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Abstract

We use Stochastic Fluid Models (SFM) to capture the operation of threshold-based production control policies in manufacturing
systems without resorting to detailed discrete event models. By applying Infinitesimal Perturbation Analysis (IPA) to a SFM
of a workcenter, we derive gradient estimators of throughput and buffer overflow metrics with respect to production control
parameters. It is shown that these gradient estimators are unbiased and independent of distributional information of supply
and service processes involved. In addition, based on the fact that they can be evaluated using data from the observed actual
(discrete event) system, we use them as approximate gradient estimators in simple iterative schemes for adjusting thresholds
(hedging points) on line seeking to optimize an objective function that trades off throughput and buffer overflow costs.
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1 Introduction

Production control problems in manufacturing sys-
tems have been widely studied, starting with the pio-
neering work in [1]. In a typical manufacturing setting,
a machine may either occasionally break down, or, in
a multi-product environment, it may be temporarily
inaccessible to a certain part buffer because it is serv-
ing another one. In the latter case, from the point of
view of a buffer, the machine appears to be failure
prone (in queueing theory, this is also referred to as a
server that “takes vacations”). As a result, the buffer
content experiences fluctuations and occasionally over-
flows causing blocking phenomena that disrupt the
smooth operation of the system and incur significant
costs. To compensate, one can control the flow of parts
into a buffer so as to maintain a satisfactory through-
put while minimizing buffer overflow. A common ap-
proach is to formulate appropriate stochastic control
problems so that control-theoretic techniques can be
applied, as in [2],[3],[4],[5]. For certain problem for-
mulations, under specific modeling assumptions, pro-
duction control policies based on thresholds or hedging
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points have been identified as being optimal [4],[6],[7];
for a general overview and a recent survey see [8],[9].
Although in general such policies do not guarantee op-
timality, their implementation simplicity also makes
them widely appealing in practice. These facts moti-
vate us to further study their application to manufac-
turing systems. Unfortunately, the determination of
optimal values for these hedging points is a difficult
problem; see [2],[4],[7],[5]. In this paper,we address this
particular problem, aiming at methodologies which
can be applied on-line and without any knowledge of
the stochastic characteristics of machine behavior or
supply processes.

The manufacturing system we consider consists of a
source supplying parts to a server with a buffer where
the parts can be stored while awaiting to be processed.
The source feeds the serverwith a variable ratewhich is
controllable, but may be constrained. The server may
be in one of two states: a “functional” or “on” state
and an “unavailable” or “off” state; the latter repre-
sents the fact that the server may have failed or that it
is simply unavailable to the source because it is busy
processing different part buffers. The amount of time
spent at each state is generally random and assumed
not to depend on the buffer content. The goal of a pro-
duction control policy is to maximize the throughput
of the system, while minimizing the cost of buffer over-
flow,measured with respect to a given levelB. Clearly,
there is a trade-off between these two objectives.
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A natural modeling framework for manufacturing sys-
tems is provided through queueing systems or, more
generally, Discrete Event Systems (DES). A higher
level of modeling abstraction is provided through
fluid models which have been successfully adopted in
the literature to analyze manufacturing systems (e.g.,
[2],[3],[4],[10],[11]). In this paper, we shall adopt a
Stochastic Fluid Model (SFM) for the manufacturing
system under study. We should stress that, in contrast
to the fluid models mentioned above, a SFM captures
stochastic fluctuations in the supply and service pro-
cesses by treating all fluid rates as random processes.
For the purpose of performance analysis the accuracy
of SFMs (compared to a DES model) depends on fac-
tors such as the structure of the underlying system,
and the nature of the performance metrics of interest.
For the purpose of control and optimization, on the
other hand, as long as a SFM captures the salient
features of the underlying “real” system it is possi-
ble to obtain accurate solutions to problems even if
we cannot estimate the corresponding performance
with accuracy. This point of view was recently taken
in [12] for the purpose of admission and flow control
in communication networks. Using such a SFM, we
shall invoke Infinitesimal Perturbation Analysis (IPA)
methods [13],[14] adapted to fluid models (see also
[15],[16],[12]). IPA is a well-developed approach that
has been shown to yield unbiased gradient estima-
tors for a class of DES which, unfortunately, does not
include interesting phenomena such as blocking or
overflow due to finite buffer capacities. Moreover, IPA
can obviously not be applied to discrete parameters
such as buffer capacities. For all these reasons, the
use of IPA in this context has been limited. However,
the use of SFMs opens up a broad new range of pos-
sibilities, as it allows us to derive unbiased estimators
under very mild technical conditions. The simplicity
and sometimes nonparametric nature of the estima-
tors (see [12]) also renders them suitable for on-line
control use.

The first contribution of the paper is to use IPA in or-
der to derive unbiased gradient estimators of perfor-
mance metrics related to throughput and buffer over-
flowwith respect to threshold parameters (i.e., hedging
points) which can be used for production control in the
SFMunder study. Compared to earlier work in [12],[15]
that involves IPA of SFMs, note that establishing un-
biasedness here is significantly more challenging due
to the presence of the feedback effect of the threshold
parameters, which complicates the SFM dynamics. In
addition, the performance metrics considered are dif-
ferent than those in the SFMs studied in [12],[15]. As
we shall see, the estimators obtained are simple to im-
plement and are independent of the stochastic char-
acteristics of the state switching process at the server
or the supply process. Note that the analysis leading
to the optimality of hedging point production control
policies assumes that server state holding times are ex-

ponentially distributed; see [2],[3],[4],[6],[7]. Our anal-
ysis imposes no such limitations and also allows for
stochastically varying server processing rates. In ad-
dition, the controllable supply flow rate may be con-
strained within arbitrarily time-varying lower and up-
per bounds. Finally, our analysis is also easily extend-
able to the case where the server has a finite number of
different operating states. A significant difference be-
tween our approach here and the work in [4] is that we
develop an on-line optimization scheme, while in [4]
optimal hedging points are obtained off line through
a set of nonlinear equations.

A second contribution of this paper is to make use of
the IPA gradient estimators derived in order to tackle
production control as an optimization problem. In par-
ticular, we seek to determine the hedging points that
maximize a given performance metric of the SFM.
This can be accomplished using a standard gradient-
based stochastic optimization scheme, where we esti-
mate the gradient of the performance function with
respect to the hedging points. In addition, however,
we propose an approximation method we apply to the
actual (discrete-event) system from which the SFM
is derived. This is based on the observation that the
IPA gradient estimates obtained from the SFM can
be evaluated from data directly observable on a sam-
ple path of the “real” system. Thus, we may use the
SFM only to obtain the form of the gradient estima-
tor; the associated value at any operating point is ob-
tained from real system data. The result is of course
only an approximate gradient estimator for the per-
formance of this system, based on which we present
several simulation-based results.

The paper is organized as follows. First, in Section 2,
we present the system model and the basic flow con-
trol problem for the SFM. In Section 3, we derive IPA
estimators for the throughput gradient with respect to
the hedging points in the SFM and show that they are
unbiased. In Section 4 we repeat this process for an
overflow metric. In Section 5,we show how the SFM-
based gradient estimators can be used on line for op-
timization purposes, including a proposed approxima-
tion method where they are applied to the actual sys-
tem (not the SFM). Finally, in Section 6 we outline a
number of open problems and future research direc-
tions motivated by this work.

2 System Model and Problem Formulation

We consider a Stochastic Fluid Model (SFM) for a
manufacturing system as shown in Fig. 1. The server
switches between two states, 0 (OFF) or 1 (ON).When
in state s(t) = 1, the maximal processing rate of the
server is generally time-varying and denoted by µ(t) >
0; when s(t) = 0, the server is unavailable to the buffer
either because it has failed or because it is busy pro-
viding service to different queues (not shown in Fig.
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1). These switches occur randomly or they may be
prescribed through some scheduling policy that as-
signs the server to the buffer for specific time inter-
vals, as long as this assignment is not dependent on
the state of the buffer. The buffer content at time t
is denoted by x(t). The buffer is fed by a source with
controllable rate u(t) chosen so that it always satis-
fies 0 < λmin(t) ≤ u(t) ≤ λmax(t), 0 ≤ t ≤ T , where
λmin(t) and λmax(t) are the minimal and maximal feed
rates respectively, also generally time-varying.

B 

x(t) 

u(t) 
0 

1 

v(t) 

z0 z1 

s(t)∈ {0,1} 

Fig. 1. Stochastic Fluid Model

We define a threshold function dependent on the server
state s(t) as follows:

z(s(t)) =

{
z1

z0

if s(t) = 1

if s(t) = 0

where z0 and z1 are threshold parameters to be deter-
mined. These parameters affect the input rate accord-
ing to a threshold-based production control policy :

u(z0, z1; t) =




λmax(t) if x(t) < z(t)

λmin(t) if x(t) > z(t)

max{v(t), λmin(t)} if x(t) = z(t)

(1)
where the case x(z0, z1; t) = z(s(t)) is included to
prevent “chattering” of the production rate between
λmin(τ ) and λmax(τ ), whenever x(τ ) = z1. Such chat-
tering behavior is due to the nature of the SFM and
does not occur in the actual discrete event system
where buffer levels are maintained for finite periods of
time (for details, see [17]). In (1), the notational de-
pendence on the parameters z0, z1 indicates that we
will analyze system performance metrics as functions
of z0, z1. However, for simplicity, we will drop these
arguments in the sequel and write u(t) and x(t) unless
we need to stress the dependence on z0, z1. Similarly,
we will write z(t) instead of z(s(t)). We will assume
that the real-valued parameters z0, z1 are confined to
a closed and bounded (compact) interval Z ⊂ R

2; to
avoid unnecessary technical complications, we assume
that z0, z1 > 0 for all z0, z1 ∈ Z. We also assume that
z0 ≤ z1; this condition is not necessary, but it is made
so as to conform with the model used in [4].

Given (1), we can see that the output rate v(t) is given
by

v(t) =





min{λmax(t), µ(t)} if s(t) = 1 and x(t) = 0

0 if s(t) = 0

µ(t) otherwise

(2)
and the buffer content x(t) is determined by the fol-
lowing one-sided differential equation:

dx(t)

dt+
= u(t) − v(t) (3)

with the initial condition x(0) = x0 for some given x0;
for simplicity, we set x0 = 0 throughout the paper.

To summarize, the underlying (uncontrollable) rate
processes in the SFM are λmax(t), λmin(t), and µ(t).
These are independent of the buffer content x(t), the
server state s(t), and the threshold function z(t) =
z(s(t)), which is a function of s(t). We are interested in
studying sample paths of this SFM over a time interval
[0, T ] for a given fixed 0 < T <∞. We assume that the
random processes {s(t)}, {λmax(t)}, {λmin(t)}, and
{µ(t)} are independent of z0, z1 and they are right-
continuous piecewise continuously differentiablew.p.1.
Note that a typical sample path can be decomposed
into two kinds of alternating intervals: empty periods
and buffering periods. Empty Periods (EP) are inter-
vals during which the buffer is empty, while Buffering
Periods (BP) are intervals during which the buffer is
nonempty. Observe that during an EP the system is
not necessarily idle since the server may be active and
processing at a rate that does not exceed µ (t), i.e.,
λmax(t) ≤ µ(t), as seen in (2).

Let L(z0, z1) : Z → R be a random function defined
over the underlying probability space (Ω,F , P ). When
necessary, we shall also use the symbol ω to denote
an observed sample path of the SFM, following stan-
dard conventions of the PA literature (e.g., [13],[14])
regarding the construction of sample functions. In
what follows, we will consider two performance met-
rics, the ThroughputQT (z0, z1) and the Overflow Rate
RT (z0, z1), both defined for a given interval [0, T ],
defined as follows:

QT (z0, z1) =
1

T

∫
T

0

u(t)dt (4)

RT (z0, z1) =
1

T

∫
T

0

1[x(t) ≥ B]dt (5)

in which 1[·] is the usual indicator function so that
1[x(t) ≥ B] = 1 if x(t) ≥ B and 0 otherwise. There-
fore, QT (z0, z1) measures the average feed rate of
the supply source and RT (z0, z1) is the fraction of
time over [0, T ] during which the buffer level ex-
ceeds some given value B, which we assume to be
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such that B > z1 ≥ z0. We can now formulate an
optimization problem seeking the determination of
z
∗ = [z∗

0
z
∗

1
] that maximizes an objective function of

the form:JT (z0, z1) = E [QT (z0, z1)]− γE [RT (z0, z1)]
where γ is an overflow penalty per unit time. Since
it is not feasible to obtain analytical solutions for
this type of problem (except for very simple mod-
els), we rely on standard stochastic approximation
algorithms [18], an approach that has been recently
applied with success in the control and optimization
of certain SFMs [12]. Details will be given in Section
5. The key to this approach is the efficient estima-
tion of ∇JT (zn) = [∂JT/∂z0 ∂JT/∂z1], for which
Perturbation Analysis (PA) methods [13],[14] are
suitable, if appropriately adapted to a SFM viewed as
a discrete-event system. In particular, we shall pur-
sue the estimation of ∂JT/∂z0 and ∂JT/∂z1 through
Infinitesimal Perturbation Analysis(IPA) techniques,
similar to [12],[15].

3 IPA for Throughput

3.1 Notation and Definitions

Viewing a SFM as a discrete-event system, an event
in a sample path of the above SFM may be either
exogenous or endogenous. An exogenous event occurs
at any time instant corresponding to (i) a jump in s(t),
which affects the threshold function z(s(t)) and the
output rate v(t), or (ii) a change in the partial order of
the values of µ(t), λmax(t) and λmin(t), which affects
the sign of u(t)−v(t) in (3). For example, an exogenous
event occurs at time β if µ(t) > λmax(t) > λmin(t)
when t < β, and λmax(t) > µ(t) > λmin(t) when t ≥ β.
Clearly, the occurrence times of all exogenous events
are independent of z0 and z1.

An endogenous event occurs when the value of the
controllable input rate changes from one to any other
value among µ(t), λmax(t) and λmin(t) in (1). In par-
ticular, there are four kinds of endogenous events that
we are interested in and define them as follows:

(1) z↑ event: This occurs when x(t) is increasing
(which implies that λmax(t) ≥ λmin(t) > µ(t))
and crosses the z(s(t)) level from below.

(2) z↓ event: This occurs when x(t) is decreasing
(which implies µ(t) > λmax(t) ≥ λmin(t)) and
crosses the z1 level from above. Note that a z↓

event cannot occur when s(t) = 0, since in this
case we have v(t) = 0 and, by (3) and (1), the
buffer content may only be nondecreasing.

(3) z+ event: This occurs when x(t) hits z(s(t)) from
below, i.e., x(t−) < z(s(t−)), and x(t) = z(s(t)))
for some time interval of strictly positive length
(which, as seen in (1), implies that λmax(t) >
µ(t) > λmin(t)).

(4) z− event: This occurs when x(t) hits z(t) from
above, i.e., x(t−) > z(s(t)), and x(t) = z(s(t))

for some time interval of strictly positive length
(which, again, implies that λmax(t) > µ(t) >
λmin(t)).

For notational economy, we shall henceforth use
z = [z0, z1]. We shall also make Assumption 1: For
every z = [z0 z1]∈ Z, w.p. 1, no two events occur at

the same time. As already mentioned, a sample path
of the SFM may be decomposed into Empty Periods
(EP) and Buffering Periods (BP). Let us assume there
are K BPs in the sample path, where K is a random
number which, because of Assumption 1, is locally
independent of z (since no two events may occur si-
multaneously, there exists a neighborhood of z within
which, w.p.1, the number of BPs in [0, T ] is constant).
Given the kth BP, denoted by Bk, k = 1, . . . ,K, its
starting point, denoted by αk, occurs when the buffer
ceases to be empty; this corresponds to an exogenous
event causing a change in the sign of u(t) − v(t) in
(3) from nonpositive to strictly positive; therefore αk
is locally independent of z under Assumption 1.
The end point of Bk, however, generally depends on
z. Denoting this end point by η

k
(z), we express Bk as

Bk = [αk, ηk(z)), k = 1, . . . ,K. Figure 2 shows a

typical sample path, including two BPs and one EP.

There are three endogenous events in this example:

two z↑ events when x(t) crosses z0 from below with
s(t) = 0 at time τ 1, τ 3, and a z↓ event when x(t)
crosses z1 from above with s(t) = 1 at time τ 2. Recall
that when the buffer content x(t) crosses the thresh-
old z(t) (either z0 or z1 depending on s(t)), the feed
rate from the supply source switches from λmax(t) to
λmin(t) (or vice versa), causing a jump in ẋ(t). Note
also that x(t) is not necessarily piecewise linear, re-
flecting the time-varying nature of λmax(t), λmin(t)
and µ(t) and in contrast to other, simpler, fluid mod-
els (e.g., [2],[4],[11]). An overflow period [δ1, ξ1) is also
included in the sample path of Fig. 2.

z 0

z 1

s ta te  0

α 1 τ2 τ 3 t

B

δ1 ξ 1

s ta te  1

τ1

sta te  0

η 1 α 2

Fig. 2. A Typical Sample Path

The BPs can be classified according to whether they
include any endogenous event (as defined above)
or not. Thus, we define the random set Φ(z) :=
{k ∈ {1, . . . ,K} : x(t) = z(s(t)), u(t)− v(t) > 0 for
some t ∈ (αk, ηk(z)} since the first possible endoge-
nous event in a BP is one occurring when z(s(t))
is reached from below, i.e., a z↑ or z

+
event. For

each k ∈ Φ(z), let Lk ≥ 1 be the (random) num-
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ber of endogenous events contained in Bk, and let
{τk,j(z)} denote their corresponding occurrence times,
j = 1, . . . , Lk, which are generally dependent on z.

Next, consider [αk, αk+1), i.e., an interval consisting
of Bk and the ensuing EP [η

k
(z), αk+1). For each such

k = 1, . . . ,K, there is a (random) number Nk ≥ 1
of exogenous events in [αk, αk+1), and let

{
β
k,i

}
,

i = 1,2, . . . ,Nk denote the sequence of all corre-
sponding event times. We observe that two endoge-
nous events cannot occur consecutively without an
exogenous event between them. Therefore, Lk ≤ Nk,
for all k = 1, . . . ,K. For simplicity, we also define
αk = β

k,1 and αk+1 = βk,Nk+1
. Finally, for any k ∈

Φ(z), we define the index set for z
↑ events: Φk

1
(z) :={

j ∈ {1, ...,Lk} : a z
↑
event occurs at time τk,j(z) ∈

(αk, ηk(z))}. Similarly we define Φk

2
(z), Φk

3
(z) and

Φk

4
(z) for z

↓, z+ and z
− events respectively. It is im-

portant to keep in mind that only endogenous event

times τk,j(z) generally depend on z. In the sequel,
however, we shall drop this explicit dependence and
write τk,j.

Returning to (4), and using the definitions of {αk} and{
β
k,i

}
, we may write

QT (z) =
1

T

∫ T

0

u(t)dt =
1

T

K∑
k=1

∫
αk+1

αk

u(t)dt

and by further decomposing each [αk, αk+1) ≡

[β
k,1, βk,Nk+1

) into Nk intervals [β
k,1, βk,2),· · · ,

[βk,Nk
, β

k,Nk+1
), we get

QT (z) =
1

T

K∑

k=1

Nk∑

i=1

∫ β
k,i+1

βk,i

u(t)dt (6)

where we note again that all β
k,i are locally indepen-

dent of z. Note that there is at most one endogenous
event in any interval [βk,i, βk,i+1).

Define qk,i(z) =
∫ β

k,i+1

βk,i
u(t)dt. We get

Qk(z) =

∫
αk+1

αk

u(t)dt =
Nk∑

i=1

∫ β
i+1

β
i

u(t)dt =
Nk∑

i=1

qk,i(z)

Assuming that the derivatives ∂qk,i(z)/∂zr, r = 0,1,
exist (we return to this issue later in this section), and
recalling thatNk is the number of exogenous events in
[αk, αk+1) and is therefore locally independent of z, it

follows that ∂Qk(z)
∂zr

=

Nk∑

k=1

∂qk,i(z)
∂zr

, r = 0, 1, and from

(6):

∂QT (z)

∂zr
=

1

T

K∑

k=1

∂Qk(z)

∂zr
, r = 0, 1 (7)

Therefore, the evaluation of the sample derivatives
∂QT (z)/∂zr reduces to evaluating ∂qk,i(z)/∂zr.

3.2 Sample Derivatives

In this section, we show that the evaluation of the
sample derivative ∂QT (z)/∂zr requires the derivatives
∂τk,j/∂zr of the event times τk,j within some Bk, for
all k = 1, . . . ,K. In what follows, we shall concentrate
on a typical Bk = [αk, ηk(z)) and drop the index k
fromQk(z), qk,i(z),Φk

i (z) for i = 1, . . . ,4, as well as for
all τk,j, βk,i in order to simplify notation. We obtain
for r = 0,1, the following lemma (proofs of all lemmas
in the paper may be found in [17]).

Lemma 3.1

∂Q(z)

∂zr
=
∑

j∈Φ1

Aj

∂τ j

∂zr
−

∑

j∈Φ2

Aj

∂τ j

∂zr

+

∑

j∈Φ3

Bj

∂τ j

∂zr
+

∑

j∈Φ4

Cj

∂τ j

∂zr
(8)

in which Aj ≡ λmax(τ j)− λmin(τ j), Bj ≡ λmax(τ j)−
v(τ j), Cj ≡ λmin(τ j)− v(τ j).

The derivatives ∂τ j/∂zr exist as long as τ j(z) is
not a jump point of the function u(t) − v(t), which
can be guaranteed if τ j(z) is not a jump point of
s(t), λmax(t), λmin(t), or µ(t). This, in turn, is en-

sured by Assumption 1. We will also need two

mild technical conditions, i.e., Assumption 2:
0 < λmin(t) ≤ λmax(t) ≤ c1 <∞ and µ(t) ≤ c1 <∞,
w.p. 1, for some positive constant c1 and for all
t ∈ [0, T ], and Assumption 3: There exists a positive

constant c2 such that, w.p. 1, |λmax(t)− µ(t)| ≥ c2
and |λmin(t)− µ(t)| ≥ c2 for all t ∈ [0, T ]. Returning
to (8), note that the sets Φ1, · · · ,Φ4 are also locally
independent of z due to Assumption 1. Therefore,
the existence of ∂Q(z)/∂zr is ensured, and so is that of
the sample throughput derivative ∂QT (z)/∂zr in (7).

3.3 Endogenous Event Time Derivatives ∂τ j/∂z0
and ∂τ j/∂z1

As seen in Lemma 3.1, the form of the sample deriva-
tives ∂Q(z)/∂zr requires the event time derivatives
∂τ j/∂zr , r = 0, 1, the evaluation of which is the central
task of this section. Let ej , ej+1 denote the endogenous
events that occur at τj and τ j+1 respectively, with

ej , ej+1 ∈ {z↑, z↓, z+, z−}. The main result, stated

as Lemma 3.2, shows that ∂τj/∂zr can be evaluated

through a simple linear recursion over j = 1, . . . , L de-
pending only on Bj , Cj defined in Lemma 3.1.

Lemma 3.2 Let τ j , j = 1, . . . ,L, be the endogenous

event times in a BP and let ej ∈ {z↑, z↓, z+, z−} be the
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corresponding event. Then, for j = 1, . . . , L− 1,

∂τ j+1

∂zr
=

Fj

Gj+1

∂τ j

∂zr
+

1

Gj+1

ϕj+1(zr), (9)

∂τ 1

∂zr
=

1

B1

∂z(τ 1)

∂zr

where ϕj+1(zr) ≡
∂z(τ j+1)

∂zr
− ∂z(τj )

∂zr
∈ {−1, 0, 1}, r =

0,1, and

Fj =





Bj if ej = z↓

Cj if ej = z↑

0 otherwise

,

Gj+1 =

{
Bj+1

Cj+1

if ej+1 = z↑, z+

otherwise

(10)

Thus, within a BP, ∂τ j+1/∂zr , r = 0,1, is readily
evaluated through (9) upon observing the endogenous
event ej+1 and using ∂τj/∂zr along with the rate in-
formation λmax(t), λmin(t), µ(t) at t = τ j and τ j+1,
which are needed to calculate Fj, Gj+1 depending on
the event types ej , ej+1. In addition, the information
s(τj) and s(τ j+1) allows us to evaluate z(s(τ j)) and
z(s(τ j+1)), from which ϕj+1(zr) ∈ {−1, 0,1} is imme-
diately obtained.

We can now summarize the IPA estimator ∂QT (z)/∂zr
of the performance derivative ∂E[QT (z)]/∂zr, r =
0,1, as follows: (i) Within each observed BP Bk in
[0, T ], evaluate ∂τk,j/∂zr for all j = 1, . . . , Lk through
(9), (ii)At the end ofBk, evaluate ∂Qk(z)/∂zr through
(8), and (iii) At time T , the IPA estimator is given by
(7). Note that, except for the lower and upper bounds
of the supply rate and the service rate at endogenous
event time instants only, no other information regard-
ing the service or supply processes is involved. In the
case where λmax, λmin, µ are time-invariant and known
over [0, T ], the IPA estimator becomes extremely sim-
ple to implement since Aj, Bj , and Cj are reduced to
known constants.

3.4 Unbiasedness of IPA Estimators

In this section the unbiasedness of the IPA esti-
mators ∂QT (z)/∂zr is established. An IPA-based
estimate ∂L(θ)/∂θ of a performance metric deriva-
tive dE[L(θ)]/dθ is unbiased if dE[L(θ)]/dθ =
E[∂L(θ)/∂θ]. Unbiasedness is the principal condition
for making the application of IPA useful in practice,
since it enables the use of the sample (IPA) deriva-
tive in control and optimization methods that employ
stochastic gradient-based techniques. Note that we
are only interested in gradient estimation over a finite
interval [0, T ], so that we do not concern ourselves

here with the issue of estimator consistency (as, for
instance, in [11]). In general, the unbiasedness of an
IPA derivative of some sample function L(θ) with
respect to θ has been shown to be ensured by the
following two conditions (see [19], Lemma A2, p.70):
(i) For every θ ∈ Θ, the sample derivative of L(θ)
exists w.p.1, (ii) W.p.1, the random function L(θ) is
Lipschitz continuous throughout Θ, and the (gener-
ally random) Lipschitz constant has a finite first mo-
ment. Consequently, establishing the unbiasedness of
∂QT (z)/∂zr as estimators of ∂E[QT (z)]/∂zr, r = 0,1,
reduces to verifying the Lipschitz continuity of QT (z)
with appropriate Lipschitz constants. We accomplish
this in two steps. First we prove the that any buffer
content perturbation ∆x(t) resulting from a param-
eter perturbation ∆zr , r = 0, 1, is bounded so that
0 ≤ ∆x(t) ≤ ∆zr for all t ∈ [0, T ]. Next, unbiasedness
is established in Theorem 3.1.

We begin by defining the buffer content perturbation
at time t due to a perturbation ∆zr in zr, r = 0 or
1. For simplicity, let us limit ourselves to a perturba-
tion ∆z0 > 0; the cases where ∆z0 < 0 or z1 is per-
turbed instead of z0 are similarly analyzed. Thus, set
∆x(t) = x(z+∆z0; t)− x(z; t) where ∆z0 = [∆z0 0].
To keep notation simple, we also denote the nominal
buffer content x(z; t) by x(t) and the perturbed one by
x

′(t) = x(z+∆z0; t)

Lemma 3.3 Assuming a perturbation ∆z0 > 0, the
buffer content perturbation ∆x(t) satisfies:

0 ≤ ∆x(t) ≤ ∆z0 for all t ∈ [0, T ]

The proof of this lemma (see [17]) involves no specific
information about the server state s(t). Therefore, the
same bound can be proved when the perturbed sample
path is due to ∆z1, instead of ∆z0, in the same way.
The same is true for a model in which more than two
server states are defined.

Theorem 3.1 Let N(T ) be the number of all exoge-
nous events in [0, T ] and assume E[N(T )] <∞. Then,

∂QT (z)/∂z0 in (8) is an unbiased IPA estimator of
∂E[QT (z)]/∂z0.

Proof. See Appendix.

4 IPA for Overflow Rate

We now turn our attention to the second performance
metric of interest defined in (5). We introduce two ad-
ditional endogenous events:

(1) B
↑ event: This occurs when x(t) is increasing

(which implies that λ
max

(t) ≥ λmin(t) > µ(t))
and crosses the B level from below. Recall that
B > z1 ≥ z0.
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(2) B↓ event: This occurs when x(t) is decreasing
(which implies µ(t) > λmax(t) ≥ λmin(t)) and
crosses the B level from above.

Note that B↑ and B↓ events cannot occur in se-
quence without an exogenous event between them
to cause a sign change in u(t) − v(t) in (3). We
define an overflow interval as an interval that

starts with a B
↑
event and ends with the next B

↓

event. We can then define the random set Φ(B) :=
{k ∈ {1, . . . ,K} : x(t) = B for some t ∈ (αk, ηk(z))}
which includes all BPs with at least one overflow inter-
val. Let n = 1, . . . ,Ok index these overflow intervals
for any k ∈ Φ(B) and let Ik,n denote the nth overflow
interval in the kth BP. The starting and ending time
of Ik,n are denoted by δk,n and ξk,n respectively. From
(5) we can write:

RT (z) =
1

T

∑

k∈Φ(B)

Ok∑

n=1

(ξ
k,n − δk,n) (11)

Therefore, for r = 0, 1,

∂RT

∂zr
=

1

T

∑

k∈Φ(B)

Ok∑

n=1

(
∂ξ

k,n

∂zr
−

∂δk,n

∂zr
) (12)

where we note that Φ(B) and Ok are locally indepen-
dent of z by Assumption 1. Proceeding as in Section
3.3, we now seek to determine the derivatives of the
event times δk,n and ξk,n with respect to zr, r = 0,1.
For simplicity, let us concentrate on a specific BP and
drop the index k.

Proceeding as in Section 3.3., it is straightforward to

determine the derivatives ∂δk,n
∂zr

and
∂ξk,n
∂zr

, r = 0, 1 (see

[17]). Next, we establish that this estimator is unbi-
ased. As in the case of the throughput, we limit our-
selves to ∂RT (z)/∂z0 since the proof is independent of
s(t) and therefore applies to ∂RT (z)/∂z1 as well.

Theorem 4.1 Let N(T ) be the number of all exoge-
nous events in [0, T ] and assume E[N(T )] <∞. Then,
∂RT (z)/∂z0 in (12) is an unbiased IPA estimator of
∂E[RT (z)]/∂z0.

Proof. See Appendix.

5 Optimal Control Using IPA Estimators

Let us return to the optimization problem presented
in Section 2. Our first objective is to determine a pair
of thresholds (z0, z1) so as to maximize a function

JSFM
T

(z0, z1) = E
[
QSFM
T

(z0, z1)
]
−γE

[
RSFM
T

(z0, z1)
]

reflecting the trade-off between the throughput and
overflow rate over [0, T ] in a SFM. The superscript

SFM is added here to stress the fact that the expected
performance above is defined on a SFM, rather than
the underlying DES that we consider later in this sec-
tion. We implement a standard Stochastic Approxi-
mation (SA) algorithm

zn+1 = zn + νnHn(zn;ω
SFM

n
), n = 0, 1, ... (13)

where {νn} is a step-size sequence, and the gradi-
ent estimator Hn(zn;ωSFMn

) is the IPA estimator of
∇JSFM

T
(zn) evaluated over a simulated sample path of

the SFM , denoted by ωSFM
n

, of length T . The output
of this algorithm is denoted by z∗

SFM
and is expected

to converge to the optimal solution of the above op-
timization problem under certain standard technical
conditions; details on SA algorithms, including condi-
tions required for convergence to an optimum (gener-
ally local, unless the form of the cost functions ensures
the existence of a single optimum) may be found, for
example, in [18].

As mentioned earlier, our work is partly motivated by
[4], where a fluid model with fixed λmax and λmin and a
fixed-rate server spending an exponentially distributed
amount of time in state 0(OFF) or 1(ON) has been
studied. For thismodel, the optimal hedging point pair
can be determined through a set of nonlinear equations
given in [4]. We denote the solution to these equations
by z

∗

theo
. Our second objective in this section is to

compare z∗
SFM

to z∗
theo

for a case where we reduce our
SFM to the simpler fluid model in [4].

Our third objective is to determine a pair of thresholds
(z0, z1) so as to maximize a function

JDES
T

(z0, z1) = E
[
QDES
T

(z0, z1)
]
−γE

[
RDES
T

(z0, z1)
]

where the superscript DES indicates that the ex-
pected throughput and overflow rate above are now
defined on a DES. A natural way to proceed in this
case is to resort again to a SA algorithm of the form

zn+1 = zn + νnHn(zn;ω
DES

n
), n = 0,1, ... (14)

where ωDES
n

represents a sample path of the DES of
length T . Since we have no means of deriving an un-
biased estimator for the gradient of JDES

T
(z0, z1), we

shall make use of an approximation, Hn(zn;ωDESn
),

motivated by the following observation. Notice that
the form of the SFM-based IPA estimators we have
derived enables their values to be obtained from data
of an actual (discrete-event) system: The expressions
in (9), (8), and (7) for the Throughput IPA estima-
tor simply require (i) detecting when the buffer level
crosses z(s(t)) given the observed server state s(t), and
(ii) the values of flow rates at these instants so as to
evaluate Aj, Bj, Cj in Lemma 3.1; similarly, for the
Overflow Rate IPA estimator in (12). In other words,
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the form of the IPA estimators is obtained by analyz-
ing the system as a SFM, but the associated values can
be obtained from real data from the underlying DES.
Obviously, the resulting gradient estimator, denoted
byHn(zn;ωDESn

) in (14), is merely an approximation.
The output of (14) is denoted by zDES and represents
a sub-optimal solution of the above optimization prob-
lem, based on the heuristic described above. Obtain-
ing the actual solution is generally very hard. For our
purposes, we have used exhaustive simulation under
all possible values of integer-valued pairs (z0, z1) over
a given range to estimate this solution; we denote the
result by z

∗

DES
. Our objective then is to compare the

output zDES of (14) to z
∗

DES
, as well as to z

∗

SFM
.

We point out that in obtaining z
∗

DES
the response sur-

face was estimated by initializing each simulation un-
der a different (z0, z1) pair with the same random seed
(for variance reduction purposes). However, in imple-
menting the SA algorithms (13) and (14), our goal was
to emulate an on-line controller which does not have
the luxury of a common random number approach;
therefore, no such action was taken. Upon completion
of one iteration of the algorithm, the next iteration
was carried out from the final state of the last one.

The two examples that follow are referred to as Sce-
nario 1 and 2 respectively. For both scenarios, the sup-
ply process for the DES simulated is Poisson with rate
λmax(t) or λmin(t). The server remains in the ON state
for an exponentially distributed amount of time with
rate qu and in the OFF state for an exponentially dis-
tributed amount of time with rate qd. In the ON state,
the service rate is µ. In the OFF state, the server does
not work. Finally, in both cases T = 5,000, 000 time
units and the step sequence {νn} in (14) is selected so
that νn = 1

50×n0.99
, n = 1, 2, . . .

Scenario 1: B = 100, µ = 20, λmax = 12, λmin = 6,
qu = 0.1, qd = 0.14, γ = 9.

In this case, λmax(t) and λmin(t) are fixed over time
and the service rate µ is constant. This enables us to
calculate the optimal hedging point pair for the cor-
responding fluid model through the set of nonlinear
equations provided in [4]. As already mentioned, the
solution to this equation set is denoted by z

∗

theo
and

we found z
∗

theo
= (19.91, 77.51). In addition, we im-

plemented (13) by simulating the SFM and obtained
z
∗

SFM
= (19.81,78.37).

Through exhaustive discrete-event simulation of this
system, the response surface of the objective function
JDES
T

(z) was obtained as shown in Fig. 3 and the asso-
ciated optimal point was found to be z∗

DES
= (21,80).

We then implemented (14) by simulating the DES and
obtained zDES = (20.34,78.20).

Scenario 2: B = 100, µ = 20, λmax,0 = 22, λmax,1 =

4, λmin,0 = 20.002, λmin,1 = 2, qu = 0.1, qd = 0.15,

1 0 3 0 5 0 7 0 9 0
1 0

5 0

9 0

6 . 8

7

7 . 2

7 . 4

7 . 6

7 . 8

8

z 0

z 1

Fig. 3. Objective Function JT (z0, z1) (Scenario 1)

ql,0 = 0.025, ql,1 = 0.005, γ = 12.

In this scenario, λmax (λmin) switches between λmax,0

and λmax,1 (λmin,0 and λmin,1). The time interval over
which λmax = λmax,0 (λmin = λmin,0) is exponentially
distributed with rate ql,0, and the time interval over
which λmax = λmax,1 (λmin = λmin,1) is exponentially
distributed with rate ql,1. By allowing λmax(t) and
λmin(t) to be random processes, we illustrate the use of
our approach to systems with complex rate processes
beyond the fixed ones found in [4]. Since λmax(t) and
λmin(t) are no longer fixed, the method for determin-
ing an optimal hedging point pair z∗

theo
for the corre-

sponding fluid model provided in [4] cannot be used.
All other notation here is the same as that of Scenario
1. The service time is still exponentially distributed
with rate µ.

Using the SFM for this scenario, we determined
z
∗

SFM
= (63.74, 71.95) through (13). Using the DES,

we found zDES = (63.49, 74.79) through (14) and by
exhaustive simulation we found z

∗

DES
= (68,80). Sim-

ilar to scenario 1, the response surface of the objective
function JDES

T
(z) is shown in Fig. 4. In Fig. 5 we

show the convergence behavior of JSFM
T

(zn) for the
optimization of the SFM using (13) in the curve la-
beled ‘SFM’, and of JDES

T
(zn) for the optimization of

the DES using (14) in the curve labeled ‘DES’. In the
same figure, we also show the value of JDES

T
(z∗
DES

),
labeled ‘OPT’. The corresponding convergence behav-
ior of the two hedging points is shown in Fig. 6 using
the same notation. Note that because the response
surfaces are relatively insensitive to small changes in
z0, z1 in the vicinity of the optimal point, there is a
set of hedging points all yielding performances that
are hard to distinguish in the presence of noise in Figs.
3 and 4. This is consistent with the observation that
the objective function is quite robust with respect
to the two hedging point parameters (e.g., in Fig. 4,
the performance range is limited to about 20% of the
attainable optimal value).
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Fig. 5. Objective Function Convergence (Scenario 2)

6 Conclusions and Future Work

We have adopted Stochastic Fluid Models (SFM) for
control and optimization of manufacturing systems in
order to capture the main features of production con-
trol policies without requiring a detailed discrete-event
model for our analysis. Our approach is based on the
observation that a SFM can be used to accurately de-
termine optimal settings for control and optimization
purposes, even when it fails to provide adequately ac-
curate performance estimates. We also stress that us-
ing a detailed queueing model for the purpose of ad-
justing integer-valued hedging points leads to discrete
stochastic optimization and the use of elaborate finite
PA methods, a task that becomes highly and, as our
work suggests, unnecessarily complex in practice.

In this paper, we limit ourselves to a threshold-based
flow control policy in which the objective is to ad-
just the threshold parameters (hedging points) so as
to optimize an objective function combining through-
put and overflow rate metrics. For a single workcenter
model, we derive IPA gradient estimators based on the
SFM, show them to be unbiased, and subsequently use
them for optimization purposes. Exploiting the simple
structure of these estimators, we have also proposed
an approximation method aimed at optimizing a sim-
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Fig. 6. Hedging Point Convergence (Scenario 2)

ilar objective function for the actual single server sys-
tem. Although our current work is limited to a single
workcenter model, we believe that the nature of the
IPA estimators enables extending the analysis to mul-
tiple workcenters in series, modeled as SFMs. Indeed,
recent work [20] has achieved such results in tandem
networks with similar settings, but in the absence of
feedback. In addition, we believe that the same mod-
eling framework may be used to study scheduling poli-
cies in which the server is shared by multiple compet-
ing buffers, by developing IPA estimators with respect
to parameters that determine the amount of time that
any given buffer sees the server at the ON state.

Appendix
Proof of Theorem 3.1. Recall (4) and let u′(t) =
u(z+∆z0; t) and Q′

T
= QT (z+∆z0) denote the input

flow and throughput respectively when z is perturbed
by ∆z0 = [∆z0 0]. Thus,

∆QT =
1

T

∫
T

0

∆u(t)dt (15)

where we set ∆u(t) = u
′(t) − u(t). Using (3), and
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setting v
′(t) = v(z+∆z; t), we obtain:

x(T ) = x(0) +

∫
T

0

[u(t)− v(t)]dt,

x′(T ) = x
′(0) +

∫
T

0

[u′(t) − v
′(t)]dt

and, since x(0) = x
′(0) = 0, we get

∫
T

0

∆u(t)dt =

∫
T

0

∆v(t)dt+∆x(T ) (16)

where ∆v(t) = v
′(t) − v(t). Recalling (2), where we

see that v(t) can take one of the three values 0, µ(t),
or λ

max
(t), we get:

∆v(t) =




λ
max

(t)− µ(t)

µ(t) − λ
max

(t)

0

if v(t) = µ(t), v′(t) = λ
max

(t)

if v(t) = λ
max

(t), v′(t) = µ(t)

otherwise

Observe that: (i) ∆v(t) = µ(t)− λ
max

(t) implies that
s(t) = 1, x(t) = 0, λ

max
(t) < µ(t), and x′(t) > 0.

(ii) ∆v(t) = λ
max

(t) − µ(t) implies that s(t) = 1,
x′(t) = 0, λ

max
(t) < µ(t), and x(t) > 0. It follows that

∆x(t) < 0. However, by Lemma 3.3 we have ∆x(t) ≥
0, therefore this case is infeasible.

With these observations in mind, let us decompose
[0, T ] into intervals according to the value of ∆v(t).
Assume there are V intervals (V is a random variable)
in which ∆v(t) = µ(t) − λ

max
(t), and let each such

interval be [ai, bi), i = 1, . . . , V . We can then write:

∫
T

0

∆v(t)dt =
V∑
i=1

∫
bi

ai

[µ(t) − λ
max

(t)] dt (17)

where, for every such interval, for all t ∈ [ai, bi), s(t) =
1, x(t) = 0, x′(t) > 0 and

µ(t) > λmax(t) > λmin(t) for all t ∈ [ai, bi) (18)

Moreover, for every such interval, the perturbed sam-
ple path is such that x′(t) > 0, v′(t) = µ(t) > λ

max
(t),

and, from (1), we have

u′(t) ≤ λ
max

(t) (19)

Thus, for the perturbed sample path we obtain:

x′(bi)=x
′(ai) +

∫
bi

ai

[u′(t)− v
′(t)] dt

=x
′(ai) +

∫
bi

ai

[u′(t)− µ(t)]dt

which gives
∫
bi

ai

[u′(t) − µ(t)] dt = x′(bi)− x′(ai).

Since x(t) = 0 in any such interval, we have ∆x(ai) =
x′(ai) and ∆x(bi) = x′(bi) where, by Lemma 3.3,
∆x(ai) ≤ ∆z0 and ∆x(bi) ≤ ∆z0. It follows that

∣∣∣∣∣
∫

bi

ai

[u′(t) − µ(t)] dt

∣
∣
∣
∣
∣
= |x′(bi) − x′(ai)| ≤ 2∆z0

(20)

Regarding the left-hand-side of (20), observe that
µ(t)−u′(t) ≥ µ(t)−λmax(t) > 0, where we have used
(18) and (19). Therefore,

∣
∣
∣
∣
∣

∫
bi

ai

[u′(t) − µ(t)] dt

∣
∣
∣
∣
∣
=

∫
bi

ai

[µ(t)− u′(t)]dt

≥

∫
bi

ai

[µ(t)− λ
max

(t)]dt (21)

Looking at the right-hand-side of (21), we have

∫
bi

ai

[µ(t)− λmax(t)]dt ≥ c2(bi − ai) (22)

where c2 is a positive constant by Assumption 3.
Combining the three inequalities (20), (21), and (22),
we get c2(bi − ai) ≤ 2∆z0 or

bi − ai ≤
2∆z0

c2
(23)

Returning to (17) and recalling that λmax(t) ≤ c1,
µ(t) ≤ c1 for some c1 < ∞ from Assumption 2, we

get

∣
∣
∣
∣
∣

∫
T

0

∆v(t)dt

∣
∣
∣
∣
∣
≤

V∑
i=1

∣∣∣∣∣
∫

bi

ai

2c1dt

∣
∣
∣
∣
∣

≤ 2c1V

(
2∆z0

c2

)
=
4c1∆z0

c2
V (24)

where the second inequality is due to (23). Fi-

nally, returning to (16), we get
∣∣∣∫ T

0
∆u(t)dt

∣
∣
∣ ≤

∣
∣
∣

∫
T

0
∆v(t)dt

∣∣∣ + |∆x(T )| ≤
(
4c1

c2

V + 1

)
∆z0 where we

have used the bound in (24), as well as Lemma 3.3.
Note that all V intervals start and end with exogenous
or endogenous events, and the number of endoge-
nous events is bounded by the number of exogenous
events. Thus, we have V ≤ N(T ), and it follows that
∣
∣
∣

∫
T

0
∆u(t)dt

∣
∣
∣ ≤

(
4c1

c2

N(T ) + 1
)
∆z0. Therefore, from

(15), we have |∆QT | ≤ 1

T
( 4c1
c2

N(T ) + 1) |∆z0|, i.e.,
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QT (z) is Lipschitz continuous in z0 with constant
1

T
( 4c1
c2

N(T )+1). Since, by assumption,E[N(T )] <∞,

this establishes unbiasedness.

Proof of Theorem 4.1. Recall (5) and let R′

T
=

RT (z +∆z0) denote the overflow rate when z is per-
turbed by ∆z0 = [∆z0 0]. Thus,

RT (z) =
1

T

∫
T

0

1[x(t) ≥ B]dt

R
′

T
=

1

T

∫
T

0

1[x′(t) ≥ B]dt

and we get

∆RT =
1

T

∫
T

0

ψ(t)dt (25)

where we set ψ(t) = 1[x′(t) ≥ B]− 1[x(t) ≥ B]. Ob-
serve that the case of ψ(t) = −1 implies that ∆x(t) <
0, which contradicts the result ∆x(t) ≥ 0 of Lemma
3.3. This case is, therefore, infeasible. With this in
mind, let us decompose [0, T ] into intervals according
to the value of ψ(t). Assume there are P intervals (P
is a random variable) in which ψ(t) = 1 and no exoge-
nous event occurs within the interval, and let each such
interval be [ai, bi), i = 1, . . . , P . We can then write:

∫
T

0

ψ(t)dt =
P∑
i=1

∫
bi

ai

ψ(t)dt =
P∑

i=1

(bi − ai) (26)

where, for every such interval,

x(t) < B ≤ x
′(t) for all t ∈ [ai, bi) (27)

Moreover, in each interval we have u(t) = λmin(t),
since x′(t) ≥ B > z1 ≥ z0. Recalling that each interval
is defined so that no exogenous event is included, there
are two possible cases to consider regarding the sign
of λmin(t) − v(t):

Case 1 : λmin(t) > v(t). We have

x(bi) = x(ai) +

∫
bi

ai

[λmin(t)− v(t)]dt (28)

and it follows that

x(bi) > x(ai) (29)

Using Assumption 3 and the fact that v(t) ≤ µ(t)
for all t ∈ [0, T ], we obtain

∣
∣
∣
∣
∣

∫
bi

ai

[λmin(t)− v(t)]dt

∣
∣
∣
∣
∣
=

∫
bi

ai

[λmin(t)− v(t)]dt

≥

∫
bi

ai

[λmin(t) − µ(t)] dt ≥ c2(bi − ai) (30)

Using (28), (29), (27) we also obtain:

∣
∣
∣
∣
∣

∫
bi

ai

[λmin(t) − v(t)] dt

∣
∣
∣
∣
∣
= x(bi)− x(ai)

≤ B − x(ai) ≤ x
′(ai) − x(ai) ≤∆z0 (31)

where the last inequality follows from Lemma 3.3.
Combining (30) and (31) gives

bi − ai ≤
∆z0

c2

(32)

Case 2 : λmin(t) < v(t). This implies that v(t) = µ(t),
i.e., s(t) = 1, and v′(t) = µ(t). Then, for the perturbed

path, x′(bi) = x
′(ai) +

∫
bi

ai

[λmin(t) − µ(t)] dt,

and it follows that

x′(bi) < x
′(ai) (33)

Using Assumption 3, we get

∣
∣
∣
∣
∣

∫
bi

ai

[λmin(t) − µ(t)] dt

∣
∣
∣
∣
∣
=

∫
bi

ai

[µ(t)− λmin(t)] dt (34)

≥ c2(bi − ai)

In addition, using (33) and (27), we get

∣
∣
∣
∣
∣

∫
bi

ai

[λmin(t)− µ(t)]dt

∣
∣
∣
∣
∣
= |x′(bi)− x′(ai)| (35)

= x
′(ai) − x

′(bi) ≤ x
′(ai)−B ≤ x

′(ai)− x(ai) ≤ ∆z0

where the last inequality follows from Lemma 3.3.
Therefore, combining (34) and (35) we obtain (32)
once again.

Combining both cases above, from (26) we get
∫
T

0
ψ(t)dt =

∑
P

i=1
(bi − ai) ≤

P

c2
∆z0. Note that all

P intervals start and end with exogenous or endoge-
nous events, and the number of endogenous events
is bounded by the number of exogenous events.
Thus, we have P ≤ N(T ), and it follows that
∣
∣
∣

∫
T

0
ψ(t)dt

∣
∣
∣ ≤

N (T )
c2
∆z0. Therefore, from (25), we have

|∆QT | ≤ 1

T

N(T )
c2

|∆z0|, i.e., RT (z) is Lipschitz contin-

uous in z0 with constant 1
T

N (T )
c2

. Since, by assumption,

E[N(T )] <∞, this establishes unbiasedness.
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