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A Real-Time Optimal Eco-driving Approach for Autonomous Vehicles
Crossing Multiple Signalized Intersections*
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Abstract— This paper develops a methodology for obtaining
an optimal acceleration/speed profile for a single autonomous
vehicle crossing multiple signalized intersections without stop-
ping in free flow mode. We aim to minimize an objective
function that involves a trade-off between travel time and en-
ergy consumption of autonomous vehicles. Our design approach
differs from most existing approaches based on numerical cal-
culations: it begins with identifying the structure of the optimal
acceleration profile and then showing that it is characterized
by several parameters, which are used for design optimization.
Therefore, the infinite dimensional optimal control problem is
transformed into a finite dimensional parametric optimization
problem, which enables a real-time online analytical solution.
We include simulation results to show quantitatively the advan-
tages of considering multiple intersections jointly rather than
dealing with them individually. Based on mild assumptions, the
optimal eco-driving algorithm is readily extended to include
interfering traffic.

Index Terms— Autonomous vehicles, interior-point con-
straints, optimal control, parametric optimization, vehicle-to-
infrastructure communication

I. INTRODUCTION

The alarming state of existing transportation systems has
been well documented. From a control and optimization
standpoint, the challenges stem from requirements for in-
creased safety, increased efficiency in energy consumption,
and lower congestion both in highway and urban traf-
fic. Connected and automated vehicles (CAVs), commonly
known as self-driving or autonomous vehicles, provide an
intriguing opportunity for enabling users to better monitor
transportation network conditions and to improve traffic flow.
Their proliferation has rapidly grown, largely as a result
of Vehicle-to-X (or V2X) technology [1] which refers to
an intelligent transportation system where all vehicles and
infrastructure components are interconnected with each other.
Such connectivity provides precise knowledge of the traffic
situation across the entire road network, which in turn helps
optimize traffic flows, enhance safety, reduce congestion, and
minimize emissions. Controlling a vehicle to improve energy
consumption has been studied extensively, e.g., see [2]-[5].
By utilizing road topography information, an energy-optimal
control algorithm for heavy diesel trucks is developed in
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[4]. Based on Vehicle-to-Vehicle (V2V) communication, a
minimum energy control strategy is investigated in car-
following scenarios in [5]. Another important line of research
focuses on coordinating vehicles at intersections to increase
traffic flow while also reducing energy consumption. De-
pending on the control objectives, work in this area can be
classified as dynamically controlling traffic signals [6] and
as coordinating vehicles [7], [8], [9], [10]. More recently, an
optimal control framework is proposed in [11] for CAVs to
cross one or two adjacent intersections in an urban area. The
state of art and current trends in the coordination of CAVs
is provided in [12].

Our focus in this paper is on an optimal control ap-
proach for a single autonomous vehicle approaching multiple
intersections in free flow mode in terms of energy con-
sumption and taking advantage of traffic light information.
The term “ECO-AND” (short for “Economical Arrival and
Departure”) is often used in the literature to refer to this
problem [13]. Its solution is made possible by vehicle-to-
infrastructure (V2I) communication, which enables a vehicle
to automatically receive signals from upcoming traffic lights
before they appear in its visual range. For example, such
a V2I communication system has been launched in Audi
cars in Las Vegas by offering a traffic light timer on their
dashboards: as the car approaches an intersection, a red traffic
light symbol and a “time-to-go” countdown appear in the
digital display and reads how long it will be before the
traffic light ahead turns green [14]. Clearly, an autonomous
vehicle can take advantage of such information in order
to go beyond current “stop-and-go” to achieve “stop-free”
driving. Along these lines, the problem of avoiding red traffic
lights is investigated in [15]-[18]. The purpose in [15] is to
track a target speed profile, which is generated based on the
feasibility of avoiding a sequence of red lights. The approach
uses model predictive control based on a receding horizon.
Avoiding red lights with probabilistic information at multiple
intersections is considered in [16], where the time horizon
is discretized and deterministic dynamic programming is
utilized to numerically compute the optimal control input.
The work in [17] devises the optimal speed profile given
the feasible target time, which is within some green light
interval. A velocity pruning algorithm is proposed in [18]
to identify feasible green windows, and a velocity profile
is calculated numerically in terms of energy consumption.
Most existing work solves the eco-driving problem with traf-
fic light constraints numerically, invoking methods such as
dynamic programming [16], [19], and predictive control [15].
To enable the real-time use of such eco-driving methods, it
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is desirable to have an on-line analytical solution [20]. Even
though the analytical solution may not be able to handle
uncertainties, it provides a performance lower bound, which
quantifies the performance gap between numerical solutions
and analytical solutions. On the other hand, the analytical
solution provides a reference trajectory.

It is clear that a need exists for developing new methods
for eco-driving of autonomous vehicles with traffic light con-
straints. This paper aims to address this need by proposing an
extension to our previous approach from a single signalized
intersection [21], [22] to multiple intersections [23], [24].
We show explicitly that the optimal acceleration profile
has a piecewise linear form, similar to the results in [21],
[22], that includes all state equality and temporal inequality
constraints involved. It follows from the theoretical analysis
that the optimal acceleration profile can be parameterized by
a piecewise linear function of time, which offers a real-time
analytical solution to eco-driving of autonomous vehicles
crossing multiple signalized intersections without stopping.
We illustrate the effectiveness of the proposed optimal
parametric approach through simulations and show that it
yields better results compared with our previous eco-driving
approach [21], [22] applied to each intersection individually.
We also show that the optimal eco-driving algorithm can be
adjusted to handle the case with interfering traffic under the
assumption of the availability of some traffic information.

II. PROBLEM FORMULATION

The vehicle dynamics are modeled by a double integrator

E(t)=wv(t), (1)
0(t) =u(t), 2)

where x (t) is the travel distance of the vehicle relative to
some origin on the road, which may include turns, v (%)
the velocity, and u (t) the acceleration/deceleration. At to,
the initial position and velocity are given by z (t9) = x
and v (tgp) = wo, respectively. On-road vehicles have to
obey traffic rules, such as the minimum and maximum
speed permitted 0 < vpin < v () < Umax. The physical
constraints on acceleration and deceleration are determined
by vehicle parameters wmin < 4 () < Umax, Where Uiy <
0 and Umax > 0 denote the maximum deceleration and
acceleration, respectively.

Assume that there are N intersections. Each intersection
1 is equipped with a traffic light, which is dictated by the
square wave f; (t) defined below

i (1) = 1, when kT; <t < kT, + D;T;,
7L 0, when kT + DTy <t < KT + 1T,

where f; (t) = 1 indicates that the traffic light is green, and
fi (t) = 0 indicates that the traffic light is red. The parameter
0 < D; < 1 is the fraction of the time period T; during
which the traffic light is green, and k¥ = 0,1,..., are non-
negative integers. Assume that there is no offset among the
signals. Our algorithm also supports dynamically actuated
traffic signals if the time until green/red can be determined

and communicated to the autonomous vehicle. Then we can
re-solve the problem with the new timing information.

Let {t;})¥, be a sequence of intersection crossing times
with ¢;.1 > t;, that is, z (;) = 23:1 l;, where 1; is the
length of road segment j. To ensure stop-free intersection
crossing, t; must be within the green light interval, that is,
kT; <t; < kT; + D;T; for some non-negative integer k.

Our objective is the eco-driving of autonomous vehicles
crossing multiple intersections in terms of both time and
energy efficiency. Therefore, our problem formulation is
given below:

Problem 1: ECO-AND Problem

tp
J= m(ir)lpt (tp — to) +pu/ u? (t) dt
wu(t

to
subject to
(1) and (2) (3)
a:(ti):zjzllj,izl,...,N 4)
Umin S v (t) S VUmax (5)
Umin S u (t) S Umax (6)
kT <t; <kT;+DT;, i=1,...,N (7N

for some non-negative integers k;, where p, and p, are the
weight parameters, and £, = ¢,y is the time when the vehicle
arrives at the last intersection.

Procedures for normalizing these two terms p; and p,, for
the purpose of a well-defined optimization problem can be
found in [21], [22] by properly determining weights p; and
pu- In Problem 1, the term J* = t, — ¢ is the travel time
while J* = Ll” u? (t) dt captures the energy consumption;
see [25].

III. MAIN RESULTS

Before proceeding further, let us first introduce a lemma,
which will be used frequently throughout the following
analysis.

Lemma 1: Consider the vehicle’s dynamics (1) and (2)
with initial conditions xy and vg. If the acceleration profile
of the vehicle has the form w (t) = at + b during the time
interval [to,t1], where a and b are two constants, then

a
v (t1) =vo +b(t1 —to) + 3 (t1—13),

1
z (tl) =xo + Vo (tl — to) + Qb(tl — t0)2

+ 2 (6 + 260 - 3t30).

2
J" :% (8 —t3) +ab (] —t3) + b (t1 — to).

The proof is obtained by using the kinematic equations of

the vehicle (1) and (2) and the definition of J*“. Due to space

constraints, the details are omitted.

Remark 1: We will show in Theorem 1 below that in fact
the optimal acceleration profile for Problem 1 is of the form
u(t) = at + b, which captures most acceleration profiles
used in the literature and vehicle simulation software [26].
When a = b = 0, the vehicle travels at a constant speed.

3594



When a = 0, the acceleration profile becomes either constant
acceleration (b > 0) or constant deceleration (b < 0). When
a # 0, the resulting linear acceleration profile is also called
“smooth jerk” [26].

In order not to overshadow the main idea, we consider
the case of only two consecutive intersections here, where
t, = to. We will show how the proposed framework can
include our previous result on a single intersection [21], [22]
as a special case in Subsection IV-A.

The main challenge of extending the result from one
intersection [21], [22] to multiple intersections lies in the
interior-point constraints x (¢t;) = Iy, which is a spatial
equality constraint and k77 < t; < kTy + DTy, which
is a temporal inequality constraint. Other constraints, such
as state, acceleration/deceleration, and terminal constraints,
have been thoroughly studied in our previous work [21],
[22]. The following theorem shows the form of the optimal
acceleration profile when the interior-point constraints are
present.

Theorem 1: The optimal acceleration profile u* (¢) of

Problem 1 has the form u* (t) = a ()t + b(t), where a (t)
and b (t) are piece-wise constant and u*(t;) = 0.
The proof of Theorem 1 can be found in [27]. Theoretically
speaking, u*(t) may have a jump at time ¢; only when
v(t1) = Umax OF v(t1) = Umin, Where ¢; is the intersection
crossing time. If such cases occur, we impose a continuity
constraint on u* (¢) at ¢; so as to avoid the jerk effect that
results in discomfort for both driver and passengers.

Based on Theorem 1, we know that the optimal accel-
eration profile has the form u* (t) = a (t)t + b (¢), where
a(t) and b(t) are piece-wise constant. For example, we
have a(t) = 0, b(t) = Umax for u* () = Umax, and
a(t) =0, b(t) = Umin for u* (t) = umin. For the case
that u (¢) = 0, we could set a(t) = b(t) = 0. Most
of the time, a(t) = a and b(t) = b are just constants.
In addition, there are only a few time instants when a (t)
and b (t) switch from a constant to another. Such instants
include the time when the maximum acceleration starts to
decrease, the maximum deceleration starts to increase, the
vehicle reaches the maximum or the minimum allowed speed
limits, or at the first intersection crossing time ¢;. Therefore,
we could parameterize the optimal acceleration profile by a
sequence of linear functions of time.

IV. PARAMETRIC OPTIMIZATION

Based on the analysis of the last section, the optimal
acceleration profile can be parameterized by a sequence of
linear functions of time, such as the one shown in Fig. 1. Now
let us split the analysis into two parts: [to,t1] and [ty 2],
where t; is the first intersection crossing time. The optimal
acceleration profile at most has four switches at 7y, 73, 75, 74
as shown in Fig. 1. The acceleration profile shown in Fig. 1
is the most complicated acceleration profile possible, starting
with the maximum acceleration, which can be obtained based
on the following facts:

o u* (t5) = 0, which can be seen from Theorem 1.

e Whenever v (t) = Umin OF Umax, u* (t) = 0.

u* (t) is continuous without jumps.
e Ao (t) may change sign only at ;.

u*(t)

lll'I'IEiX
!
|
|
|
|
|

t

70 T1 7
Umin
Fig. 1. Optimal acceleration profile for two intersections

A similar optimal acceleration profile can be drawn when
it starts with the maximum deceleration. The second fact
above corresponds to the interval [7g, 77] in Fig. 1, in which
v(t) = Umin for t € [76,77]. The fourth fact above can
be visualized in Fig. 1 as well. Before 74, the acceleration
decreases monotonically; and after 74 it increases mono-
tonically. Even though there are five linear functions in
Fig. 1, seven linear functions are needed to parameterize
the acceleration profile, as explained next. Over the interval
[1, 73] in Fig. 1, there is only one linear function. In order
to guarantee that the acceleration profile during each interval
contains either acceleration or deceleration but not both,
which is ensured by the constraint (9) below, we consider that
there is a switch at 7 between acceleration and deceleration.
Therefore, two linear functions are used to parameterize the
optimal acceleration profile. By doing so, the speed either
increases or decreases during each interval. Therefore, the
constraint (8) below ensures that the speed is within the
minimum and maximum bounds all the time.

We can thus parameterize the optimal acceleration profile
as follows:

ait+b; forte [7'0,7'1]
CLQt + bQ for t € [T17T2]
ast + bs fOI'tG[Tg/Tg]
u* (t) = ast+by fort e [7’3,7’4]
ast + by for t € [14, T5]
agt + b for t € [15, 76]
a7t + b7 for t € [7'677'7]

where T0 = to, T4 = tl, and T7 = tQ.

Remark 2: The optimal acceleration profile is parameter-
ized by the triplets (a;,b;,75), i = 1,2,...,7, 21 variables
in total. The number of variables can be reduced when the
properties of u*(t) are considered. The advantage of the
parametric form of the optimal controller is that it simplifies
the complicated analysis through a computationally efficient
scheme suitable for real-time implementation. Also note that
vehicles may experience both acceleration and deceleration
during a single road segment, which is different from the
optimal acceleration profile for a single intersection [21],
[22].
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We have now shown that Problem 1 is equivalent to this
parametric optimization problem:
Problem 2: ECO-AND problem

7
min py77r + pu Y J}
i=1
subject to

Vmin < 0 (7i) < Vmax, (®)
(a;mi +b;) (a;mi—1 4 b;) >0, )
Umin < @37 + by < Unax, (10)
Umin < @;Ti—1 + b; < Umax, (11)
Ti—1 < Ty, (12)
i=1,...,7,
k1Th <714 < kiTh + D11, (13)
x(ma) =1 (14)
keTy < 77 < kolls + Do Ty, (15)
x(m7) =11 +12 (16)

where J* is the energy cost during the interval [r;_1, 7],
which can be expressed as

a?

=G (=) b (7 =) B (- i)

from Lemma 1,

— Tiz1) + = (72 - Ti2—1)

U(Ti):U(Ti_1)+b ( B)

and

x(Ti—1) +v(mio1) (i — Tic1)

+b T 1) —&——(T +27 37‘ 17'1).

Remark 3: I?roblem 2 is equivalent to Problem 1, where
the continuous velocity constraint (5) is ensured by (8) and
(9). The continuous acceleration constraint (6) is ensured by
(10) and (11). The constraint (12) is needed to ensure the
correct order of the critical times defining the linear segments
of the optimal acceleration profile.

Remark 4: The parametric optimization framework is
very general so that it can be used to solve many differ-
ent eco-driving problems. By taking into consideration the
driving comfort, we can just add the constraints |a;| < aj,
where a; corresponds to the jerk profile, and a s is the limit of
jerk tolerance [13]. The parametric optimization framework
can also easily incorporate an initial acceleration condition,
interior and terminal velocity/acceleration constraints by
adding additional equality or inequality constraints.

In the following, we will show how this optimal parametric
framework includes our previous result [21], [22] as a special
case.

z(r) =

A. Single Intersection

Based on our analysis for a single intersection [21], [22],
the optimal acceleration profile can be parameterized as

art+ by fort € [1o, 1]
u* (t) = agt + b2 for t € [T17T2]
ast + bs fOI'tG[Tg/Tg]

where 79 = tg, and 73 = ¢;. The optimal parameters
(ai,bi,7;) for i = 1,2,3 can be obtained by solving the
following optimization problem:

Problem 3: ECO-AND problem

3
i s + 3 I
i=1
subject to

Umin S v (TB) S VUmax (17)
Umin S aiTo + bl S Umax (18)
Ti_lgTi, izl,...,3 (19)
kT < 15 < kT + DT (20)
z(13) =1, 2D

where J}' is the energy cost during the interval [r;,_1,7;],
which can be expressed as
a2
J“— 3 (7‘3—7'1 1)—|—albZ (72—7' )+b2( —Ti—1)

according to Lemma 1, and

z(r) = x(ri—1) +v(Tim1) (13 — Tiz1)
b i
+5 (i — Ti—1)2 =+ % (7_723 +212 - 37112—171‘)
v(r) = v(moy)+bi (- i)+ D (72— 12 ).

Note that we do not include the constraint (9) here
since we have established the result in [21], [22] that the
optimal acceleration profile contains either acceleration or
deceleration, but not both. Therefore, the terminal velocity
constraint (17) can replace the velocity constraint (8). Also
based on the analysis in [21], [22], the initial acceleration
constraint (18) is sufficient instead of using (10) and (11).

V. EXTENSION TO CASES WITH INTERFERING
TRAFFIC

In the above results, we assume that a single vehicle
operates in free flow mode. We also assume that autonomous
vehicles cannot change lanes. There is a recent line of
work which deals with multi-lane eco-driving of autonomous
vehicles crossing signalized [28] and non-signalized [29]
intersections. We will show that the proposed method can
be easily extended to traffic conditions where other road
users may affect the movement of the autonomous vehicle.
Therefore, a safety constraint has to be enforced at all times,
that is,

Ip (t) (22)

where zj, is the position of the preceding vehicle, o and
(B are two scalars representing dynamic and static gaps,
respectively [30]. The following assumptions are made:

—z()>av(t)+

e On the road, the future speed and acceleration profiles
of the preceding vehicle can be estimated accurately
enough by the autonomous vehicle.

o At the intersection, the queue information and stopped
vehicle lengths are also available to the autonomous
vehicle.
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When the proposed approach without considering interfering
traffic is applied, the safety constraint in (22) may be
violated. The first case is that the preceding vehicle will
cross the intersection at some ¢ € [kT;, kT;+ D,;T;] while the
autonomous vehicle will not. In this case, the autonomous
vehicle becomes the leading vehicle on the road, and the
intersection crossing time is set as the beginning of the next
green light interval ¢; = KT}, for some positive integer k.
The safety constraint may not be violated since the preceding
vehicle will accelerate or cruise through the intersection
while the autonomous vehicle will decelerate to approach the
intersection in the next green light interval. The second case
is that both the preceding vehicle and the autonomous vehicle
will cross the intersection at the same green light interval.
In this case, we can simply decrease the maximum speed of
the autonomous vehicle to Ov,. With 0 < 6 < 1 so that the
safety constraint is satisfied at all times. The third case is
that the preceding vehicle stopped before the intersection. In
this case, the autonomous vehicle will cross the intersection
after the preceding vehicle with a certain time gap o when
the traffic signal turns to green so that the safety constraint
is not violated, that is, ¢t; = kT; + o.

VI. SIMULATION EXAMPLES

We evaluate the proposed solution by testing the following
scenario with two intersections, and Problem 2 and Prob-
lem 3 are solved by fmincon in Optimization Toolbox
in MATLAB. The length for each road segment is 200
meters. Each intersection is equipped with a traffic light.
Two phases were set up for each signal. The total cycle
is 40 seconds, where the green time is set to 20 seconds.
The speed limits are set as v, = 2.78 m/s, and vy =
20 m/s. The maximum acceleration and deceleration are
uyr = 2.5 m/s? and u,, = —2.9 m/s?. We assume that
the vehicle starts with vg = 0. Once the vehicle’s speed
reaches v,,, it will never drop below v,,,. We use our previous
approach for a single intersection [21], [22] as the baseline
scenario, which solves the eco-driving problem for each road
segment individually, and compare the proposed solution
and the baseline scenario. Table I shows the performance
by using our previous approach [21], [22] and the optimal
parametric approach, where J is defined in Problem 1, J;
and Jy corresponds the performance on [to t1] and [ty t2],
respectively. Even though our previous approach [21], [22]
calculates the optimal performance for each road segment, it
is not the optimal solution for the combined two segments as
a whole. Overall, the optimal multi-intersection parametric
approach outperforms [21], [22] by 10.29%.

TABLE I
PERFORMANCE COMPARISON

Method - Perfor};lance ;
[21], [22] 0.1366 0.1793 0.3159
Optimal Parametric Approach 0.1494 0.1340 0.2834
Improvement —9.67% | 25.26% | 10.29%

A. Example with Interfering Traffic

In the following, we consider a scenario where the au-
tonomous vehicle will not be obstructed on the road but
there is a vehicle which will stop before the second in-
tersection. We assume that such information is available to
the autonomous vehicle at time £y. It is infeasible for the
autonomous vehicle to cross the second intersection at 40
seconds as before. We assume that the feasible intersection
crossing time is ¢t € [44,60], where the four seconds
include driver’s reaction time, headway time, and time for
the stopped vehicle to clear the intersection. Figures 2-4
depict the acceleration profiles, speed profiles, and distance
profiles, respectively, for both the cases with and without
interfering traffic. It can be seen from the figures that the
first intersection crossing times are the same for both cases.
However, when there is interfering traffic, the autonomous
vehicle has to start with a higher acceleration and decelerate
more before the first intersection compared with the case
without interfering traffic.

2 T
= WNithout interfering traffic
== With interfering traffic

15 4

&1 7
K4
E
c

2 05[ .
o
()
©
Q
Q

< O0f 1

051 1

4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40 45
Time (s)
Fig. 2. Acceleration profiles of the optimal solution with and without

interfering traffic.

Here we do not compare the results with those of human-
driven vehicles due to space constraints. Such a comparison
was done in our previous work for a single intersection [21],
[22], where 2%-10% performance improvement was shown
in terms of travel time and fuel consumption.

VII. CONCLUSIONS

In this paper, we solve an eco-driving problem of au-
tonomous vehicles crossing multiple intersections without
stopping. Spatial equality constraints and temporal inequality
constraints are used to capture the traffic light constraints.
The optimal acceleration profile is proved to have a piece-
wise linear parametric structure. We illustrate the effective-
ness of the proposed parametric approach through simulation
examples. The results show that the performance is signif-
icantly improved by using the proposed optimal parametric
approach compared with our previous approach which is
optimal for each individual intersection decoupled from the
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Fig. 4. Distance profiles of the optimal solution with and without interfering
traffic.

other. We also show that the optimal eco-driving algorithm
is capable of dealing with interfering traffic.
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