ts) +
b(t0) − r(t0) −

c1
2k

2
(e−2k(tf −t0) − 1)

+ b(t0) −
c1
2

(ts − t0)

+
c1 − c2(1 − 2β)

4k
(e−2k(tf −ts) − 1) (47)

where setting c2 = 0 recovers the cases corresponding to subprob-
lems 1 and 3 as already discussed and ts is the control switch-
ing time in [t0, tf ]. Thus, over [0, a1), (46)–(47) apply with t0 = 0,
tf = a1, ts = s1, and c2 = 0 and yield r(a1), b(a1) as a function
of s1 and the known initial conditions r(0), b(0). Similarly, over
[a1, a2), (46)–(47) apply with t0 = a1, tf = a2, ts = s2 and yield
r(a2), b(a2) as a function of s2 and r(a1), b(a1). Finally, over [a2, T ),
(46)–(47) apply with t0 = a2, tf = T , ts = s3, and c2 = 0 and
yield r(T ) = r(0) and b(T ) as a function of s3 and r(a2), b(a2).
Focusing on r(T ) we can combine all these equations and chain
them together to obtain a relationship that the switching times si,
i = 1, 2, 3, must satisfy:

h(s1, s2, s3) = −
b(0) − r(0)

2
−

c2
2

(a2 − s2)

+
c1
2

(s1 + s2 − a1 + s3 − a2) +
c2(1 − 2β)

4k
× [e−2k(T−a2) − e−2k(T−s2)]

+
1
2


b(0) − r(0) −

c1
2k


e−2kT

+
c1
4k

[e−2k(T−s1) − e−2k(T−a1)

+ e−2k(T−s2) − e−2k(T−a2) + e−2k(T−s3)] (48)

where r(0), b(0) are known. In addition, the variables si satisfy:

0 ≤ s1 ≤ a1, a1 ≤ s2 ≤ a2, a2 ≤ s3 ≤ T . (49)

We can now see that problem (39)–(43) reduces to the minimiza-
tion of −J(s1, s2, s3) in (45) subject to the constraints above, i.e.,

min
si

−J(s1, s2, s3) = −

3
i=1

si + a1 + a2

s.t. (48) and (49). (50)

To solve this nonlinear optimization problem, the Kuhn–Tucker
conditions help us narrow the optimal solution down to the cases
where (i) s∗1 ∈ (0, a1), s∗2 = a1, s∗3 = a2 and (ii) s∗1 = a1, with
s∗2 , s

∗

3 limited to six other possible cases. We omit the derivation
details, which can be found in Wang and Cassandras (2011). To
summarize, this procedure allows us to obtain the optimal solution
(s∗1, s

∗

2, s
∗

3) from which the optimal control of the original problem
is fully specified. Fig. 4 shows an example of an optimal solution
with s∗1 ∈ (0, a1), s∗2 = a1, s∗3 = a2 and the associated parameter
settings. In this case, following the solution procedure above we
obtain s∗1 = 5.473, s∗2 = 10, and s∗3 = 30, shown as blue lines in
the figure. Thus, the battery is initially discharged at its maximal
rate until t = 5.473, and then idles until t = a1 = 10. Since this
is also the optimal switching time to recharge, the battery is fully
recharged until t = a2 = 30 and then idles for the remainder of
[0, T ]. The period over which the battery is recharging is identified
by two red lines.

5. Conclusions and future work

We have used a Kinetic Battery Model (KBM) to study the
problem of optimally controlling how to discharge and recharge
a non-ideal battery so as tomaximize the work it can perform over
a given time period [0, T ] and still maintain a desired final energy
level. Under the assumption that the battery can be recharged at

Fig. 4. Optimal solution of partial rechargeability problem with r(0) = b(0) =

300, c1 = 30, c2 = 10, k = 0.05, β = 0, a1 = 10, a2 = 30 and T = 40.

any time in [0, T ], the solution to this problem is shown to be
of bang–bang type with the battery always in recharging mode
during the last part of the interval.When T > T ∗, where T ∗ is some
critical value we can explicitly determine, the optimal policy was
shown to include chattering, unless we relax the constraint that
recharging is only possible when discharging is inactive. When
rechargeability is only feasible at certain intervalswithin [0, T ], we
have studied a three-interval optimal control problem and shown
that it can be transformed into a nonlinear optimization problem
we can explicitly solve.

This line of research opens up a number of questions and
open problems. First of all, finding a good modeling framework
for non-ideal batteries remains a challenge. Although the KBM is
an attractive model, alternatives to it have also been proposed,
and it is fair to ask whether our optimal control analysis applies
to such models. To address this issue, we have used the model
proposed in Zhang and Shi (2009) and compared the optimal
control policy we have derived in (19) to various alternatives. We
have found that (19) outperforms these alternatives for a number
of examples, but a rigorous analysis is still lacking. Future work
involves extending the partial rechargeability case in Section 4
to settings where the recharge-feasible intervals are stochastic in
nature (e.g., for solar recharging). Finally, we are exploring systems
(e.g., wireless networks)whose components are battery-based and
we can control their local discharging and recharging patternswith
the goal of optimizing some system-wide objective.
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