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Abstract: We consider optimal control problems for a class of hybrid systems with
switches dependent on an external event process. In the case where all event times
in this process are fully known, the solution to such problems was obtained in prior
work. When event times are uncertain or unknown, we have proposed in prior
work a Receding Horizon (RH) control scheme in which only some future event
information is available within a time window of length T and have obtained several
properties of this scheme. In this paper, we derive additional properties, including
the fact that the error due to lack of future event information is monotonically
decreasing under certain conditions and may be zero for segments of the sample
path, depending on the window length T . Copyright, 2003, IFAC
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1. INTRODUCTION

Hybrid Systems are characterized by the combi-
nation of time-driven and event-driven dynam-
ics. A simple way to think of a hybrid system
is as one characterized by a set of operating
“modes”, each one evolving according to time-
driven dynamics described by differential (or dif-
ference) equations. The system switches between
modes through discrete events which may be con-
trolled or uncontrolled. Controlling the switching
times, when possible, and choosing among sev-
eral feasible modes, whenever such choices are
available, gives rise to a rich class of optimal
control problems (Branicky et al., 1998),(Piccoli,
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Dec. 1998),(Sussmann, Dec. 1999),(Hedlund and
Rantzer, 1999),(Xu and Antsaklis, Dec. 2000a).
Unfortunately, not only does one have to deal with
the well-known “curse of dimensionality” in such
problems, but there are at least two additional
sources of complexity to deal with, i.e., the pres-
ence of switching events causing transitions from
one mode to another (which introduces a combina-
torial element into the control), and the presence
of event-driven dynamics for the switching times
(which introduce nondifferentiabilities). To over-
come these difficulties, it is often natural to hier-
archically decompose a system into a lower-level
component representing physical processes char-
acterized by time-driven dynamics and a higher-
level component controlling discrete events related
to these physical processes. In this spirit, a hi-
erarchical decomposition method was introduced
in (Gokbayrak and Cassandras, March 2000) and,



independently, in (Xu and Antsaklis, 2000b). The
explicit solution of the lower and higher-level
problems depends on the specifics of the time-
driven and event-driven dynamics involved.

To complicate matters, some of the most inter-
esting problems one encounters in dealing with
hybrid systems involve some form of uncertainty,
which generally calls for stochastic modeling and
solution techniques. In this paper, we attempt to
deal with this issue for a class of optimal control
problems where the event-driven dynamics may
be captured through ‘max-plus’ equations. In such
cases, switching times are controllable, but they
are dependent upon an external event process
in which the associated event times {a1, . . . , aN}
are generally unknown. If this sequence is fully
deterministic, optimization problems formulated
as in (Pepyne and Cassandras, 1998),(Cassandras
et al., 2001) can be efficiently solved through
the “Forward Algorithm” presented in (Cho et

al., 2001). If it is not, then one approach is to
model it as a stochastic process as in (Gokbayrak
and Cassandras, Dec. 1999) where the structure of
an optimal policy can be determined, but explicit
calculations are difficult.

In (Cassandras and Mookherjee, 2003a), we take
a different approach in the way we view uncer-
tainties in {a1, . . . , aN}. In past work, it was as-
sumed that all future events following any time
t when a control decision needs to be made are
known. Thus, if we associate with t an “infor-
mation window” [t, t + T ], it was assumed that
T = ∞. A natural next step is to consider
T < ∞ and within a window [t, t + T ] assume
that event times (if any are present) are deter-
ministically known. Event times outside [t, t+ T ]
can only be described probabilistically, possibly
estimated, or there may be no information at all
regarding events beyond time t+ T . The optimal
control problem we now tackle is defined over a
“receding horizon” determined by the length T
of the window at the controller’s disposal. The
nature of this scheme lends itself to what we term
a Receding Horizon (RH) controller. By varying
T , we can then analyze the performance of the
resulting controller, which becomes an approxi-
mation to the optimal one (and recovers it for
T → ∞). The idea of a “receding horizon” is one
commonly associated with optimal control prob-
lems for which feedback solutions are extremely
hard or impossible to obtain (e.g., (Mayne and
Michalska, 1990)) and it is usually encountered
in model predictive control. Intuitively, it is in-
tended to trade off anticipating future unknown
events against simpler, tractable control over a
shorter, but containing known events, planning
horizon. Our work explores the extent to which
this way of dealing with uncertainty is effective
by analyzing the relationship between the optimal

and the RH controller’s cost/performance and the
role that T plays. In this paper, we use the Re-
ceding Horizon (RH) control scheme introduced in
(Cassandras andMookherjee, 2003a) and compare
sample paths obtained through this scheme to an
optimal sample path. An optimal sample path
is decomposed into segments which have been
shown to be decoupled (Cassandras et al., 2001).
Each such segment may include certain events
termed “critical” with special properties. Several
properties of the RH controller in the absence of
critical events in the optimal path were derived in
(Cassandras and Mookherjee, 2003a). In particu-
lar, we have shown that the error introduced by
the RH controller relative to the optimal one is,
under certain conditions, monotonically decreas-
ing and may become zero for parts of the sample
path. In this paper, we carry out the analysis of
sample paths under the RH controller when the
optimal sample path contains such critical events.
We are able to show that this “error-reducing”
property still holds under certain conditions and
fully characterize these conditions.

2. OPTIMAL CONTROL PROBLEM AND
SOLUTION

In hybrid systems, the state consists of tempo-
ral and physical components. The class of prob-
lems we will concentrate on involves event-driven
switching time dynamics described by

xi = max(xi−1, ai) + si(ui) (1)

where {ai}, i = 1, . . . , N , is a given sequence
of event times corresponding to an asynchro-
nous event process operating independently of the
physical processes {zi(t), t ∈ [xi−1, xi)} (we define
the physical state of the system after the ith event
by zi(t)). This “max-plus” recursive relationship
is the well known Lindley equation in queueing
theory (Cassandras and Lafortune, 1999). It is
worhwhile to mention that the presence of themax
function introduces a nondifferentiable component
into the solution of the overall problem. In the
context of a manufacturing system workstation,
the mode switches correspond to jobs that we
index by i = 1, . . . ,N . A job is associated with a
temporal state evolving according to (1) where xi
is the departure time of the ith job when the server
processes one job at a time on a first-come first-
served nonpreemptive basis. Jobs arriving when
the server is busy wait in an infinite-capacity
queue and {a1, . . . , aN} is a sequence of job arrival
times. The processing time of the ith job (which
we will denote by Ci) is si(ui). A job is also asso-
ciated with a physical state evolving according to
żi = gi(zi, ui, t), zi(xi−1) = z0i , t ∈ [xi−1, xi) and
describing changes the ith job undergoes while in
process in such quantities as the temperature, size,



weight or some other measure of the “quality” of
the job. Thus, the ith “mode” of a workcenter in
this context corresponds to the processing of the
ith job. The interaction of the time-driven and
event-driven dynamics leads to a natural trade-off
between temporal requirements on job completion
times and physical requirements on the quality
of the completed jobs. Let us briefly review the
optimization problem introduced in (Cassandras
et al., 2001) and solved through the Forward Al-
gorithm developed in (Cho et al., 2001). When
the processing of each job stops as soon as a given
“quality level” in its physical state zi is reached
and the control is the amount of processing time,
i.e., si(ui) = ui in (1), the problem has been
shown to become

min
u1,...,uN

N∑
i=1

[θi(ui) + ψi(xi)] (2)

subject to (1), with control variables ui assumed
to be scalar and not time-dependent. Thus, ui
is the processing time of the ith job, chosen
at the beginning of its processing cycle, i.e., at
time max(xi−1, ai). The cost function θi(ui) pe-
nalizes poor physical quality, in the sense that less
processing time monotonically decreases quality
and, hence, increases a cost θi(ui), while ψi(xi)
imposes a cost on the departure time xi. As in
(Cassandras et al., 2001), we make the following
assumptions:

Assumption A1. For each i = 1, . . . , N, θi(·) is
strictly convex, twice continuously differentiable
andmonotonically decreasing with limui→0+ θi(ui) =
− limui→0+

dθi
dui

= ∞ and limui→∞ θi(ui) =

limui→∞
dθi
dui

= 0.

Assumption A2. For each i = 1 = 1, . . . , N,
ψi(·) is strictly convex, twice continuously differ-
entiable, and its minimum is obtained at a finite
point δi.

A typical sample path of this system can be
partitioned into “busy” and “idle” periods. In this
paper, we make use of the following definitions
(see also (Cassandras et al., 2001)). An idle period
is a time interval (xk, ak+1) such that xk < ak+1

for any k = 1, ..., N − 1. A Busy Period (BP) is a
set of contiguous jobs {k, ...., n}, 1 ≤ k ≤ n ≤ N
such that the following conditions are satisfied: (i)
xk−1 < ak, (ii) xn < an+1, and (iii) xi ≥ ai+1 for
every i = k, ..., n− 1. A busy-period structure is a
partition of the jobs 1, ...., N into busy periods.
A job Ci is critical if it departs at the arrival
time of the next job Ci+1, i.e. xi = ai+1. Finally,
consider a contiguous job subset {Ck, . . . , Cn},
1 ≤ k ≤ n ≤ N . This subset is said to be a block if
(i) xk−1 ≤ ak and xn ≤ an+1, and (i) the subset
contains no critical jobs.

Obtaining an explicit solution to problem (2) is
tantamount to identifying the BP structure of
the optimal state trajectory and then solving a
nonlinear optimization problem within each BP.
Let us denote a BP that starts at ak and ends at
xn by the job indices (k, n). Then, we define the
problem Q(k, n):

Q(k, n) : min
uk,...,un




n∑
i=k

{θi(ui)+

ψi(ak +
i∑

j=k

uj)} : ui ≥ 0



(3)

s.t. ak +
i∑

j=k

uj ≥ ai+1, i = k, . . . , n− 1

Note that we have set ψi(xi) = ψi(ak +
∑i

j=k uj)
since, within a BP, xj+1 = xj + uj+1 for all
i = k, . . . , n − 1. The constraint represents the
requirement xi ≥ ai+1 for any job i = k, . . . , n−1
belonging to the BP. Since the cost functional
is continuously differentiable and strictly convex,
the problem Q(k, n) is also a convex optimization
problem with linear constraints and has a unique
solution at a finite point. The solution of Q(k, n)
is denoted by u∗j (k, n) for j = k, . . . , n, and the
corresponding departure times are x∗

j (k, n).

The optimal solution in (2) is denoted by u∗
i ,

i = 1, . . . , N and the corresponding departure
times are x∗

i . It was shown in (Cassandras et

al., 2001) that the optimal solution is unique. The
Forward Algorithm for obtaining this solution is
based on the fact that x∗i is given by x∗

i (k, n) for
some k, n as follows:

Theorem 1. (Cho et al., 2001) Jobs k, . . . , n con-
stitute a single busy period on the optimal sample
path if and only if the following conditions are
satisfied: (i) ak > x∗k−1, (ii) x

∗
i (k, i) ≥ ai+1 for all

i = k, . . . , n− 1, (iii) x∗
n(k, n) < an+1.

It follows from this theorem that x∗i = x∗i (k, n) for
all i = k, . . . , n. In particular, the Forward Algo-
rithm proceeds forward in time without the need
for multiple forward-backward sweeps that are
typically required to solve a two-point-boundary-
value problem. Letting k = 1, n = 1, we first
solve the linearly constrained convex optimization
problem Q(k, n) and obtain the control u∗

j (k, n),
j = k, . . . , n and departure times x∗j (k, n), j =
k, . . . , n. Then the structure of BPs is identified
by checking if x∗n(k, n) < an+1. If Ck, · · · , Cn are
identified as a single BP, the optimal control is
given by u∗

j = u∗j (k, n), j = k, . . . , n. Then, the
process is repeated for a new BP starting at an+1.
This algorithm requires N steps.



3. RECEDING HORIZON CONTROL

Throughout the discussion above we have as-
sumed the sequence {a1, . . . , aN} to be determin-
istic, i.e., a schedule of all job arrivals is known
in advance. In what follows, we shall assume that
knowledge of the future at time t is limited to
a “window” [t, t+ T ] for some given T . It is then
natural to solve a sequence of problems of the form
(2) replacing (u1, . . . , uN ) by some (ui, . . . , ui+r)
where Ci is the next job whose processing time
needs to be assigned and Ci+r is the last job
known to arrive at some time ai+r ≤ t + T . The
window is updated at every decision instant, i.e.,
upon departure of a job.

We distinguish the optimal controls u∗
i and corre-

sponding departure times x∗
i , i = 1, . . . ,N , from

those obtained through a control scheme limited
in future knowledge by denoting the latter by ũi
and x̃i respectively. We shall also use the index t
to represent the last job processed under such a
controller, so that the current information window
is [x̃t, x̃t + T ] and the Receding Horizon (RH) for
the overall problem is x̃t+T . We will also assume
that any arrival time information provided at x̃t

is “perfect” in the sense that both the optimal
and the RH controller make decisions based on the
same {ai} such that x̃t < ai ≤ x̃t + T . Assuming
the current decision time to be x̃t, the index of
the last job contained within [x̃t, x̃t + T ] is given
by l = argmaxr≥t{ar : ar ≤ x̃t + T} where we
note that l = t indicates that there are no arrival
events in [x̃t, x̃t+T ]. Similar to Q(k, n) in (3), let
us now consider a problem Q̃(t+1, n) defined for a
sample path generated by the RH controller when
a decision time for job Ct+1 comes up:

Q̃(t+ 1, n) : min
ũt+1,...,ũn




n∑
i=t+1

{θi(ũi)+

ψi[max(x̃t, at+1)+
i∑

j=t+1

ũj ]} : ũi ≥ 0



(4)

s.t. max(x̃t, at+1) +
i∑

j=t+1

ũj ≥ ai+1,

i = t+ 1, . . . , n− 1

Setting k = t+1 in (3), the only difference between
Q(t + 1, n) and Q̃(t + 1, n) lies in replacing at+1

by max(x̃t, at+1). This is due to the fact that
Q(t + 1, n) is always solved with the knowledge
that Ct+1 starts a BP. However, in the RH control
scheme Ct+1 does not necessarily start a BP. In
particular, at time x̃t the controller can determine
whether at+1 ≤ x̃t, in which case Ct+1 cannot
start a BP. When this is true, Q̃(t+1, n) above is
solved with max(x̃t, at+1) = x̃t for n = t+1, . . . , l
as if x̃t were initiating a BP and there are only

l − t jobs left to process. Since in this scheme all
controls ũj , j ≤ t are already fixed at the time
that ũt+1 is evaluated, our goal is to determine the
“optimal” controls for the remainder of a BP or
x̃t+T , whichever comes first. The solution of Q̃(t+
1, n) is denoted by ũi(t+1, n), i = t+1, . . . , n−1.
The detailed RH controller operation is described
in (Cassandras and Mookherjee, 2003a).

4. RECEDING HORIZON (RH)
CONTROLLER PROPERTIES

Our analysis of the RH controller properties,
compared to the behavior obtained under the
optimal control, is organized in two parts. First,
we consider BPs (k, n) on the optimal sample path
such that no critical job is present and establish
properties of the RH controlled system for jobs
indexed by t such that k−1 ≤ t < n. As mentioned
earlier, we have already investigated this case
in (Cassandras and Mookherjee, 2003a). In the
remainder of this paper, we target BPs on the
optimal sample path that do include critical jobs.
We establish the fact that the same properties still
apply under additional conditions.

In the case where an optimal path BP (k, n)
contains no critical jobs, we have shown in
(Cassandras and Mookherjee, 2003a) that the RH
controlled system will also not have any critical
jobs over the range k − 1, . . . , n − 1; regarding
the nth job, it is possible that it becomes critical,
i.e., x̃n = an+1. Based on these facts, we have
established the following two key properties of
the RH controller: (i) x̃i ≥ x∗i , k ≤ i ≤ n, and
(ii) The error of job Ci, defined as εi = x̃i − x∗

i ,
is monotonically decreasing when the condition
x̃t +T ≥ an holds. The implication of these prop-
erties is that the RH controller often incurs no
error upon completion of some BPs and this error
remains bounded. Formally, these properties are
stated and proved in (Cassandras and Mookher-
jee, 2003b).

In the case where an optimal path BP (k, n)
contains critical jobs, we can obtain several simple
properties similar to the ones in (Cassandras and
Mookherjee, 2003a). In addition, concentrating on
the last block of an optimal path BP, assuming the
presence of at least one critical job in this BP, we
obtain the following two theorems.

Theorem 2. Let (k, n) define the last block of
an optimal path BP. Let x̃t, k − 1 ≤ t < n, be
the current decision time on some BP of the RH
sample path that ends with Cñ. Then, x̃i ≥ x∗i for
all i = t+ 1, . . . ,min(n, ñ).

Theorem 3. Let (k, n) define the last block of
an optimal path BP. Let x̃t, k − 1 ≤ t < n, be



the current decision time on some BP of the RH
sample path and assume that x̃t + T ≥ an. Then,
(i) If t < k and Ck also starts a block in the RH
path: εi = 0 for all i = k, . . . , n, (ii) If k ≤ t < n,
εi+1 ≤ εi for all i = t + 1, . . . , n and if εj = 0
for some j ∈ {t + 1, . . . , n}, then εi = 0 for all
i ∈ {j + 1, . . . , n}.

Note that the results in Theorems 2 and 3 apply
only to the last block of an optimal path BP.
In our earlier work, we were able to establish
the same results for a complete optimal path BP
containing no critical jobs. An obvious question
then is whether similar results apply for blocks
other than the last one in an optimal path BP.
Generally, this is not the case, which implies that
the error εi may in fact increase even if x̃t +
T ≥ an in a block (k, n); it is only when the last
block is encountered that we can rely on error
reduction. However, it turns out that modifying
the nature of the cost function in (2) allows us to
establish similar properties for all blocks. Thus,
let us proceed by modifying Assumption A2 to
consider functions ψi(·) that are monotonically
increasing. This is in fact a reasonable condition to
impose from a practical standpoint, as discussed
in (Zhang and Cassandras, Dec. 2001). Thus, we
will replace Assumption A2 by the following:

Assumption A3. For each i = 1 = 1, . . . , N,
ψi(·) is strictly convex, twice continuously differ-
entiable, and monotonically increasing.

Clearly, all properties derived so far still hold
under Assumption A3 as well. In addition, the
next Theorem is significant because it allows us to
establish the fact that x̃i upper bounds x∗i under
certain conditions.

Theorem 4. Let (k, n) define an optimal path BP
with at least one critical job. Let x̃t, k−1 ≤ t < n,
be the current decision time on some BP of the RH
sample path and assume that x̃t +T ≥ an. Under
AssumptionA3, if there are r critical jobs indexed
by B1 < . . . < Br in the optimal path between
Ct+1 and Cn and none of these jobs is critical in
the RH path, then x̃i ≥ x∗

i for all i = t+1, . . . , n,
and x̃i > x∗

i for all i = B1, . . . , Br.

Our final result deals with the error reducing

property which comes into play under the same
condition as that of Theorem 4.

Theorem 5. Let (k, n) define an optimal path BP
with at least one critical job. Let x̃t, k−1 ≤ t < n,
be the current decision time on some BP of the
RH sample path and assume that x̃t + T ≥ an.
Under Assumption A3, if there are r critical jobs
indexed by B1 < . . . < Br in the optimal path
between Ct+1 and Cn and none of these jobs is

Fig. 1. Ensemble Average of % Error in Cost func-
tion vs Receding HorizonWindow Length (T )
over 25 samples

critical in the RH path, then εi+1 ≤ εi for all
i = t+ 2, . . . , n.

An interesting observation resulting from the the-
orem above is that as long as no critical jobs are
observed on an unfolding RH sample path, we can
conclude that the error reducing property holds.

5. NUMERICAL EXAMPLES

As an illustration of the performance of the RH
controller compared to the Forward Algorithm
(Cho et al., 2001), known to provide the unique
optimal solution of problem (2), we consider a
problem with N = 30 jobs whose arrival times are
uniformly distributed over [0, 15]. In this problem
formulation we assume two different cost func-
tions: In Case 1, ψi(·) is strictly convex and
monotonically increasing, while in Case 2, ψi(·)
is not monotonically increasing. In particular, in
Case 1 : θi(ui) = 1/ui and ψi(xi) = (xi − ai)

2

where (xi − ai) is the system time of job Ci, and
in Case 2 : θi(ui) = 1/ui and ψi(xi) = (xi − di)

2

where di is a specified deadline of job Ci. In this
example, we set di = ai + 0.5. Using the Forward
Algorithm (Cho et al., 2001) with all 30 jobs we
have obtained the optimal sample path (u∗i and
x∗i for all i = 1, . . . , 30). For different values of
the RH window size parameter T , we have also
determined the sample path under RH control
(ũi(T ) and x̃i(T ) for all i = 1, . . . , 30). We then
investigate the effect of T on the error. To do
so, we define the % error in the cost function

for a given T and set of arrivals as the fraction
[(RH cost −Optimal cost)/(Optimal cost)]× 100.
Averaging over 25 different realizations of the
arrival process defined above and varying T , we
have obtained Fig. 1. We observe that the error
becomes negligible for T of about 1.5.

In order to visualize the error reducing property
of εi, we have plotted the error εi for all i =
1, . . . , 100 for different values of T , as shown in



Fig. 2. Error εi(T ) over job index i for different T
values under Case 1

Fig. 2 under Case 1 (similar results are obtained
for Case 2). An arrival sequence is considered
with 100 jobs whose arrival times are uniformly
distributed over [0, 45]. Note that the error can
become highly negative (however, this phenom-
enon is rare), but the error reducing property
immediately takes effect and brings it back to
0. In addition, observe that substantial parts of
the sample paths have zero error; in the case of
T = 1.5, the majority of the sample path has in
fact zero error.

6. FUTURE WORK

The receding horizon approach provides one way
to deal with event uncertainties, when a controller
has some limited look-ahead capability, without
resorting to stochastic models and methods. We
have assumed so far that the look-ahead event
time information is perfect, a condition that may
be relaxed if one is willing to estimate such event
times. Ongoing research is addressing this possi-
bility, as well as the obvious dependence of the
accuracy of the RH controller on the window size
T .
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