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a b s t r a c t 

The history of Perturbation Analysis (PA) is intimately related to that of Discrete Event Dynamic Systems 

(DEDS), starting with a solution of a long-standing problem in the late 1970s and continuing today with 

the control and optimization of Hybrid Systems and the emergence of event-driven control methods. 

We review the origins of the PA theory and how it became part of a broader framework for modelling, 

control and optimization of DEDS. We then discuss the theoretical underpinnings of Infinitesimal Pertur- 

bation Analysis (IPA) as a data-driven stochastic gradient estimation method and how it has been applied 

over the past few decades. We explain how IPA offers a basis for general-purpose stochastic optimization 

of Markovian systems through the notion of the performance potential and how it has evolved beyond 

DEDS and now provides a framework for control and optimization of Hybrid Systems and, more generally, 

event-driven methodologies. 

© 2018 Elsevier Ltd. All rights reserved. 
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. The origin of perturbation analysis 

In pioneering the field of Discrete Event Systems (DES) in the

arly 1980s, Y.C. Ho and his research group at Harvard Univer-

ity discovered that event-driven dynamics give rise to state tra-

ectories (sample paths) from which one can very efficiently and

onintrusively extract sensitivities of state variables (therefore, var-

ous performance metrics as well) with respect to at least cer-

ain types of design or control parameters. This eventually led to

he development of a theory for Perturbation Analysis (PA) in DES

 Cassandras & Lafortune, 2008; Glasserman, 1991; Ho & Cao, 1991 ),

he most successful branch of which is Infinitesimal Perturbation

nalysis (IPA) due to its simplicity and ease of implementation. In

act, by the early 20 0 0s, IPA was shown to apply to all virtually

rbitrary Hybrid Systems (HS) and continues to be today one of
� Wardi’s work was supported in part by NSF under Grant Number CNS-1239225 . 

assandras’s work has been supported in part by NSF under grants CNS-1239021 , 

CCS-1509084 , and IIP-1430145 , by AFOSR under grant FA9550-15-1-0471 , and by a 

rant from the MathWorks. 
� This paper extends an earlier version which appeared in the Proceedings of the 

0th IFAC World Congress, ( Wardi, Cassandras, and Cao (2017) ). 
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he most attractive tools for data-driven control and optimization,

specially in stochastic environments where modelling random as-

ects of a process is prohibitively hard. 

The origin of the key concepts that form the cornerstones of

he PA theory are found in a long-standing problem in operations

esearch and industrial engineering known as the buffer allocation

roblem . In its industrial engineering version, it was presented to

o’s research group by the FIAT automobile company in the late

970s as follows. A typical serial transfer line consists of N work-

tations in tandem, each with different characteristics in terms

f its production rate, failure rate and repair time when failing.

n order to accommodate this inhomogeneous behavior, a buffer

s placed before the k th workstation, k = 1 , . . . , N, with B k dis-

rete slots where production parts can be queued. Since the space

ithin which this transfer line operates is limited, there is an up-

er bound B to the total number of buffer slots that can be allo-

ated over the N workstations so that 
∑ N 

k =1 B k = B . The problem is

o allocate these B buffer slots, i.e., determine a vector [ B 1 . . . B N ] ,

o as to maximize the throughput of the transfer line while also

aintaining a low overall average delay of the parts moving from

n entry point before the first workstation to an exit point follow-

ng the N th workstation. Tackling this problem in a “brute force”

anner requires considering all possible buffer allocations, a num-

https://doi.org/10.1016/j.arcontrol.2018.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
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ber given by ( 
B + N − 1 

B 
) . For a reasonably small problem such as

B = 24 and N = 6 , this gives 118,755 possible solutions. A direct

trial-and-error approach where one is allowed to test each alloca-

tion for about a week would require about 2300 years. If one were

to reduce the initial solution space to only 10 0 0 “good guesses”

and use early 1980s simulation technology requiring about 3 min

per trial to estimate the resulting performance, the overall task

would take about 250 days of CPU time. 

The approach taken by Ho’s group and first reported in

Ho, Eyler, and Chien (1979) was to study the serial transfer line

as a dynamic system whose state includes the integer-valued

buffer contents along with real-valued “clocks” associated with

each workstation as it processes a part. The question then posed

was: “what would happen if in a given allocation a specific value

B k were changed to B k + 1 ?” The “brute force” way to answer

this question is to first simulate the system under the nominal

allocation with the value B k and estimate the system’s perfor-

mance over a (sufficiently long) time period T which may be de-

noted by L T ( B k ). Then, repeat the simulation under B k + 1 to obtain

L T (B k + 1) . The difference �L T (B k ) = L T (B k + 1) − L T (B k ) provides

an estimate of the system’s performance sensitivity with respect

to B k . What the research team realized, however, is that this is un-

necessary: indeed, the initial simulation alone yielding L T ( B k ) and a

simple thought experiment can deliver the value of �L T ( B k ). More-

over, the same thought experiment can deliver the entire vector

[�L T (B 1 ) , . . . , �L T (B N )] with minimal extra effort. 

The key observation that led to a formal procedure describing

this thought experiment is the following. When B k is replaced by

B k + 1 , no change in the state of the system can take place unless

one of two “events” is observed at time t : ( i ) The k th buffer con-

tent, say x k ( t ), reaches its upper limit, i.e., x k (t) = B k and a part

is ready to leave the (k − 1) th workstation. In this case, this up-

stream workstation is “blocked” since there is no place for the

departing part to go. However, in a perturbed system with B k re-

placed by B k + 1 that would not happen and one can simply pre-

dict a buffer content perturbation �x k (t) = 1 . Moreover, one can

record when this blocking occurs at time t ≡ t k, B and the next time

that a part departs from the k th workstation, t k, D . Then, t k,D − t k,B 

is the amount of time that would be gained (i.e., no blocking

would have occurred) in a perturbed system realization. The im-

portant observation here is that t k, D , t k, B are directly observed

along the nominal system realization. ( ii ) The (k + 1) th buffer con-

tent reaches its lower limit, i.e., x k +1 (t) = 0 and a part is ready

to leave the k th workstation. In this case, if �x k (t) = 1 , i.e., the

k th workstation has already gained a part from an earlier blocking

event, then this gain can now propagate downstream and we can

set �x k +1 (t) = �x k (t) = 1 . 

This simple observation leads to the conclusion that estimating

the effect of replacing B k by B k + 1 boils down to observing just a

few events along the nominal system realization: blocking events

(when x ki (t) = B k and a part departure from k − 1 takes place)

and idling events (when x k (t) = 0 at any k = 1 , . . . , N). This can

be formalized into an “estimator” for buffer perturbations �x k ( t )

and event timing perturbations for all part departures at work-

stations. More generally, this estimator transforms a given hypo-

thetical perturbation �B k (t) = 1 (or −1 ) into state perturbations,

which can ultimately be used to estimate a performance perturba-

tion �L T ( B k ). Most importantly, this is accomplished without ever

having to implement the perturbation �B k ( t ), since the estimator

depends only on directly observable data from the nominal system

realization; in particular, it suffices to observe selected events and

associated event times and to perform extremely simple calcula-

tions. 
�  
This initial procedure pertaining to a very specific type of dy-

amic system and problem was given the name Perturbation Anal-

sis (PA). It soon became clear that it could be extended to any sys-

em with a structure similar to that of the serial transfer line and

o a perturbation in any system parameter. Thus, one could con-

ider, for instance, speeding up the operation of a workstation and

tudying the effect of a perturbation �r k in the operation rate r k 
f the k th workstation. The general procedure is one where some

arameter perturbation �θ generates a state perturbation �x k ( t )

hen a specific event occurs at time t . Subsequently, the system

ynamics dictate how �x k ( t ) propagates through the system by af-

ecting �x k ( t ) or �x j ( t ) for j � = k . Depending on a performance met-

ic of interest, this ultimately yields �L T ( �θ ), the change in per-

ormance due to �θ . As for the system structure amenable to this

ind of efficient PA, it became obvious that it fits the general class

f queueing networks. 

An obvious next question was: “Does PA hold for any value of

θ or do we have to restrict it to “small” �θ when θ is real-

alued?” There was ample empirical evidence collected over the

arly 1980s that �θ had to be small but not necessarily “very

mall”. In other words, the values of �L PA 
T (�θ ) obtained through

A were identical to those obtained through the “brute force” finite

ifference L T (θ + �θ) − L T (θ ) for “sufficiently small” �θ . This led

o the term Infinitesimal Perturbation Analysis (IPA) to capture the

act that the methodology was applicable to perturbations which

ere “infinitesimally” small, although a formal quantification char-

cterizing limits for �θ was lacking. Moreover, when �θ became

arger, it was still possible to satisfy �L PA 
T (�θ ) = L T (θ + �θ) −

 T (θ ) at the expense of observing more “interesting events” and

erforming a few more calculations. For instance, in the case of the

nteger-valued buffer size parameter B k , the minimal feasible per-

urbation is obviously either +1 or −1 . To differentiate these cases,

he term Finite Perturbation Analysis (FPA) was introduced. FPA re-

erts to IPA when parameters are real-valued and may be allowed

o take “sufficiently small” values �θ . 

To illustrate the distinction between IPA and FPA, we consider

he case of a simple First-In-First-Out (FIFO) queueing system with

 single server preceded by a queue. Let { A i } be the sequence of

generally random) arrival times, i = 1 , 2 , . . . , and { D i } be the cor-

esponding sequence of departure times from the system. If S i de-

otes the service time of the i th entity (customer) processed, then

he Lindley equation 

 i = max (A i , D i −1 ) + S i (1)

escribes the departure time dynamics with i = 1 , 2 , . . . Suppose

hat all (or just some selected subset) of the service times are per-

urbed by �S i , i = 1 , 2 , . . . . Let I i = A i − D i −1 and observe that when

 i > 0 it captures an idle period (since the server must wait until

 i > D i −1 to become busy again) and when I i < 0 it captures the

aiting time D i −1 − A i of the i th arriving entity in the system. It is

asy to obtain from (1) the following departure time perturbation

quation: 

D i = �S i + 

⎧ ⎪ ⎨ 

⎪ ⎩ 

�D i −1 if I k ≤ 0 , �D i −1 ≥ I i 
0 if I i > 0 , �D i −1 ≤ I i 
I i if I i ≤ 0 , �D i −1 ≤ I i 

�D i −1 − I i if I i > 0 , �D i −1 ≥ I i 

(2)

here �D i can be obtained from the generated perturbations �S i 
nd directly observed data in the form of I i . This is the FPA pro-

edure for evaluating �D i , i = 1 , 2 , . . . Observe, however, that if we

elect �S i > 0 to be sufficiently small so that �D i −1 > 0 can never

xceed the finite value of I i > 0, then this reduces to 

D i = �S i + 

{
�D i −1 if I i ≤ 0 

0 otherwise 
(3)
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1 At the same time there was also an interest in another sensitivity analysis tech- 

nique, based on distributional perturbations and likelihood ratios, called the like- 

lihood ratios method , or score function method . Surveys thereof can be found in 

Rubinstein and Shapiro (1993) and Reiman and Weiss (1989) , and a comparison 

with IPA, in Cao (1987) . 
2 The term “common”, in this context, means independent of the parameter θ . 
3 To simplify the presentation we will drop the explicit notational dependence of 
hich is the much simpler IPA version, requiring only the detec-

ion of an idling interval when I i > 0, at which time the departure

ime perturbation is reset to �D i = �S i . Naturally, the question is:

How small do perturbations need to be before the IPA equation

an be used?” In a stochastic system, the answer to this question

s generally dependent on the specific realization based on which

D i is evaluated. Thus, it is logical to extend the question of esti-

ating �D i ( �θ ), i = 1 , 2 , . . . , the departure time perturbations, to

stimating the derivative 
dD i 
dθ

by allowing �θ → 0. This became one

f the two important questions facing PA researchers in the early

980s: 

Q1. When can IPA be used instead of FPA and is it possible to

ransition the remarkably efficient PA methodology from one lim-

ted to sensitivity analysis for finite perturbations to one for gradi-

nt estimation of a large class of dynamic systems? 

Q2. What is the class of dynamic systems for which the PA

ethodology applies? 

To address Q2 , it soon became clear that using traditional mod-

ls for system dynamics of the general form ˙ x = f (x, u, t) was ex-

eremely inefficient and ultimately pointless for systems such as

ueueing networks. In such systems, at least some state variables

i.e., queueing contents) are discrete and constant most of the time,

hanging only when specific events occur (i.e., an entity enters

r leaves the queue). This led to the realization that traditional

ynamic systems described through ˙ x = f (x, u, t) are time-driven ,

hereas this different class of systems is event-driven . The term

iscrete Event Dynamic System (DEDS) was coined in 1980 and first

ppeared in the literature in Ho and Cassandras (1980, 1983) , while

 first general IPA and FPA framework for queueing networks ap-

eared in Ho, Cao, and Cassandras (1983) . However, the event-

riven nature of this class of systems was not formalized until an

event domain formalism” was first proposed in Cassandras and

o (1985) . Over the next several years, it became clear that the

lass of DEDS is much broader than queueing networks and that

A techniques could be extended to all such systems ( Glasserman,

991; Ho & Cao, 1991 ). In parallel, a novel control theory for such

ystems, with the broader term Discrete Event System (DES) used,

as being developed by Ramadge and Wonham culminating with

hat has become known as the supervisory control theory for DES

 Ramadge & Wonham, 1980 ). It took about a decade before the su-

ervisory control theory and PA were merged into complementary

pproaches for studying DES and are now viewed as a staple of any

tudy of dynamic systems ( Cassandras, 1993; Cassandras & Lafor-

une, 2008 ). 

Returning to the first question Q1 above, IPA in the form of

3) was successfully used in the early 1980s for many applica-

ions that involved stochastic systems with event-driven behav-

ors, including routing, scheduling and general resource allocation

roblems in complex manufacturing systems and computer and

ommunication networks (e.g., Cassandras, Abidi, & Towsley, 1990 ).

he generalization of (3) is to apply it to any performance metric

(θ ) = E[ L (θ )] where L ( θ ) is a sample function dependent on θ . IPA

s an efficient way to obtain the gradient ∇L ( θ ) from observable

ata on a nominal system realization. However, what is ultimately

f interest is ∇J(θ ) = ∇E[ L (θ )] , and its estimation through ∇L ( θ )

an be used in a large class of gradient-based optimization prob-

ems. As IPA was applied to harder and harder problems (i.e., sys-

ems with event-driven dynamics) much more complex than Lind-

ey equations such as (1) , it became clear that IPA estimates ∇L ( θ )

ere not accurate compared to ∇J ( θ ) when this could be evaluated

hrough analytical methods in some simple cases or accurately ap-

roximated through exhaustive time-consuming simulation meth-

ds. Indeed, one could have situations where the signs of ∇J ( θ )

nd ∇L ( θ ) were different, resulting in heavily biased IPA gradient

stimates. It took several years and occasionally controversial de-

t

ates to realize that the key issue was one of testing the validity

f unbiasedness for IPA gradient estimation, i.e., formal conditions

nder which 

E[ L (θ )] = E[ ∇L (θ )] 

olds, or in simpler scalar form: 

d 

dθ
E[ L (θ )] = E 

[
dL (θ ) 

dθ

]
he way this key issue was addressed is discussed in the next sec-

ion. 

. Infinitesimal perturbation analysis 

By the mid 1980s, it was realized that IPA provided a general

ramework for computing gradients of sample performance func-

ions defined on the state space of an extensive class of DEDS be-

ond queueing networks. Furthermore, it was shown to admit es-

ecially simple computations by data gathered directly from the

ample path of the system. Consequently IPA became the focal

oint of research in PA, with an eye on potential applications

n performance optimization by stochastic gradient-descent algo-

ithms. 1 

IPA is predicated on a stochastic dynamical system underscored

y a common probability space (�, F , P ) . 2 A typical sample in �,

enoted by ξ , together with a particular value of the parameter

, determine a realization of the state trajectory of the system at

. It is called a sample path at θ , and the sample path is said to

e associated with the pair ( θ , ξ ). The basic thinking about IPA,

ased on its formulation in Cao (1985) , was shaped by the view

hat it essentially compares two sample paths, corresponding to

wo respective, but close parameters and a common ξ ∈ �. 

Let L T ( θ , ξ ) be a performance function of the system in a given

nite period [0, T ]. IPA consists of the sample gradient (derivative)

L T (θ, ξ ) := 

∂ 
∂θ

(L T (θ, ξ )) , called the sample derivative , or sample

radient Cao (1985) . Due to the DEDS structure of the system, it

as convenient to think of this derivative as the limit of finite dif-

erences with the common ξ ∈ �, namely 

∂L T (θ, ξ ) 

∂θ
= lim 

�θ→ 0 

L T (θ + �θ, ξ ) − L T (θ, ξ ) 

�θ
. 

However, one of the expressed objectives of IPA is to estimate

he derivative of the mean performance J T ( θ ) := E [ L T ( θ , ξ )]. 3 This

aturally raises the question “is the sample derivative given by IPA

n unbiased estimate of the derivative of the mean performance?”

.e., 

 

[
∂ 

∂θ
L T (θ ) 

]
= 

∂ 

∂θ
E[ L T (θ )]? (4) 

The unbiasedness (4) explains why IPA gives accurate deriva-

ive estimates for some systems but not others. Roughly speaking,

hen the sample function L T ( θ ) has a jump (discontinuity) at θ ,

he interchangeability of expectation and differentiation inherent

n (4) would not hold. Intuitive conditions for this interchangeabil-

ty were given in Cao (1985) ; essentially, if a parameter change

t θ may cause a change in the order of events in a DEDS, the

ample performance function may have a jump at θ , and then the
he sample performance functions on ξ . 
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interchangeability in (4) may hold only if the probability of such

jumps in [ θ, θ + �θ ] is of the order o ( �θ ). This intuition evolved

from the consideration of many engineering problems defined on

DEDS. An alternative view of the issue of unbiasedness is through

the theory of multivariable calculus. After all, (4) amounts to an

interchangeability of differentiation with respect to θ and integra-

tion (expectation) with respect to ξ , and this is roughly equivalent

to the continuity of the function L ( θ , ξ ) in θ with probability one

(in ξ ). The former view is based on engineering intuition, whereas

the latter one, founded upon well-known results in mathematics,

often provides a practical way of discerning whether IPA is unbi-

ased. 

These realizations stimulated subsequent research in two direc-

tions: 

1. Identifying classes of systems and problems where IPA is un-

biased. Early works include ( Suri & Zazanis, 1988 ), which proves

the unbiasedness for the GI/G/1 queue, and Cao (1988) , which

proves it for closed Jackson networks. Glasserman (1991) presents

IPA in the framework of generalized semi-Markov processes, and

extends the results in Cao (1985, 1988) to a commuting condi-

tion (a simple to check structural condition) for the unbiased-

ness of the derivative estimates. For many other applications in

this direction, please see Cassandras and Lafortune (2008) . The

question of unbiasedness of FPA has been addressed as well; see

Heidergott (20 0 0) and references therein. 

2. The development of alternative perturbation-analytic tech-

niques that provide unbiased derivative estimates, or reduce the

bias, for problems for which IPA estimates are biased. Several

such techniques have appeared in the literature; among them is

Smoothed Perturbation Analysis (SPA) ( Fu & Hu, 1997; Gong & Ho,

1987 ). The main idea of this technique is to use the derivative of

a conditional mean of the sample function as the estimate of the

derivative of the mean performance. While a sample function may

have jumps and therefore its derivative is a biased estimate, a con-

ditional mean of the sample function may be smooth enough to

provide unbiased estimates. More precisely, suppose that there is a

random variable (or vector) denoted as Z such that 

E 

[
∂ 

∂θ
E[ L T (θ ) | Z] 

]
= 

∂ 

∂θ
E 
[
E[ L T (θ ) | Z] 

]
= 

∂ 

∂θ
E[ L T (θ )] . (5)

Then, we can use ∂ 
∂θ

E[ L T (θ ) | Z] , i.e., the derivative of the

conditional-mean sample function, as an unbiased estimate of the

performance derivative ∂ 
∂θ

E [ L T (θ ) E ] . . A potential difficulty with

this approach is that the conditional IPA estimator may require a

significantly higher computational effort than the basic IPA to the

point that it is rendered impractical. In other words, precision and

accuracy can be obtained at the expense of higher computational

complexity. 

Around the same time, various other techniques were also de-

veloped based largely on so-called “cut-and-paste” operations on

the sample path in order to smooth out discontinuities resulting

from parameter perturbations. Surveys thereof can be found in

Ho and Cao (1991) and Cassandras and Lafortune (2008) . 

The main ideas described in the previous paragraphs will be

illustrated by simple examples in Section 2.1 . 

The preceding discussion pertains to finite-horizon sample per-

formance functions. Another important class of functions concern

long-run (infinite-horizon) averages. Denoted by J ( θ ), they have the

form 

J(θ ) = lim 

T →∞ 

1 

T 
L T (θ ) , 

where the system is assumed to be ergodic for the above limit to

exist and be independent of ξ ∈ � w.p.1. The time T can be either

continuous or discrete. IPA gives the sample derivative 1 
T 

∂ 
∂θ

L T (θ ) .

The issue here is the strong consistency of the IPA derivative, i.e.,
hether the following limit is in force (see Cao, 1985 ): 

lim 

 →∞ 

1 

T 

∂ 

∂θ
L T (θ ) = 

∂ 

∂θ
J(θ ) ; (6)

n other words, “are the operators of limit “lim T → ∞ 

” and derivative
∂ 
∂θ

” interchangeable?”

The study of this issue led to an important concept, the per-

urbation realization , later extended to the performance potential ,

hich has been applied to several research areas like Markov deci-

ion processes and stochastic control. The main idea is as follows.

n queueing networks, the effect of every single perturbation on

he performance is finite and can be precisely measured; the to-

al effect of a parameter change on the performance can be de-

omposed into the sum of the effects of every single perturbation

enerated (realized) by this parameter change. The performance

erivative with respect to this parameter can then be calculated.

o illustrate this concept, consider a closed Jackson network con-

isting of M servers with service rates μi , i = 1 , 2 , · · · , M, and let 

 T (θ ) := 

∫ T 

0 

f [ n (t )] dt , 

here n (t) = (n 1 , n 2 , · · · , n M 

) is the system state at time t with n i
enoting the number of customers at server i , and f [ n ( t )] is a per-

ormance function of the state. Now, suppose at t = 0 with initial

tate n , server i is subjected to a perturbation �, meaning, e.g., its

ompletion time is delayed by the amount of �. Define the pertur-

ation realization factor ( Cao, 1994; Ho & Cao, 1993 ), 

( n , i ) = lim 

T →∞ 

lim 

�→ 0 
E 

{
1 

�

[∫ T 

0 

f ( n 

′ (t)) dt −
∫ T 

0 

f ( n (t )) dt 

]}
. (7)

he perturbed realization of the sample path n 

′ ( t ) can be simply

btained by the propagation rule on a single sample path. With

he help of the realization factors, we can prove that the strong

onsistency (6) indeed holds, and we can further derive (take θ =
i as the perturbed parameter) 

lim 

 →∞ 

[
μi 

1 

T 

∂L T (μi ) 

∂μi 

]
= μi 

dJ(μi ) 

dμi 

= 

∑ 

all n 

π( n ) c( n , i ) , w.p.1

(8)

here π ( n ) is the steady-state probability of state n . c ( n , i ) can be

omputed by a set of linear equations. 

In this approach, the interchangeability of “lim T → ∞ 

” and “ ∂ 
∂θ

”

s buried in lim 

T →∞ 

and lim 

�→ 0 
in (7) because in a strongly connected

etwork, a perturbation can only affect a system in a finite pe-

iod, and the difference of the two terms in (7) will be almost

ero when T is large enough. The interchangeability can be proved

long these lines. Many other examples with perturbation realiza-

ions can be found in Cao (1994) . 

The notions of perturbation realization and performance poten-

ial continue to underscore subsequent applications to large-scale

ystems. For non-Markovian queueing networks and other DEDS,

he unbiasedness of IPA and the computational complexity inher-

nt in alternative PA methods designed to circumvent it, led to a

artial shift of IPA research from DEDS to stochastic hybrid sys-

ems. These developments, which have been taking place over the

ast fifteen years, are the subject of the next section. 

.1. IPA and SPA examples 

To further explain the basic ideas of IPA and its extension to

PA, we provide a few simple examples which illustrate the salient

eatures underscoring the concept of unbiasedness. A practical

ay of ascertaining unbiasedness is based on the determination

f whether the sample performance function L T ( θ , ξ ) is contin-

ous w.p.1. The connection between unbiasedness and continuity
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s founded on the following result. Suppose that θ is constrained

o a closed, bounded interval �⊂ R . Assuming that ( i ) for every

∈ �, the derivative ∂ 
∂θ

L T (θ ) exists w.p.1; and ( ii ) w.p.1, the func-

ion L T ( · ) is Lipschitz continuous throughout �, and its Lipschitz

onstant, K = K(ξ ) , has a finite first moment, namely E [ K ] < ∞ ;

hen the IPA derivative ∂ 
∂θ

L T (θ ) is unbiased. This follows directly

rom the Lebesgue dominated convergence theorem ( Rudin, 1974 ),

nd the fact that the inequality ∣∣∣L T (θ + �θ) − L (θ ) 

�θ

∣∣∣∣∣∣ ≤ K (9) 

s satisfied w.p.1 for every θ ∈ � and �θ � = 0 such that θ + �θ ∈ �.

This simple result explains the importance of the continuity

ondition of the sample performance functions to the unbiased-

ess of their sample derivatives. 

emark 1. We call attention to the fact that assumption ( i ) per-

ains to a given θ ∈ � while assumption ( ii ) concerns the function

 T ( · ) as defined throughout �. Thus, assumption ( i ) does not imply

hat the derivative ∂ 
∂θ

L T (θ ) exists for every θ ∈ � w.p.1. In fact, this

s generally not true, but the function L T ( · ) typically is only piece-

ise differentiable due to the discrete nature of the system. Practi-

ally, the key condition for unbiasedness is continuity of the sam-

le performance function L T ( θ ) w.p.1. The lack of differentiablity

t a given θ is not necessarily problematic if one-sided derivatives

xist, in which case unbiasedness can be established for the one-

ided derivatives. All of this will be illustrated by the following ex-

mples. 

xample 1. Consider a FIFO GI/G/1 queue where θ ∈ R is a pa-

ameter of the distribution of the service times while the arrival

rocess is independent of θ . Denote the arrival time of job (cus-

omer) i = 1 , 2 , . . . , by A i , and denote the service time of job i

y S i ( θ ). The processes { A i } and { S i ( θ )} can be viewed as realiza-

ions of ξ ∈ �; typically A i depends on the distribution of inter-

rrival times, whereas S i ( θ ) depends on the service-time distribu-

ion which depends on θ . In the present discussion we stipulate a

ample path of the queue at a fixed parameter θ where, at time

 i , a sample-realization of the service time S i ( θ ) can be measured

r computed, it is differentiable with respect to θ , and its deriva-

ive ∂ 
∂θ

S i (θ ) can be computed. Regarding this sample derivative,

ommon examples include the case of deterministic service times

here S i (θ ) = θ, and the case where S i ( θ ) is exponentially dis-

ributed with mean θ . In the deterministic case, ∂ 
∂θ

S i (θ ) = 1 . In

he exponentially-distributed case, S i (θ ) = −θ ln (1 − ω) for a unit-

ariate ω, hence ∂ 
∂θ

S i (θ ) = −ln (1 − ω) = 

S i (θ ) 

θ
. 

Fix N > 0, and consider the sample performance function de-

ned as the mean delay (sojourn time) of the first N jobs that

rrive at the queue, denoted by L N ( θ ). Further denoting the delay

sojourn time) of job i by d i ( θ ), the sample performance function

s defined by 

 N (θ ) = 

1 

N 

N ∑ 

i =1 

d i (θ ) . (10)

t is natural to define the state variable as the departure time of

ob i , i = 1 , 2 , . . . . The state equation is provided by the Lindley

quation , Eq. (1) , where A i is independent of θ , and S i , D i −1 and

 i are functions of θ , hence denoted by S i ( θ ), D i −1 (θ ) , and D i ( θ ).

he delay is expressed in terms of the state variable as 

 i (θ ) = D i (θ ) − A i . (11)

his state-space formulation plays a dual role: it gives a simple

ormula for the IPA derivative ∂ 
∂θ

L N (θ ) , and provides a straight-

orward argument for the continuity of the sample performance

unction L N ( θ ) and hence the unbiasedness of IPA. Eq. (3) and the

iscussion in the ensuing paragraph imply the following formula
or ∂ 
∂θ

D i (θ ) : Define k i ( θ ) to be the index of the job that started

he busy period containing job i . Then, 

∂ 

∂θ
D i (θ ) = 

i ∑ 

j= k i (θ ) 

∂ 

∂θ
S j (θ ) . (12)

y Eqs. (10) –(12) , the IPA derivative is 

∂ 

∂θ
L N (θ ) = 

1 

N 

N ∑ 

i =1 

i ∑ 

j= k i (θ ) 

∂ 

∂θ
S j (θ ) . (13)

ote the role of macro-events like the start of busy periods in this

ormula on the IPA derivative, which was alluded to in the intro-

uction. 

As for the continuity of the function L N ( θ ), assume that realiza-

ions of the service times, S i ( θ ), are monotone increasing in θ in

ddition to being differentiable. Furthermore, let θ be constrained

o an interval � := [ θ1 , θ2 ] where 0 < θ1 < θ2 < ∞ , and suppose

hat the queue is stable at θ = θ2 . The special recursive structure of

he state Eq. (1) preserves continuity and monotonicity, and since

y assumption S i ( θ ), i = 1 , . . . , are continuous and monotone in-

reasing in θ , so are D i ( θ ) and hence d i ( θ ) as well. The assumed

onotonicity of { S i ( θ )}, together with the stability of the queue at

2 , imply the existence of a random variable K N having a finite

rst moment, and providing an upper bound on the IPA derivative
∂ 
∂θ

L N (θ ) over θ ∈ �. K N acts as a Lipschitz constant for L N ( · ) over

thereby implying the unbiasedness of the IPA derivative. 

We mention the special case of deterministic service times, or

ts extension where S i (θ ) = θ + νi , for a random variable ν i which

s independent of θ . In these cases ∂ 
∂θ

S i (θ ) = 1 , and Eq. (13) is

educed to the following expression, 

∂ 

∂θ
L N (θ ) = 

1 

N 

N ∑ 

i =1 

(
i − k i (θ ) 

)
. (14)

his is a simple formula which is independent of the probability

istribution of the interarrival times. Therefore it has the poten-

ial for implementation in real-time, control-based optimization in

ddition to off-line simulation. 

The critical role played by the state Eq. (1) in proving the con-

inuity of L N ( θ ) and deriving the formula for its IPA derivative

13) suggests its extensions to DEDS whose state equations con-

ist of the operators of max and plus. Such systems, classified as

ax-plus algebras, arise as models in various engineering disci-

lines beyond queueing networks; see Baccelli, Cohen, Olsder, and

uadrat (1992) . For example, a class of decision-free Petri nets,

vent graphs, acting as models in production control, have had IPA

pplied to them for parameter optimization in Proth, Sauer, Wardi,

nd Xie (1996) . 

The next example concerns a situation where the sample

erformance functions are discontinuous and hence their IPA

erivatives are biased, and how an alternative sample represen-

ation based on SPA results in unbiased derivatives. Further de-

ails and analysis can be found in Wardi, Gong, Cassandras, and

allmes (1992) . 

xample 2. The system is the same as in Example 1 including the

tate equation Eq. (1) , and is subjected to the same assumptions. In

ddition, we assume that the service-time distribution at a given

∈ � has a density function. We denote by F ( t, θ ) := P ( S ( θ ) ≤ t )

he distribution function, and its derivative, ∂ 
∂t 

F (t, θ ) := f (t, θ ) , its

orresponding density function. 

Let J N ( θ ) denote the a-priori probability that a job’s delay from

mong the first N jobs exceeds a given threshold-value r > 0. Note

hat J N ( θ ) is an expected-value function, and a sample representa-

ion of it can be obtained by simulating the system (queue), com-

uting the number ( m ) of jobs whose delays exceed r , and taking
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4 To simplify the exposition in the forthcoming discussion, we omit the notational 

dependence of the sample function L T ( θ ) and its mean J T ( θ ) on T . 
the term 

m 

N . Formally, define Q i ( θ ) := 1 ( D i ( θ ) > r ) where 1 ( · ) de-

notes the indicator function, and define the sample performance

function L N ( θ ) as 

L N (θ ) := 

1 

N 

N ∑ 

i =1 

Q i (θ ) . (15)

Now for a given ξ ∈ �, Q i ( θ ) ∈ {0, 1}. Furthermore, since d i ( θ ) is

monotone increasing in θ , there are only three possibilities con-

cerning the graph of Q i ( θ ), as follows: ( i ) Q i (θ ) = 0 for every θ ∈ �,

( ii ) Q i (θ ) = 1 for every θ ∈ �, and ( iii ) the graph of Q i ( θ ) switched

from 0 to 1 at a single point θ̄1 ∈ �. By Eq. (15) , L N ( θ ) is a

step function and hence can be discontinuous. At a given ξ ∈ �,
∂ 
∂θ

L N (θ ) = 0 unless θ is a jump point. However, due to the as-

sumed density function of the service times, the probability that a

given θ would be a jump point of L N ( · ) is zero. Thus, in the course

of a sample path at a given θ , the IPA derivative ∂ 
∂θ

L N (θ ) = 0 w.p.1.

Clearly this IPA derivative is biased since J N ( θ ) is monotone in-

creasing in θ and hence ∂ 
∂θ

J N (θ ) > 0 . 

To get around this problem one can use SPA by conditioning

Q i ( θ ) on the waiting time of job i before its service time is drawn.

In other words, the term Z in Eq. (5) is the waiting time, denoted

by W i ( θ ). Thus, we have that 

J N (θ ) = 

1 

N 

N ∑ 

i =1 

E 
[
E[ Q i (θ ) | W i (θ )] 

]
. (16)

By the facts that d i (θ ) = W i (θ ) + S i (θ ) and Q i (θ ) = 1(S i (θ ) > r) ,

we have that 

E[ Q i (θ ) | W i (θ )] = P (d i (θ ) > r| W i (θ )) = 1 − P (d i (θ ) ≤ r| W i (θ )) 

= 1 − P (W i (θ ) + S i (θ ) ≤ r| W i (θ )) 

= 1 − F (r − W i (θ ) , θ ) . (17)

We have seen in the previous example that d i ( θ ) is continuous

throughout θ ∈ � w.p.1, and hence W i (θ ) := d i (θ ) − S i (θ ) is con-

tinuous as well. Therefore, by (17) and the assumed density func-

tion for the distribution of service times, E [ Q i ( θ )| W i ( θ )] is a con-

tinuous function of θ . By Eq. (15) , 1 
N 

∑ N 
i =1 E[ Q i (θ ) | W i (θ )] is con-

tinuous as well. By (16) , the latter term is a representative sample

of J N ( θ ), and its continuity implies that its sample derivative pro-

vides an unbiased estimate of ∂ 
∂θ

L N (θ ) . This is the SPA derivative.

By Eq. (17) it has the following form, 

1 

N 

N ∑ 

i =1 

∂ 

∂θ
Q i (θ ) 

= 

1 

N 

N ∑ 

i =1 

(
f (r−W i (θ ) , θ ) 

∂ 

∂θ
W i (θ )− ∂ 

∂θ
F (r − W i (θ ) , θ ) 

)
. (18)

As for the derivative ∂ 
∂θ

W i (θ ) , it is zero if job i starts a busy period

at the queue, and given by 

∂ 

∂θ
W i (θ ) = 

i −1 ∑ 

j= k i (θ ) 

∂ 

∂θ
S j (θ ) (19)

if job i does not start a busy period; see (3) . 

This example points out that SPA can smooth out discontinu-

ities inherent in the sample performance functions, thereby pro-

viding unbiased derivative estimators in situations where IPA is

biased. However, this comes at the expense of more complicated

calculations and, moreover, their reliance on the underlying distri-

butions of the system. The last point is apparent in Eq. (18) which

explicitly depends on the distribution function of the service times.

Generally, the explicit reliance on such data can make the dif-

ference between the use of a derivative estimator in off-line

simulation-based optimization, vs. real-time optimization where
he sample paths are observed directly from the system. For in-

tance, in the present example, if the distribution function of the

ervice times is not known then the SPA estimator cannot be used

n real time. In contrast, L N ( θ ), as given by (15) , is model free, and

o is its IPA derivative. Of course in this case the IPA derivative is

ero w.p.1, hence useless in optimization, be it off line or in real

ime. 

The next example shows that, in contrast to Example 2 ,

ractically-computable SPA estimators cannot always be found. 

xample 3. Consider the same system as in Example 1 except that

he queue has a finite buffer, and jobs arriving at a full queue are

eing discarded. Let the expected-value performance function, de-

oted by J N ( θ ), be the job-loss probability from among the first

 jobs that arrive at the queue. J N ( θ ) can be represented by the

ample performance function, L N ( θ ), defined as the fraction of dis-

arded jobs from among the first N to arrive. Clearly L N ( θ ) is dis-

ontinuous in θ and its IPA derivative is biased. Furthermore, an

PA procedure similar to the one used in Example 2 would give

iased derivatives as well. 

The reason for the failure of SPA to give unbiased derivative es-

imators is that the discontinuity of the sample performance func-

ion is inherent in the state trajectory. To explain this point we

raw a comparison between the present system and the one dis-

ussed in Example 2 . In both systems the state trajectory consists

f the process { d i ( θ )}, or alternatively, by the related processes { A i }

nd { D i }. In Example 2 , the discontinuity is not in d i ( θ ) or D i ( θ ),

ut rather in the way the sample performance function L T ( θ ) is

omputed from the state trajectory. Therefore we say that the dis-

ontinuity is in the terminal reward, or output function, but not in

he state trajectory. Thus, W i (θ ) := d i (θ ) − S i (θ ) is continuous in θ ,

nd therefore, the conditioning of L N ( θ ) on W i ( θ ) can smooth out

he discontinuities in the terminal reward. In contrast, in the cur-

ent example, W i ( θ ) or alternative state-related processes are dis-

ontinuous, and hence the conditioning on them will not smooth

ut the discontinuities of L N ( θ ). We say that the discontinuities are

nherent in the state trajectory. 

In summary, the discontinuities in Example 2 are only in the

erminal reward, while in Example 3 , they are inherent in the state

rajectory. This difference is the reason that the SPA works well for

he former system but not for the current one. 

. Stochastic hybrid systems 

In 2002 a new approach to IPA emerged, based on Stochas-

ic Flow Models (SFM) ( Cassandras, Wardi, Melamed, Sun, &

anayiotou, 2002 ). 4 Unlike SPA it does not consist of alternative

ample-path representations of J ( θ ), but rather on an alternative

odelling framework that yields approximate estimates for J ( θ ),

nd, more importantly, whose gradients are unbiased and pro-

ide approximations to ∇J ( θ ). The SFM concept formulated in

assandras et al. (2002) grew out of the concept of the fluid queue,

nd subsequently extended to flow networks and, more gener-

lly, to a general setting of Stochastic Hybrid Systems (SHS); see

assandras, Wardi, Panayiotou, and Yao (2010) . 

Consider Fig. 1 for an illustration of the SHS concept. The sys-

em in question is the DEDS shown in the figure, and the control

arameter assigned to it is θ ∈ R n . The system with the particu-

ar control variable θ generates a sample path which is fed to two

laces: ( i ) an algorithm which computes L ( θ ) and its IPA gradient

L ( θ ), and ( ii ) a continuous-flow modelling artifact, indicated by

HS in the figure. An algorithm which is based on SHS computes
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Fig. 1. Relationship between a DEDS and its SHS approximation. 

Fig. 2. Elemental fluid-queue model. 

t  

I  

a  

p  

t  

e

 

i  

w  

∇  

u  

a  

a  

t  

n  

L  

s  

m  

b  

E  

2

 

c  

fl  

fl  

F  

a  

a  

T  

o  

o  

c  

r  

{

a

γ

A  

p  

β  

a  

θ  

t  

o  

t  

o  

Fig. 3. Typical state trajectory { X ( θ ; t )}. 
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c  
he value of another sample performance function, L s ( θ ), and its

PA gradient ∇L s ( θ ). It is pointed out that the same sample path,

ssociated with the underlying DEDS is used to compute the sam-

le performance functions associated with both the discrete sys-

em and the hybrid system, as well as their respective IPA gradi-

nts. 

Suppose that ∇L ( θ ) is a biased estimator of ∇J ( θ ), and hence

t does not provide a good approximation to it. The SHS frame-

ork is useful as long as ∇L s ( θ ) provides a close approximation to

J ( θ ), which often is the case when the IPA derivative ∇L s ( θ ) is

nbiased. It must be pointed out that approximating J ( θ ) usually is

 major concern in performance evaluation or estimation, whereas

pproximations of ∇J ( θ ) are a concern in optimization and con-

rol. Since our interest is in the latter but not the former, we have

o intrinsic interest in the quality of approximations provided by

 s ( θ ) to J ( θ ). In fact, extensive testing by simulation has shown that

uch approximations can be inadequate for the purpose of perfor-

ance evaluation, whereas the approximation of ∇J ( θ ) provided

y ∇L s ( θ ) suffices to achieve optimization and control objectives.

xamples of this point can be found in Cassandras et al. (2002 ,

010) . 

The first example analyzed in this context concerns a

ontinuous-flow single-server queue with a finite buffer, where

uid arriving at a full queue is being discarded as a matter of over-

ow. The basic stochastic-flow modelling construct, depicted in

ig. 2 , is defined as follows: Given a time-horizon [0, T ], let { α( t )}

nd { β( t )} be the instantaneous fluid-arrival rate to the queue,

nd the instantaneous fluid service rate at the queue, respectively.

hese are assumed to be exogenous stochastic processes defined

n a common probability space (�, F , P ) . Let b > 0 denote the size

f the buffer. Denote by X ( t ) and γ ( t ) the instantaneous buffer-

ontents (amount of fluid in the buffer) and instantaneous spillover

ate from the queue due to overflow. Then the processes { X ( t )} and

 γ ( t )} are defined as follows (see Cassandras et al., 2002 ): 

dX (t) 

dt + 
= 

{ 

0 , if X (t) = 0 , and α(t) ≤ β(t) 
0 , if X (t) = b and α(t) ≥ β(t) , 
α(t) − β(t) , otherwise , 

(20) 

nd 

(t) = 

{
α(t) − β(t) , X (t) = b 
0 , if X (t) < b. 

(21) 

 typical control variable consists of a parameter of the arrival-rate

rocess, the service-rate process, or the buffer size. For example,

(θ ; t) = θβ(t) , where θ represents a controlled flow parameter

nd { β( t )} is an exogenous process depending on time t but not on

. This can arise in communication networks where θ represents

he total transmission rate of a channel and β( t ) is the fraction

f it which is allocated to a particular session. Observe the nota-

ion β( θ ; t ), indicating that the instantaneous service rate depends

n θ . As a result, the buffer-occupancy and spillover-rate processes
epend on θ as well via (20) and (21) , and hence denoted by { X ( θ ;

 )} and { γ ( θ ; t )}. In Cassandras et al. (2002) various sample perfor-

ance functions of such control variables are considered. We next

resent the first SFM analyzed from the standpoint of IPA, which

xhibits the salient features of an extensive suite of fluid queueing

etworks. 

Consider the case where the control parameter is the buffer ca-

acity, and the performance function is the amount of fluid which

s discarded during a given horizon interval [0, T ]. Thus, θ = b, and

he performance function, denoted by L γ ( θ ), is 

 γ (θ ) := 

∫ T 

0 

γ (θ ; t ) dt . (22)

ote that L γ ( θ ) is related to the fraction of discarded fluid

rom the total arrival volume during the time t ∈ [0, T ], which is

 γ (θ ) / 
∫ T 

0 α(t ) dt . 

Regarding the IPA derivative 
dL γ (θ ) 

dθ
, we note that it is unbiased

ince the function L γ ( θ ) is continuous. The following formula for

t was obtained in Cassandras et al. (2002) : Define N T as the num-

er of lossy busy periods in the horizon interval [0, T ], namely the

umber of busy periods during which the buffer becomes full at

ome time. Then, 

dL γ (θ ) 

dθ
= −N T . (23) 

s an example, consider the realization of the state trajectory { X ( θ ;

 )} shown in Fig. 3 . It is evident that the first and third busy peri-

ds are lossy while the second in not, therefore 
dL γ (θ ) 

dθ
= −2 . 

As another example, consider the cumulative workload as a

unction of the buffer capacity. Thus, θ = b as in the previous ex-

mple, and let the performance function, denoted by L x ( θ ), be de-

ned as 

 x (θ ) = 

∫ T 

0 

X (θ ; t ) dt . (24)

ote that the term L x (θ ) / 
∫ T 

0 α(t ) dt serves to approximate the av-

rage delay of fluid “molecules” by Little’s law. As for the IPA

erivative, fix θ > 0, and let B m 

, m = 1 , . . . , M denote the lossy

usy periods in the interval [0, T ] in increasing order. For every

 = 1 , . . . , M, let u m 

∈ B m 

denote the first time the buffer becomes

ull in B m 

, and let v m 

be the end-time of B m 

. Then 

dL x (θ ) 
dθ

has the

ollowing form, 

dL x (θ ) 

dθ
= 

M ∑ 

m =1 

(v m 

− u m 

) . (25)

or example, in Fig. 3 , dL x (θ ) 
dθ

= 

∑ 2 
m =1 (v m 

− u m 

) . 

We point out that Eqs. (23) and (25) were derived (in

assandras et al., 2002 ) under minimal assumptions on the sys-

em. In fact, the only assumption made is that the processes { α( t )}

nd { β( t )} be piecewise continuous and of bounded variation in t ∈
0 , T ] w.p.1. Therefore, for the purpose of computing Eqs. (23) and

25) , these processes can be generated not only from an SFM but

lso from a DEDS. Such DEDS can be a modelling artifact of the

ystem or the system itself. Furthermore, the formulas (23) and

25) do not depend on observations of the detailed dynamics asso-

iated with arrivals or departures of each customer at the queue,
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nor on the instantaneous values of α( t ) or β( t ). Instead, they re-

quire only the observations of macro events like the beginning and

end of busy periods and full-buffer periods. Thus, comparing and

contrasting these formulas with the analogous equations derived

for IPA in the traditional, discrete-queueing setting (e.g., Cassandras

& Lafortune, 2008 ), we see that the SFM-based formulas are un-

biased, simpler, and do not require any details of the probability

laws underscoring the arrival and service processes. Due to the

last property we say that the IPA derivative is nonparametric . Fur-

thermore, as mentioned above, the IPA derivatives can be com-

puted from data generated from DEDS as well as SFM. In fact,

Cassandras et al. (2002) and subsequent papers on IPA in the SFM

setting (e.g., Cassandras et al., 2010; Sun, Cassandras, & Panayiotou,

20 04; Zhang & Cassandras, 20 02 and references therein) report

on successful solutions of DEDS optimization problems where the

IPA gradients are computed from SFM-derived formulas. All of this

suggests that the SFM setting provides an alternative framework to

DEDS for the application of IPA, which holds out promise of real-

time optimization via closed-loop control. 

As we mentioned earlier, following the basic formulation of

the SFM and derivation of the aforementioned IPA gradients, there

were several efforts to extend the model and results to fluid

queueing systems and other multiflow networks. The main results

concern the development of IPA gradients for prototypical prob-

lems, and their implementation in optimization environments. By

and large the simplicity and unbiasedness of the IPA gradients are

maintained. The nonparametric property and reliance only on ob-

servations of macro events has been almost maintained, but held

ground for close approximations where, practically, the errors can

be neglected. Moreover, the key structure of perturbation propaga-

tion, which has rendered IPA attractive from its onset, applies to

the general framework of Stochastic Hybrid Systems (SHS) based on

a formal calculus (referred to as the IPA Calculus ) of event-driven

propagations as described in Cassandras et al. (2010) . We review

this general setting in what follows. 

3.1. The IPA calculus for hybrid systems 

We begin by adopting a standard hybrid automaton formal-

ism to model the operation of a (generally stochastic) hybrid sys-

tem as in Cassandras et al. (2010) . Let q ∈ Q (a countable set) de-

note the discrete state (or mode) and x ∈ X ⊆ R 

n denote the con-

tinuous state. Let υ ∈ ϒ (a countable set) denote a discrete con-

trol input and u ∈ U ⊆ R 

m a continuous control input. Similarly,

let δ ∈ � (a countable set) denote a discrete disturbance input

and d ∈ D ⊆ R 

p a continuous disturbance input. The state evolution

is determined by means of ( i ) a vector field f : Q × X × U × D → X ,

( ii ) an invariant (or domain) set Inv : Q × Y ×�→ 2 X , ( iii ) a

guard set Guard : Q × Q × Y ×�→ 2 X , and ( iv ) a reset function r :

Q × Q × X × Y ×�→ X . 

A sample path of such a system consists of a sequence of in-

tervals of continuous evolution followed by a discrete transition.

The system remains at a discrete state q as long as the contin-

uous (time-driven) state x does not leave the set In v (q, υ, δ) . If

x reaches a set Guard(q, q ′ , υ, δ) for some q ′ ∈ Q , a discrete tran-

sition can take place. If this transition does take place, the state

instantaneously resets to ( q ′ , x ′ ) where x ′ is determined by the

reset map r(q, q ′ , x, υ, δ) . Changes in υ and δ are discrete events

that either enable a transition from q to q ′ by making sure x ∈
Guard(q, q ′ , υ, δ) or force a transition out of q by making sure

x / ∈ In v (q, υ, δ) . We will also use E to denote the set of all events

that cause discrete state transitions and will classify events in a

manner that suits the purposes of perturbation analysis. 

Let θ ∈ � ⊂ R 

l be a controllable parameter vector, where � is a

given compact, convex set. This may contain system design param-

eters or parameters that characterize a policy used in controlling
his system. The disturbance input d ∈ D encompasses various ran-

om processes that affect the evolution of the state ( q, x ) so that,

n general, we can deal with an SHS. We will assume that all such

rocesses are defined over a common probability space, (�, F , P ) .

et us fix a particular value of the parameter θ ∈ � and study a re-

ulting sample path of the SHS. Over such a sample path, let τ k ( θ ),

 = 1 , 2 , . . . , denote the occurrence times of the discrete events in

ncreasing order, and define τ0 (θ ) = 0 for convenience. We will use

he notation τ k instead of τ k ( θ ) when no confusion arises. The

ontinuous state is also generally a function of θ , as well as of t ,

nd is thus denoted by x ( θ , t ). Over an interval [ τk (θ ) , τk +1 (θ )) ,

he system is at some mode during which the time-driven state

atisfies: 

˙ 
 = f k (x, θ, t) (26)

here ˙ x denotes ∂x 
∂t 

. Note that we suppress the dependence of f k 
n the inputs u ∈ U and d ∈ D and stress instead its dependence on

he parameter θ which may generally affect either u or d or both.

he purpose of perturbation analysis is to study how changes in

influence the state x ( θ , t ) and the event times τ k ( θ ) and, ulti-

ately, how they influence interesting performance metrics which

re generally expressed in terms of these variables. Note that un-

er standard technical conditions (see Cassandras et al., 2010 ), Eq.

26) has a unique solution w.p.1 for a given initial boundary con-

ition x (θ, τk ) at time τk (θ ) . 

An event occurring at time τk +1 (θ ) triggers a change in the

ode of the system, which may also result in new dynamics rep-

esented by f k +1 , although this may not always be the case; for

xample, two modes may be distinct because the state x ( θ , t ) en-

ers a new region where the system’s performance is measured dif-

erently without altering its time-driven dynamics (i.e., f k +1 = f k ).

he event times { τk (θ ) } play an important role in defining the in-

eractions between the time-driven and event-driven dynamics of

he system. 

We now classify events that define the set E as follows: 

1. Exogenous events. An event is exogenous if it causes a dis-

rete state transition at time τ k independent of the controllable

ector θ and satisfies 
dτk 
dθ

= 0 . Exogenous events typically corre-

pond to uncontrolled random changes in input processes. 

2. Endogenous events. An event occurring at time τ k is en-

ogenous if there exists a continuously differentiable function g k :

 

n × � → R such that 

k = min { t > τk −1 : g k ( x ( θ, t ) , θ ) = 0 } (27)

he function g k normally corresponds to a guard condition in a hy-

rid automaton model. 

3. Induced events. An event at time τ k is induced if it is trig-

ered by the occurrence of another event at time τm 

≤ τ k . The trig-

ering event may be exogenous, endogenous, or itself an induced

vent. The events that trigger induced events are identified by a

ubset of the event set, E I ⊆ E . 

Next, consider a performance function of the control parameter

: 

(θ ; x (θ, 0) , T ) = E [ L (θ ; x (θ, 0) , T ) ] 

here L (θ ; x (θ, 0) , T ) is a sample function of interest evaluated

n the interval [0, T ] with initial conditions x ( θ , 0). For simplicity,

e write J ( θ ) and L (θ ) . Suppose that there are N events (gener-

lly dependent on θ ) occurring during the time interval [0, T ] and

efine τ0 = 0 and τN+1 = T . For functions L k : R 

n × � × R 

+ → R ,

 = 1 , . . . , N, set 

 (θ ) := 

N ∑ 

k =0 

∫ τk +1 

τk 

L k (x, θ, t) dt (28)

here we reiterate that x = x (θ, t) is a function of θ and t . Given

hat we do not wish to impose any limitations (other than mild
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echnical conditions) on the random processes that characterize

he discrete or continuous disturbance inputs in our hybrid au-

omaton model, it is infeasible to obtain closed-form expressions

or J ( θ ). Therefore, for the purpose of optimization, we resort

o iterative methods such as stochastic approximation algorithms

hich are driven by estimates of the cost function gradient with

espect to the parameter vector of interest. Thus, we are interested

n estimating dJ / d θ based on sample path data, where a sample

ath of the system may be directly observed or it may be ob-

ained through simulation. We then seek to obtain θ ∗ minimizing

 ( θ ) through an iterative scheme of the form 

n +1 = θn − ηn H n (θn ; x (θ, 0) , T , ω n ) , n = 0 , 1 , . . . (29)

here H n ( θn ; x (0), T, ω n ) is an estimate of dJ / d θ evaluated at θ and

ased on information obtained from a sample path denoted by ω n ,

nd { ηn } is an appropriately selected step size sequence. In order

o execute an algorithm such as (29) , we need the estimate H n ( θn )

f dJ / d θ . As already discussed, the IPA approach is based on using

he sample derivative d L /d θ as an estimate of dJ / d θ capitalizing

n the fact that d L /d θ can be obtained from observable sample

ath data alone and, usually, in a very simple manner that can be

eadily implemented on line. Moreover, it is often the case that

 L /d θ is an unbiased estimate of dJ / d θ , a property that allows us

o use (29) in obtaining θ ∗ (we will return to this issue later). 

Let us now fix θ ∈ �, consider a particular sample path, and as-

ume for the time being that all derivatives mentioned in the se-

uel do exist. To simplify notation, we define the following for all

tate and event time sample derivatives: 

 

′ (t) ≡ ∂x (θ, t) 

∂θ
, τ ′ 

k ≡
∂τk 

∂θ
, k = 0 , . . . , N (30)

n addition, we will write f k ( t ) instead of f k ( x, θ , t ) whenever no

mbiguity arises. By taking derivatives with respect to θ in (26) on

he interval [ τk (θ ) , τk +1 (θ )) we get 

d 

dt 
x ′ (t) = 

∂ f k (t) 

∂x 
x ′ (t) + 

∂ f k (t) 

∂θ
(31)

he boundary (initial) condition of this linear equation is specified

t time t = τk , and by writing (26) in an integral form and taking

erivatives with respect to θ when x ( θ , t ) is continuous in t at t =
k , we obtain for k = 1 , . . . , N: 

 

′ (τ+ 
k 

) = x ′ (τ−
k 

) + 

[
f k −1 (τ

−
k 

) − f k (τ
+ 
k 

) 
]
τ ′ 

k (32)

e note that whereas x ( θ , t ) is often continuous in t, x ′ ( t ) may be

iscontinuous in t at the event times τ k , hence the left and right

imits above are generally different. If x ( θ , t ) is not continuous in

 at t = τk , the value of x (τ+ 
k 

) is determined by the reset function

(q, q ′ , x, υ, δ) discussed earlier and 

 

′ (τ+ 
k 

) = 

dr(q, q ′ , x, υ, δ) 

dθ
(33) 

urthermore, once the initial condition x ′ (τ+ 
k 

) is given, the lin-

arized state trajectory { x ′ ( t )} can be computed in the interval

 ∈ [ τk (θ ) , τk +1 (θ )) by solving (31) to obtain: 

 

′ (t) = e 
∫ t 
τk 

∂ f k (u ) 

∂x 
du 

[∫ t 

τk 

∂ f k (v ) 
∂θ

e 
− ∫ t 

τk 

∂ f k (u ) 

∂x 
du 

dv + c k 

]
(34) 

ith the constant c k determined from x ′ (τ+ 
k 

) in (32) , since

 

′ (τ−
k 

) is the final-time boundary condition in the interval

 τk −1 (θ ) , τk (θ )) , or it is obtained from (33) . 

Clearly, to complete the description of the trajectory of the

inearized system (31) –(32) we have to specify the derivative
′ 
k 

which appears in (32) . Since τ k , k = 1 , 2 , . . . , are the mode-

witching times, these derivatives explicitly depend on the interac-

ion between the time-driven dynamics and the event-driven dy-

amics, and specifically on the type of event occurring at time τ k .

sing the event classification given earlier, we have the following. 
1. Exogenous events. By definition, such events are indepen-

ent of θ , therefore τ ′ 
k 

= 0 . 

2. Endogenous events. In this case, (27) holds and taking

erivatives with respect to θ we get: 

∂g k 
∂x 

[
x ′ (τ−

k 
) + f k (τ

−
k 

) τ ′ 
k 

]
+ 

∂g k 
∂θ

= 0 (35) 

hich, assuming 
∂g k 
∂x 

f k (τ
−
k 

) � = 0 , can be rewritten as 

′ 
k = −

[
∂g k 
∂x 

f k (τ
−
k 

) 

]−1 (
∂g k 
∂θ

+ 

∂g k 
∂x 

x ′ (τ−
k 

) 

)
(36) 

3. Induced events. If an induced event occurs at t = τk , the

alue of τ ′ 
k 

depends on the derivative τ ′ 
m 

where τm 

≤ τ k is the

ime when the associated triggering event takes place. The event

nduced at τm 

will occur at some time τm 

+ ω(τm 

) , where ω( τm 

)

s a random variable which is generally dependent on the contin-

ous and discrete states x ( τm 

) and q ( τm 

) respectively. This implies

he need for additional state variables, denoted by y m 

( θ , t ), m =
 , 2 , . . . , associated with events occurring at times τm 

, m = 1 , 2 . . .

he role of each such state variable is to provide a “timer” ac-

ivated when a triggering event occurs. Recalling that triggering

vents are identified as belonging to a set E I ⊆ E, let e k denote

he event occurring at τ k and define � k = { m : e m 

∈ E I , m ≤ k } to

e the set of all indices with corresponding triggering events up to

k . Omitting the dependence on θ for simplicity, the dynamics of

 m 

( t ) are then given by 

˙ y m 

(t) = 

{
−C(t) τm 

≤ t < τm 

+ ω(τm 

) , m ∈ � m 

0 otherwise 
(37) 

 m 

(τ+ 
m 

) = 

{
y 0 y m 

(τ−
m 

) = 0 , m ∈ � m 

0 otherwise 

here y 0 is an initial value for the timer y m 

( t ) which decreases

t a “clock rate” C ( t ) > 0 until y m 

(τm 

+ ω(τm 

)) = 0 and the asso-

iated induced event takes place. Clearly, these state variables are

nly used for induced events, so that y m 

(t) = 0 unless m ∈ � m 

. The

alue of y 0 may depend on θ or on the continuous and discrete

tates x ( τm 

) and q ( τm 

), while the clock rate C ( t ) may depend on

 ( t ) and q ( t ) in general, and possibly θ . However, in most simple

ases where we are interested in modelling an induced event to

ccur at time τm 

+ ω(τm 

) , we have y 0 = ω(τm 

) and C(t) = 1 , i.e,

he timer simply counts down for a total of ω( τm 

) time units until

he induced event takes place. Henceforth, we will consider y m 

( t ),

 = 1 , 2 , . . . , as part of the continuous state of the SHS and, simi-

ar to (30) , we set 

 

′ 
m 

(t) ≡ ∂y m 

( t ) 

∂θ
, m = 1 , . . . , N. (38)

or the common case where y 0 is independent of θ and C ( t ) is a

onstant c > 0 in (37) , it is shown in Cassandras et al. (2010) that
′ 
k 

= τ ′ 
m 

. 

With the inclusion of the state variables y m 

( t ), m = 1 , . . . , N,

he derivatives x ′ ( t ), τ ′ 
k 
, and y ′ m 

(t) can be evaluated through (31) –

36) along with (38) . This very general set of equations represents

he “IPA calculus”. In general, the derivative evaluation is recursive

ver the event (mode switching) index k = 0 , 1 , . . . In some cases,

owever, it can be reduced to simple expressions, as seen in the

nalysis of many SFMs discussed earlier in this section. Observe

hat if a SHS does not involve induced events and if the state does

ot experience discontinuities when a mode-switching event oc-

urs, then the full extent of the IPA calculus reduces to three equa-

ions: ( i ) Eq. (34) , which describes how the state derivative x ′ ( t )
volves over [ τk (θ ) , τk +1 (θ )) , ( ii ) Eq. (32) , which specifies the ini-

ial condition ξ k in (34) , and ( iii ) Either τ ′ 
k 

= 0 or (36) is satisfied,

epending on the event type at τ k ( θ ), which specifies the event

ime derivative present in (32) . 
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Now the IPA derivative d L /d θ can be obtained by taking deriva-

tives in (28) with respect to θ : 

dL (θ ) 

dθ
= 

N ∑ 

k =0 

d 

dθ

∫ τk +1 

τk 

L k (x, θ, t ) dt . (39)

Applying the Leibnitz rule we obtain, for every k = 0 , . . . , N, 

d 

dθ

∫ τk +1 

τk 

L k (x, θ, t) dt 

= 

∫ τk +1 

τk 

[
∂L k 
∂x 

(x, θ, t ) x ′ (t ) + 

∂L k 
∂θ

(x, θ, t) 

]
dt 

+ L k (x (τk +1 ) , θ, τk +1 ) τ
′ 
k +1 − L k (x (τk ) , θ, τk ) τ

′ 
k (40)

where x ′ ( t ) and τ ′ 
k 

are determined through (31) –(36) . What makes

IPA appealing is the simple form the right-hand-side above often

assumes. 

The IPA calculus formalism derived in this subsection via

Eqs. (26) –(40) appears to be quite complicated. However, this is

due to its wide scope in stochastic hybrid systems. In fact, for

a particular system, or a class of systems with a specific struc-

ture, the resulting IPA derivative can be quite simple and elegant.

For a simple example, consider the fluid queue depicted in Fig. 2 ,

where the control variable θ is the buffer size, and the sample

performance function is the total loss volume, L γ ( θ ), as defined

by Eq. (22) . The functions f k ( x, θ , t ), k = 1 , 2 , . . . , are given by

the right-hand side of Eq. (20) , namely, f k (x, θ, t) = 0 if t lies in

the interior of an empty-buffer period or a full-buffer period, and

f k (x, θ, t) = α(t) − β(t) otherwise. There are exogenous events and

endogenous events but no induced events. Exogenous events are

discontinuities in realizations of the random functions α( · ) or β( · )

as well as the end of an empty-buffer period or a full-buffer pe-

riod. Endogenous events are the starting times of full-buffer peri-

ods or empty-buffer periods. The functions g k ( x, θ ) (see Eq. (27) )

have the respective forms g k (x, θ ) = x − θ if τ k is the starting time

of a full-buffer period, and g k (x, θ ) = x if τ k is the starting time of

an empty-buffer period. The analysis of the IPA derivative 
dL γ (θ ) 

dθ
,

carried out in Cassandras et al. (2002) , essentially follows the for-

malism developed in this subsection albeit for a simple example,

and yielded the result expressed in Eq. (23). 

We conclude this overview of the IPA calculus with a comment

on the unbiasedness of the IPA derivative d L /d θ . This IPA deriva-

tive is indeed unbiased under very mild technical conditions, as

shown in Cassandras et al. (2010) . The most crucial condition is

the continuity of the sample performance function L (θ ) , which in

many SHS is readily guaranteed. An additional condition is the Lip-

schitz continuity of L (θ ) which follows from upper boundedness

of | dL (θ ) 
dθ

| by an absolutely integrable random variable, generally a

weak assumption. 

4. Recent and current trends 

This section presents some of the main research directions in

IPA which emerged during the past decade. In particular we dis-

cuss applications to large-scale Markov processes and stochastic

hybrid systems, performance regulation of systems, and the use of

event-driven (as opposed to time-driven) methods for control and

optimization. 

4.1. IPA of Markov systems and stochastic optimization 

Until the mid 1990s, IPA was largely limited to “infinitesimal”

perturbations, and could not be applied to perturbations with fi-

nite size. Around this time, however, it was realized that the per-

turbation realization principle applies to finite jumps of states as
ell. This made it possible to develop IPA algorithms for Markov

rocesses. 

Consider an irreducible and aperiodic Markov chain X = { X n :
 ≥ 0 } on a finite state space S = { 1 , 2 , · · · , M} with transition

robability matrix P = [ p( j| i )] ∈ [0 , 1] M×M . Let π = (π1 , . . . , πM 

)

e the vector representing its steady-state probabilities, and f =
( f 1 , f 2 , · · · , f M 

) T be the performance vector, where “T” represents

ts transpose. We have Pe = e, where e = (1 , 1 , · · · , 1) T is an M -

imensional vector whose all components equal 1, and π = πP .

he performance measure is the long term average defined as 

= 

M ∑ 

i =1 

πi f i = π f = lim 

L →∞ 

1 

L 

L −1 ∑ 

l=0 

f (X l ) = lim 

L →∞ 

F L 
L 

, w.p. 1 , (41)

here F L := 

∑ L −1 
l=0 

f (X l ) . 

Let P ′ be another irreducible transition probability matrix on

he same state space. Suppose P changes to P (δ) = P + δQ = δP ′ +
(1 − δ) P, with δ > 0, Q = P ′ − P = [ q ( j| i )] , and the reward function

 keeps the same. We have Qe = 0 . The performance measure will

hange to η(δ) = η + �η(δ) . The derivative of η in the direction of

 is defined as 

dη(δ) 

dδ
= lim 

δ→ 0 

�η(δ) 

δ
. (42)

In this system, a perturbation means that the system is per-

urbed from one state i to another state j . Following the same idea

s in (7) , we study two independent Markov chains X = { X n ; n ≥ 0 }
nd X 

′ = { X ′ n ; n ≥ 0 } with X 0 = i and X ′ 0 = j; both of them have

he same transition matrix P . The realization factor is defined as

n ( Cao, 2007 ): 

 (i, j ) = lim 

L →∞ 

E 

[ 

L −1 ∑ 

l=0 

( f (X 

′ 
l ) − f (X l ) ) 

∣∣∣∣∣X 0 = i, X 

′ 
0 = j 

] 

, 

i, j = 1 , . . . , M . (43)

hus, d ( i, j ) represents the average effect of a jump from i to j on

 L in (41) . From (43) , it is easy to see that d ( i, j ) satisfies the con-

ervation law as in physics: 

(i, k ) = g(i, j) + g( j, k ) , i, j, k ∈ S, 

hus, we can define a vector g = (g(1) , g(2) , · · · , g(M)) T , called

erformance potential , such that 

 (i, j ) = g( j) − g(i ) , i, j ∈ S, 

nd we can verify that it satisfies the Poisson equation 

(I − P + eπ) g = f, (44)

here I is the M × M identity matrix. Multiplying both sides of the

oisson equation with π on the left, we get 

g = π f = η. (45)

ultiplying both sides of the Poisson equation with π ′ on the left

ields 

′ Qg = π ′ (P ′ − P ) g = π ′ (I − P ) g = π ′ f − πg = π ′ f − η. 

hat is, 

′ − η = π ′ Qg. (46)

etting P (δ) = P + δQ and η′ = η(δ) and letting δ → 0 in (46) , we

et the desired performance derivative along the direction Q : 

dη(δ) 

dδ
= πQg. (47)

his equation is consistent with the well known results in the

rea of matrix-algebra Markov chain perturbation analysis, which

ates back to Schweitzer’s work in 1968 ( Schweitzer, 1968 ).

aswell (2013) contains many interesting results on this topic;
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lso see Abbas, Berkhout, and Heidergott (2016) and the refer-

nce therein for more discussion. However, the goal of perturba-

ion analysis of Markov chains, in the context of this paper, is not

o derive the formula per se, but rather to offer a dynamic point

f view for these sensitivity formulas, hence leading naturally to

any applications to dynamic systems, including the sample path

ased learning and optimization algorithms, and a new approach

o Markov decision problems and event-based optimization, as de-

cribed below. 

The derivative in Eq. (47) can be used in performance optimiza-

ion ( Marbach & Tsitsiklis, 2001 ). Efficient algorithms can be de-

ived for estimating g and estimating the derivative dη(δ) 
dδ

directly

 Cao, 2007; 2009 ). We have 

dη

dδ
= 

∑ 

i ∈S 

∑ 

j∈S 
π(i ) q ( j| i ) g( j) = 

∑ 

i ∈S 

∑ 

j∈S 
π(i ) p( j| i ) 

[ 
q ( j| i ) 
p( j| i ) g( j) 

] 

= E 

[ 
q (X k +1 | X k ) 

p(X k +1 | X k ) 
g(X k +1 ) 

] 
, (48) 

here “E ” denotes the steady-state probability, and g ( i ) can be esti-

ated from a sample path. Based on this equation, various efficient

n-line algorithms can be developed to estimate the performance

erivatives Cao (2005) . Now, there is a new area in reinforcement

earning, called policy gradients, devoted to this subject, see e.g.,

axter and Bartlett (2001) , Baxter, Bartlett, and Weaver (2001) and

utton, McAllester, Singh, and Mansour (20 0 0) , etc. 

If the reward function also changes from f to f ′ , let h := f ′ − f .

t is easy to check that 

′ − η = π ′ (Qg + h ) = π ′ { (P ′ g + f ′ ) − (P g + f ) } . (49) 

This is the Performance Difference Formula (PDF); it initiates a

ew direction in performance optimization, the direct-comparison

ased approach . In fact, it is observed that the PDF contains all the

nformation in comparing the performance of any two policies, and

n optimality condition can be simply derived from this equation

ithout dynamic programming or discounting for long-run average

erformance. For example, because π ′ > 0, from (49) , we conclude

f P ′ g + f ′ ≤ P g + f, then η′ ≤ η. (50)

his leads to the optimality condition: a policy ( P ∗, f ∗) with poten-

ial g ∗ is optimal if and only if P g ∗ + f ≤ P ∗g ∗ + f ∗ for all policies

 . Policy iteration algorithms can also be developed from (49) . 

The Direct-Comparison (DC) based approach is an alternative

o dynamic programming (DP) to performance optimization of dy-

amic systems. As illustrated above, this approach is very simple

nd intuitive for long-run average performance; in fact, a complete

heory based on n th bias optimality for long-run average perfor-

ance can be developed with no discounting ( Cao, 20 07; 20 09 ).

ext, the PDF provides global information to performance com-

arison in the entire period; while dynamic programming works

ackwards in time at a particular time instant (continuous or dis-

rete), and hence it only provides local information. Therefore, the

C-based approach opens a new horizon for problems requiring

lobal considerations. 

For example, the approach naturally solves a long existing is-

ue in time non-homogenous Markov systems, the under selectiv-

ty, which means that in performance optimization of time non-

omogenous systems, where the transition probabilities and re-

ard functions are different at different time k = 1 , 2 , · · · , the

ong-run average performance, and for that matter its optimal pol-

cy, does not depend the actions (transition probabilities and re-

ards) in any finite periods ( Cao, 2015 ). The approach has also

een applied to stochastic control problems with diffusion pro-

esses (continuous time and continuous states); it solves the con-

rol problem with non-smooth value functions without resorting to

iscosity solutions ( Cao, 2017 ). 
Eqs. (47) and (49) provide a sensitivity-based view to perfor-

ance optimization. For problems where the performance is not

dditive, (47) may be used. The DC-based approach links both to-

ether naturally, Research in this direction is ongoing and the in-

uence of the sensitivity-based view extends beyond the area of

EDS. 

Last but not the least, combined with the aggregation tech-

ique, the DC-based approach leads to the theory of event-based

ptimization (control) , in which control actions depend on events

ather than the states. This may dramatically reduce the compu-

ation since the number of events (event space) is much smaller

han that of states (state space). Conditions have been derived un-

er which Hamilton-Jacobi-Bellman (HJB) type of optimality equa-

ion holds for event-based control; because the sequence of events

s not Markov and aggregation is used, approximation is usually

nvolved, see Cao (2007) and Xia, Xia, and Cao (2014) . 

More precisely, let e denote an event, which can be understood

s a statistics based on the past history, e.g., an estimate of the

tate in a partially observable Markov decision process (POMDP),

r simply a short period of the history, or a physical event such as

 customer arrival or departure in a queueing network; and let V

e the space of events. The advantage of using such events instead

f states is that event is observable, while state may not, and the

umber of events may be much less than that of states. Let π ( e | i )

e the conditional steady state probability of event e given the cur-

ent state is i , and p ( j | i, e ) be the conditional transition probability

rom i to j given the event e . Then from the PDF (49) , we have 

′ − η

= π ′ [(P ′ − P) g + ( f ′ − f )] 

= 

∑ 

i ∈S 
π ′ (i ) 

{ ∑ 

i ∈S 

∑ 

e ∈ V 
π ′ (e | i )[ p ′ ( j| i, e ) − p( j | i, e )] g( j ) + [ f ′ (i ) − f (i )] 

} 

= 

∑ 

i ∈S 

{ ∑ 

i ∈S 

∑ 

e ∈ V 
π ′ (i, e )[ p ′ ( j| i, e ) − p( j| i, e )] g( j) + π ′ (i )[ f ′ (i ) − f (i )] 

} 

= 

∑ 

e ∈ V 
π ′ (i ) 

∑ 

i ∈S 
π ′ (i | e ) 

{ ∑ 

j∈S 
[ p ′ ( j| i, e ) − p( j | i, e )] g( j ) + [ f ′ (i ) − f (i )] 

} 
(51) 

f we further assume that 

′ (i | e ) = π(i | e ) , (52)

hen the above PDF becomes 

η′ −η

 

∑ 

e ∈ V 
π ′ (i ) 

∑ 

i ∈S 
π(i | e ) 

{ ∑ 

j∈S 
[ p ′ ( j| i, e ) −p( j| i, e )] g( j) + [ f ′ (i ) − f (i )] 

} 

. 

(53) 

herefore, if ∑ 

i ∈S 
π(i | e ) 

{ ∑ 

j∈S 
p ′ ( j| i, e ) g( j) + f ′ (i ) 

} 

≥
∑ 

i ∈S 
π(i | e ) 

{ ∑ 

j∈S 
p( j| i, e ) g( j) + f (i ) 

} 

, (54) 

hen η′ ≥η. Define 

(e, a ) = 

∑ 

i ∈S 
π(i | e ) 

{ ∑ 

j∈S 
p a ( j | i, e ) g( j ) + f a (i ) 

} 

, 

n which a is the action taken at event e , and the superscript “a ”

enote quantities associated with action a. Q ( e, a ) is called Q factor

ssociated with event e and action a . Then policy iteration and the

ptimal policy can be determined according to (54) . When condi-

ion (52) does not hold, approximate results can be developed, see

ia et al. (2014) and Cao (2007) . 
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Fig. 4. Control system. 
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4.2. Performance regulation 

Emerging applications of IPA concern the tracking of a refer-

encee input to a dynamical system by its output process. An ab-

stract, discrete-time single-input-single-output system is depicted

in Fig. 4 , where k denotes time, r ∈ R is the reference input, y k 
is the system’s output, u k is the control input to the plant, and

e k := r − y k is the error signal. The plant generally is a time-varying

dynamical system lacking an accurate model and subjected to un-

predictable variations. 

As an example of interest, it is desirable to regulate the instruc-

tions’ throughput in a computer processor by adjusting its clock

rate, or frequency. More specifically, the time axis is divided into

contiguous periods called control cycles , during each of which the

frequency is set (fixed) and the average throughput is measured.

At the end of the control cycle the frequency is changed by the

controller according to the difference between the given target-

throughput (setpoint) and the average throughput. In this setting

the time counter k indicates the index of the control cycle denoted

henceforth by C k , u k is the value of the clock frequency during C k ,

and y k is the average instruction-throughput computed during C k . 

The plant in Fig. 4 is the processor, and any model thereof

would describe the frequency-to-throughput relationship. Since we

enact a real-time control, there is no need for a model to close the

loop since the output y k is measured. However, we shall see that a

model is needed in order to implement the controller that we have

in mind. An established model of an out-of-order architecture is

provided by a queueing system (see Hennessey & Patterson, 2012 ,

or a simplified exposition in Wardi, Seatzu, Chen, & Yalamanchili,

2016 ) which defies analysis. We use it nonetheless in an effective

way, as described below. 

Returning to the abstract system in Fig. 4 , the objective is to de-

sign a controller which can deliver the desired tracking without a

detailed knowledge of the plant-model while facing wide-ranging

variations in the system’s input-output relationships. Moreover, the

controller has to achieve that in very short time-frames and hence

by simple computations. Tracking typically involves an integrator

in the loop, and to have the controller be as simple as possible we

first considered a standalone integrator. Now it is well known that

a standalone integrator may destabilize the closed-loop system and

otherwise have poor stability margins. Furthermore, to be effec-

tive its gain may have to be determined by data, gathered off line,

concerning the system’s response. However, we cannot obtain such

meaningful data due to the unpredictable variability in a proces-

sor’s workload during program executions. Therefore we adopted a

variable-gain integrator , whose gain is recomputed at the beginning

of each control cycle as a part of the control loop, hence based

only on measurements, in a way that extends the stability mar-

gins and provides the desirable tracking. In fact, simulation testing

showed that this obviates the addition of a proportional element

to the controller. 

The controller has the following form, 

u k = u k −1 + A k e k −1 , 

where u k is the control variable set at the start of C k , A k is com-

puted from measurements made during C k −1 and hence available

at the start of C k , e k −1 = r − y k −1 , and y k −1 is computed from

measurements during C k −1 . When the gain A k is independent of

k = 1 , 2 , . . . we recognize this as an adder, a discrete-time equiv-
lent of an integrator. The gain A k is computed by the following

ormula, 

 k = A k −1 + 

1 

∂y k −1 

∂u k −1 
+ ηk −1 

e k −1 . (55)

he output y k −1 depends not only on u k −1 but possibly also on

oise and other exogenous processes as well as past output like

 k −2 , etc. These variables are not factored in the term 

∂y k −1 

∂u k −1 
which

ence literally stands for the partial derivative. 

The term 

∂y k −1 

∂u k −1 
has to be estimated in real time during C k −1 

s a part of the control loop. However, in the computer applica-

ion described above, and in other DEDS and SHS, we were un-

ble to compute it due to the absence of analytical models for the

lant. Therefore, in Eq. (55) , we allow for an additive error, ηk −1 ,

n its computation. Convergence results of the resulting tracking

lgorithm, derived in Wardi et al. (2016) , account for the presence

f such error terms. Simulation tests verify these results with sub-

tantial relative erros, which can be 30% or higher. In other words,

he performance of the regulation technique is robust with respect

o computational errors in the loop. Leveraging this robustness,

e have estimated 

∂y k −1 

∂u k −1 
by IPA. But unlike unbiasedness and ex-

ct computation, which have been principal concerns in the use

f IPA throughout much its development, we were primarily con-

erned with fast computations while allowing for substantial bias

nd computational errors. 

Results of simulation experiments can be found in

ardi et al. (2016) and references therein. These include queueing

etworks, Petri nets, transportation models, and other DEDS. Of

 particular interest is the case where the plant is a queueing

ystem with biased IPA. For the original problem of interest,

amely instruction-throughput regulation in computer processors,

e used a detailed system-level simulation platform for computer

rchitectures, called Manifold ( Yalamancili, Riley, & Conte, 2016 ).

PA is biased, and we also induced further errors deliberately in

rder to simplify the computations of its derivative. Lately we

mplemented the regulation technique on Haswell, Intel’s fourth-

eneration microarchitecture, Hammarlund et al. (2014) , and

ested it on industry-benchmark programs. In this implementation

e actually adopted a simpler computation of 
∂y k −1 

∂u k −1 
than IPA can

rovide, one that is based on linear approximation. Various results

an be found in Chen, Wardi, and Yalamanchili (2016) . 

To summarize, the technique described in this subsection ex-

ends the research area in IPA in two directions. First, it explores

pplications to systems’ performance regulation rather than opti-

ization. Second, it does not pursue the objectives of unbiased

radient estimates and their precise computations, but rather seeks

imple control laws with fast computations in the loop. 

.3. Event-driven control and optimization 

The emergence of DEDS in the 1980s brought to the forefront

n alternative viewpoint to the traditional time-driven paradigm in

hich time is an independent variable and, as it evolves, so does

he state of a dynamic system. The event-driven paradigm offers an

lternative, complementary look at modelling, control, communi-

ation, and optimization ( Cassandras, 2014; Miskowicz, 2015 ). The

ey idea is that a clock should not be assumed to dictate ac-

ions simply because a time step is taken; rather, an action should

e triggered by an “event” specified as a well-defined condition

n the system state or as a consequence of environmental un-

ertainties that result in random state transitions. Observing that

uch an event could actually be defined to be the occurrence of

 “clock tick”, it follows that this framework may in fact incorpo-

ate time-driven methods as well. On the other hand, defining the
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roper “events” requires more sophisticated techniques compared

o simply reacting to time steps. In the development of DEDS, such

vents were seen as the natural means to drive the dynamics of

 large class of systems including computer networks, manufactur-

ng systems, and supply chains among many. By the early 1990s,

owever, it became evident that many interesting dynamic sys-

ems are in fact “hybrid” in nature, i.e., at least some of their state

ransitions are caused by (possibly controllable) events. This has

een reinforced by technological advances through which sensing

nd actuating devices are embedded into systems allowing physi-

al processes to interface with such devices which are inherently

vent-driven. More recently, the term Cyber-Physical System (CPS)

as emerged to describe the hybrid structure of systems where

ome components operate as physical processes modeled through

ime-driven dynamics, while other components (mostly digital de-

ices empowered by software) operate in event-driven mode. 

Moreover, many systems of interest are now networked and

patially distributed. In such settings, especially when energy-

onstrained wireless devices are involved, frequent communica-

ion among system components can be inefficient, unnecessary,

nd sometimes infeasible. Thus, rather than imposing a rigid time-

riven communication mechanism, it is reasonable to seek instead

o define specific events which dictate when a particular node in a

etwork needs to exchange information with one or more other

odes. When, in addition, the environment is stochastic, signifi-

ant changes in the operation of a system are the result of ran-

om event occurrences, so that, once again, understanding the im-

lications of such events and reacting to them is crucial. In dis-

ributed systems, event-driven mechanisms have the advantage of

ignificantly reducing communication among networked compo-

ents without affecting desired performance objectives. In multi-

gent systems where the goal is for networked components to co-

peratively maximize (or minimize) a given objective, it is shown

n Zhong and Cassandras (2010) that an event-driven scheme can

till achieve the optimization objective while drastically reduc-

ng communication (hence, prolong the lifetime of a wireless net-

ork), even when delays are present (as long as they are bounded).

vent-driven approaches are also attractive in receding horizon

ontrol, where it is computationally inefficient to re-evaluate a

ontrol value over small time increments as opposed to event oc-

urrences defining appropriate planning horizons for the controller.

inally, as already pointed out in Section 4.1 , the use of event-

riven optimization methods has the benefit of scaling with the

ize of the event-space and not the (generally much larger) state

pace of a system. 

In Section 3 , we discussed how IPA is used in the control and

ptimization of SHS based on the general-purpose IPA Calculus.

owever, even when a hybrid system is studied in a determinis-

ic setting, IPA proves extremely useful in evaluating performance

radients on line that can be used for the purpose of optimiz-

ng the operation of complex multi-agent systems. These are com-

only modeled as hybrid systems with time-driven dynamics de-

cribing the motion of the agents or the evolution of physical pro-

esses in a given environment, while event-driven behavior char-

cterizes events that may occur randomly (e.g., an agent failure)

r in accordance with control policies (e.g., an agent stopping to

ense the environment or to change direction). As such, a multi-

gent system can be studied in the context of the IPA Calculus with

arameterized controllers aiming to meet certain specifications or

o optimize a given performance metric. In some cases, the solu-

ion of a multi-agent dynamic optimization problem is reduced to

 policy which is naturally parametric. Therefore, IPA may be used

o evaluate on line performance gradients through which one can

rive the system towards optimal (at least locally) points; recent

xamples of this approach may be found in Cassandras, Lin, and

ing (2013) and Zhou, Yu, Andersson, and Cassandras (2016) . 
. Conclusions 

This paper provides a narrative of the evolution of PA from an

lgorithm for a specific buffer allocation problem in a production

ine to a general framework for sensitivity analysis of stochastic

ybrid dynamical systems. Central to PA is Infinitesimal Perturba-

ion Analysis, a data-driven technique for computing realizations of

tochastic gradients of performance metrics with respect to finite-

imensional system-parameters. Such gradients can be used in per-

ormance optimization, be it off line via simulation or on-line by

bserving data from a real system in operation. 

One of the key features of IPA is the simplicity of its gradient-

ormulas in a great number of systems of interest. This, coupled

ith its reliance on observed data, suggests its use in control via

eal-time optimization. However, shortly after the inception of IPA

n the DEDS setting, it was discovered that its gradient estimators

ften are statistically biased, thereby raising questions about the

iability of the technique. Its subsequent development has had to

restle with this issue; various alternative sample-based (hence

ata-based) algorithms were developed which, though unbiased,

ere more complicated than the basic IPA. 

An approach that gained traction, initially based on continuous-

ow queues, subsequently has been developed into a modelling

ramework of stochastic hybrid systems. In its setting, the IPA gra-

ients are unbiased in a far-larger class of systems than in equiva-

ent DEDS models, while preserving their simplicity of computa-

ions and reliance on observed data. This approach recently has

een used in various applications. 

Another approach of current interest concerns the sensitivity of

uantiles of any random variable ( Hong, 2009 ). It has a potential

n many large-scale systems, and recently has been applied to per-

ormance sensitivities in financial engineering ( Cao & Wan, 2017 ). 

Future developments of IPA likely will focus on large-scale,

omplex systems and problems, with emphasis on control via real-

ime parameter optimization. In this, it naturally can be used

n conjunction with big-data techniques which provide finite-

imensional parametrization of a system’s behavior. Its scalabil-

ty with systems’ dimensions can be attained by leveraging the

act that it essentially is event-driven and hence suitable in event-

riven control, thereby circumventing computational complexities 

ssociated with state-space explosions. Another potential research

roblem concerns decentralized real-time optimization in complex,

ulti-agent systems. In all of these problems the role of IPA can be

ummarized as providing gradient estimates for sensitivity analy-

is and on-line system optimization while managing computational

omplexity. 
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