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Abstract— This paper considers the design of a periodic
schedule for one or more agents moving around a finite number
of targets, repeatedly visiting them to collect information and
reduce uncertainty about the target. This data collection takes
time and thus the design involves both the sequence of targets
to be visited by each of the agents and the amount of time each
agent should spend at each target. For a given visiting sequence,
the problem is translated into a discrete-time dynamic system
with the targets’ sampled uncertainty level as the state vector
and the dwell time at each target as the input vector. In the
one-agent case we show that under a mild assumption and
with a constant input this discrete-time system converges to
an asymptotically stable steady state and that the underlying
continuous dynamics converge to a periodic cycle with a fixed
period. We show further that the sampled uncertainty, the peak
uncertainty, and the period are all minimized under the policy
that the agent switches to the next target in its sequence as
soon as the uncertainty of the current target is reduced to
zero. Finally, we show that if the average uncertainty over the
steady state period is taken as a measure of performance, then
the same policy is optimal under the additional assumption that
the targets are homogeneous.

I. INTRODUCTION

Monitoring a finite number of targets distributed through-
out a finite domain using one or a collection of mobile
agents is a problem that maps to many interesting application
domains. The paradigm can describe surveillance systems,
such as when a team must monitor large regions for changes,
intrusions, or other dynamic events, or when it is tasked with
sampling and monitoring environmental parameters such as
temperature [1], [2]. The paradigm also finds use in single
particle tracking in molecular biology where the goal is
to track multiple individual biological macromolecules to
understand their dynamics and their interactions [3], [4].

From an abstract point of view, the problem of persistent
monitoring can be cast as one of a collection of agents
moving between possibly mobile targets, collecting informa-
tion from each to reduce uncertainty about that target. The
uncertainty at each target evolves in time, increasing when
not being visited and decreasing when it is being attending by
one or multiple agents. Given a measure of performance, the
key problems are determining for each agent the sequence
of target visits and the associated dwell time at each target
such that the overall cost function is optimized [5]. This
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description translates the persistent monitoring problem to
the (optimal) control of a hybrid automaton [6]–[8].

When considering an infinite horizon problem, it makes
intuitive sense to focus on periodic schedules as these are
simpler to implement than aperiodic ones. It has been shown
that under certain conditions, periodic schedules can be
designed that ensure the entire system, from the point of view
of managing the uncertainty levels of the targets, remains
controllable despite the delays incurred by traveling from
one target to the next [9], [10]. In addition, given a particular
sequence it is clear that the uncertainty levels at the targets
are a function of the dwell times. The dwell time can thus be
viewed as a control input that can be optimized to determine
the best cost of the given sequence. This can then be followed
by an evaluation of a collection of such sequences to find
one that achieves the best overall performance.

The enumeration of sequences can be viewed in a graph
theoretic way, with targets being nodes and the goal being to
determine the optimal path through the graph. The problem
is clearly related to Traveling Salesmen Problems (TSPs) and
Vehicle Routing Problems (VRPs). TSPs and VRPs have a
long and rich literature and, while they are NP hard, there are
many sub-optimal approximations that have been developed
that permit solutions to be found rapidly [11], [12]. However,
these problems have well-defined edge costs that do not
depend on the visiting sequence; approximate solutions rely
on this property. In our persistent monitoring problem, a
change at any part of the sequence alters the optimization
problem that must be solved to find the dwell times at each
target and thus the cost of the sequence.

There are greedy approaches that can be applied, such
as the use of Infinitesimal Perturbation Analysis (IPA) to
perform gradient descent online and move towards a locally
optimal solution [13], [14]. However, these are not guar-
anteed to find a globally optimal solution. While exactly
solving the full graph-theoretic problem is not feasible in real
time for problems of even moderate size, it can be solved
off line as a means of testing approximate solutions found
through other means. In this paper we focus on efficient
solutions of the dwell time optimization, both as a means
of reducing the overall computation time and as a launch
point for developing approximations to the full problem that
have better computational properties.

In this paper we focus on an one agent case and the
sequence of target visits for this agent containing a fixed
number of visits are enumerated. With the idea that the
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Fig. 1: The time line of an agent. ∆ti is the transit time to
the next target while ∆di is the dwell time at that target.

sequence will be repeated for persistent monitoring over
the infinite time horizon, we consider all sequences where
each target is visited exactly once per cycle with the agent
returning to the first target at the end of the cycle to prepare
for the next. We then solve the optimization problem defining
the dwell time at each of the targets in a sequence. In
Sec. II, the continuous scheduling problem is translated into
a discrete one where the control input is the switching
condition defining the uncertainty value at which an agent
should depart the current target. Then we show that under
mild assumptions, any constant policy stabilizes the system
to a steady state depending on that policy, and determine
the optimal policy with respect to the specified performance
measures. With this in place, the cost of the given sequence
can be easily calculated, eliminating a computationally ex-
pensive step in the evaluation of the visiting sequences.

II. DISCRETE DYNAMICS

Consider a collection of n targets and a single agent. A
sequence is given such that every target is visited exactly
once. We label the targets as i = 1, ..., n; a loop through the
targets is a cycle. The location of target i is denoted as si
and the uncertainty related to it at time t is denoted as ri(t).
The agent can move between targets with an average speed
v̄. We construct a discrete-time system by abstracting a cycle
of visits completed by the agent into one step of a discrete-
time system. The time when the agent begins its kth visit
at the first target is defined to be the beginning of the kth

step and is denoted Tk. The sampled information is denoted
Ri(k) = ri(Tk). The duration of the kth step is given by

Tk+1 − Tk =

n∑
i=1

(∆dki + ∆ti), (1)

where ∆dki is the dwell time at the ith target and ∆ti is the
travel time from target i to i+ 1 with ∆tn the time to travel
from target n back to target 1. The travel times are given by

∆ti =
‖si+1 − si‖

v̄
, ∀i = 1, ..., n, sn+1 = s1, (2)

and the time of arrival of the agent to the ith target in the
kth step is given by

tki = Tk +

i−1∑
q=1

(∆dkq + ∆tq). (3)

A graphical depiction of times in a cycle is shown in Fig.1.
The information state of target i is bounded below by 0,

increases monotonically when it is not being visited, and

(a) uk
i > 0.

(b) uk
i < 0.

Fig. 2: Evolution of the uncertainty of target i in period k.
The shaded section indicates the time an agent is visiting the
target. (a) A positive value of uki implies the agent remains
with the target even after the uncertainty has been driven
to zero while (b) a negative value implies the agent departs
while the uncertainty is still positive.

decreases monotonically when the target is being attended
to by an agent. A natural model for this is

ṙi(t) =


−bi if ∃k s.t. t− tki ∈ [0,∆dki ); ri(t) > 0,

0 if ∃k s.t. t− tki ∈ [0,∆dki ); ri(t) = 0,

ai otherwise,
(4)

where ai and bi are positive scalars.
The dwell time ∆dki is determined by ri(t

k
i ) and the

switching condition provided for target i. The condition is
defined such that the switching to the next target should be
made at a specific time relative to the point at which the
uncertainty drops to zero. This condition for target i in the
kth step is denoted as uki , and its range is defined as

uki ∈
[
−ri(t

k
i )

bi
,∞
)
. (5)

The physical meaning of negative uki is that switching should
be made when ri = (−bi) ·uki . Fig.2 illustrates the dynamics
of ri in step k for both positive and negative values of uki .

Consider the uncertainty related to target i in this subsys-
tem. From the beginning of step k it starts growing with rate
ai. Its value when the agent arrives at the target is given by

ri(t
k
i ) = Ri(k) + ai

i−1∑
q=1

(∆dkq + ∆tq)
4
= R̃i(k) (6)

where Ri(k) is the initial value at the beginning of the period.
We denote this value as R̃i(k). Note that it is the peak value
for ri during the agent’s kth visit of agent i.

Once the agent arrives, the uncertainty of the target
decreases with a rate of −bi until the switching condition
uki is reached. The agent’s actual dwell time at target i can
be written as

∆dki =
R̃i(k)

bi
+ uki . (7)
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∆dki is guaranteed to be non-negative though (5).
When the agent departs the target, the uncertainty is

ri(t
k
i + ∆dki ) = (−bi)ūki , (8)

where we define ūki = min(uki , 0), and uki = max(uki , 0).
Note that this uncertainty level depends only on uki and in
particular is independent of both the initial value Ri(k) and
the peak value R̃i(k).

The uncertainty of target i at the beginning of next step is

Ri(k + 1) =(−bi)ūki + ai∆ti + ai

n∑
q=i+1

(
∆tq + ∆dkq

)
= (−bi)ūki +ai∆ti + ai

n∑
q=i+1

(
∆tq + ukq +

Rq(k)

bq

)

+ ai

n∑
q=i+1

aq
bq

q−1∑
l=1

(
∆tl + ukl +

Rl(k)

bl

)

+ ai

n∑
q=i+1

aq
bq

q−1∑
l=1

al
bl

l−1∑
m=1

(
∆tm + ukm +

Rm(k)

bm

)
+ · · · . (9)

Combining this for all the targets, the discrete dynamics
of the uncertainty can be expresed as

R(k + 1) = BHB−1R(k) +BHU(k)−BŪ(k)+

(BH +A)D
(10)

where

B = diag[b1, ...bn], A = diag[a1, ...an],

D = [∆t1, ...∆tn]T , R(k) = [R1(k), ..., Rn(k)]T ,

U(k) = [uk1 , ..., u
k
n]T ,

and H ∈ Rn×n is defined by

hij =
ai
bi

 n∏
q=j+1

(
aq
bq

+ 1)−
i∏

q=j+1

(
aq
bq

+ 1)

 ,

where, with a slight abuse of notation,
∏p

q(·) is defined to be
1 when p = q− 1 and 0 when p < q− 1. As an illustration,
when n = 2, we have

H2 =

[a1a2

b1b2
a1

b1
0 0

]
,

and when n = 3,

H3 =


a1a2

b1b2
+ a1a3

b1b3
+ a1a2a3

b1b2b3
a1

b1
+ a1a3

b1b3
a1

b1
a2a3

b2b3
+

a2
2a3

b22b3

a2a3

b2b3
a2

b2

0 0 0

 .
III. STEADY STATE ANALYSIS

Sec. II defined the discrete dynamics of the uncertainty
of the targets. We now analyze the system in (10) and
show that for any given choice of constant control, there
is an asymptotically stable equilibrium, beginning with the
existence of the equilibrium.

Proposition 1: Consider the discrete system (10) with a
constant input U(k) ≡ [u1, u2, ..., un]. If bi > (n−1)ai, ∀i,
then there exists a steady state solution R̄ = [R̄1, R̄2, ...R̄n]
that is independent of the initial states. Furthermore, every
entry in B−1R̄+ U is non-negative.

Proof: Let R(k+ 1) = R(k) = R̄. From (10) we have

B−1R̄+ U = (I −H)−1
(
U + (H +B−1A)D

)
. (11)

Prop.1 holds if (I−H) is invertible and (I−H)−1 contains
no negative entry. It can be shown (omitted for space reasons)
that the proposition holds if

n−l+1∑
p=2

(p− 1)Spl,n <
n∏
i=l

bi, ∀l = 1, ...n− 1, (12)

with Spl,n defined as

Spl,n =

(
n∏
i=l

bi

) ∑
j1 6=... 6=jp

(
p∏

q=1

ajq
bjq

)
. (13)

Here jq, q=1,...p are p different indexes with l ≤ jq ≤ n. For
example, when n = 2, Prop.1 holds if

2∑
p=2

(p− 1)S21,2 <
2∏

i=l

bi, S21,2 =

(
2∏

i=1

bi

)
· a1a2
b1b2

,

which simplifies to a1a2 < b1b2. For n = 3 Prop.1 holds if

l = 1 : S21,3 + 2S31,3 < b1b2b3, where

S21,3 = a1a2b3 + a1b2a3 + b1a2a3,

S31,3 = a1a2a3;

l = 2 : S22,3 < b2b3 with S22,3 = a2a3.

By assumption bi > (n− 1)ai, ∀i. Thus

Spl,n <
(
n− l + 1

p

)
1

(n− 1)p

(
n∏
i=l

bi

)
and therefore
n−l+1∑
p=2

(p− 1)Spl,n <

(
n∏
i=l

bi

)
n−l+1∑
p=2

(
n− l + 1

p

)
p− 1

(n− 1)p
.

We have
n−l+1∑
p=2

(
n− l + 1

p

)
p− 1

(n− 1)p
≤

n−l+1∑
p=2

(
n− l + 1

p

)
p− 1

(n− l)p
.

The final expression equals to 1 and therefore (12) holds.
Notice that the stability condition that bi > (n− 1)ai in this
proposition echoes a basic stability condition in queueing
theory that the service rate should be greater than the arrival
rate at each target.

The next proposition establishes the asymptotic stability
of the equilibrium.

Proposition 2: Consider the discrete system (10) with a
constant input U(k) ≡ [u1, u2, ..., un]. If bi > (n−1)ai, ∀i,
then limk→∞R = R̄ .
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Proof: Let E(k) = R(k)− R̄ be the error of R(k) from
the steady state R̄ at step k. Then, from (10),

B−1E(k + 1) = B−1R(k + 1)−B−1R̄
= HB−1(R̄+ E(k)) +HU(k)− Ū(k) + (H +B−1A)D

= HB−1E(k).

Since B−1 is a diagonal matrix with its diagonal entries
positive, E(k) converges if and only if the eigenvalues of
H satisfy |λH,i| < 1, ∀i. Establishing this bound on the
eigenvalues is similar to the analysis in the proof of Prop.1
and is omitted for space reasons.

Next we establish that the peak values of the uncertainties
also converge to a steady state.

Proposition 3: Consider the discrete system (10) with a
constant input U(k) ≡ [u1, u2, ..., un]. If bi > (n−1)ai, ∀i,
then the peak value R̃(k) converges to a fixed set of value
R̃ = [R̃1, R̃2, ...R̃n] that is independent of the initial states.

Proof: According to (6) we have

R̃i(k) =Ri(k) + ai

i−1∑
q=1

(
∆tq + uq +

R̃q(k)

bq

)
(14)

=Ri(k) + ai

i−1∑
q=1

(
∆tq + uq +

Rq(k)

bq

)

+ ai

i−1∑
q=1

aq
bq

q−1∑
l=1

(
∆tl + ul +

Rl(k)

bl

)
+ · · · . (15)

Prop.2 states that Ri(k) → R̄i with k → ∞. Thus R̃i(k)
converges to a constant value R̃i.

The value of the steady state for the peak values can be
calculated as follows. First, from (9) we have

R̃i

bi
=−

(
aiR̃i

b2i
+
aiui
bi

+ ūi

)
+
ai
bi

n∑
q=1

(
∆tq + ukq +

R̄q

bq

)

+
ai
bi

n∑
q=1

aq
bq

q−1∑
l=1

(
∆tl + ukl +

R̄l

bl

)
+ · · · .

Then

R̃i =− bi(aiui + biūi)

ai + bi
+

ai
ai + bi

n∑
q=1

(
∆tq + ukq +

R̄q

bq

)

+
ai

ai + bi

n∑
q=1

aq
bq

q−1∑
l=1

(
∆tl + ukl +

R̄l

bl

)
+ · · · .

In addition to the uncertainty states and their peak values,
the duration of the time steps also converges.

Proposition 4: Consider the discrete system (10) with a
constant input U(k) ≡ [u1, u2, ..., un]. If bi > (n−1)ai, ∀i,
then the period length Tk+1−Tk converges to a fixed amount
of time which is independent of the initial states.

Proof: The period is given by

Tk+1 − Tk =

n∑
i=1

(
R̃i

bi
+ ui + ∆ti

)
. (16)

Since ui and ∆ti are constant values and R̃i

bi
converges ∀i,

Tk+1 − Tk converges to a constant value.
The final proposition in this section establishes that the

average value of the uncertainty also converges. While this is
perhaps clear from the previous results, the proof establishes
the relationship between this average value and several other
parameters.

Proposition 5: Consider the discrete system (10) with a
constant input U(k) ≡ [u1, u2, ..., un]. If bi > (n−1)ai, ∀i,
then the average value 〈Ri〉 = 1

Tk+1−Tk

∫ Tk+1

Tk
rki (t)dt con-

verges to a fixed value that is independent of the initial states.
Proof: From (4), we have∫ Tk+1

Tk

rki (t)dt =
R̃2

i (k)

2aibi
− (Tk+1 − Tk) biūi. (17)

The proposition then follows from Props. 3 and 4.

IV. OPTIMIZED SWITCHING CONDITIONS

In this section we search for the optimal switching policy
U∗ for the given sequence. There are several natural choices
of performance, including the uncertainty values at the start
of each period, the peak value during the period, the average
value over the period, and the length of the period. Since
our primary concern is with the infinite time horizon, we
consider the steady state values of these terms. The previous
section established that each of these converges to a steady
value if the control is constant.

A. When U ≡ 0 is optimal.

The next proposition shows that for all but one of these
performance measures, the control U = 0 is optimal.

Proposition 6: Consider the discrete system (10) with a
constant input U(k) ≡ [u1, u2, ..., un]. If bi > (n−1)ai, ∀i,
then the sum of the steady state uncertainties,

∑n
i=1 R̄i, the

sum of the peak steady state uncertainties,
∑n

i=1 R̃i, and the
period length Tk+1 − Tk are all minimized when ui ≡ 0.

Proof: From the proofs of Props 1, 3 and 4, the values
of R̄i and R̃i are monotonic functions of |ui|. Therefore all
these values reach their lowest point when U(k) ≡ [0]n×1.
Thus these are all minimized using the zero control.

Now consider the period length Tk+1−Tk given in (16). Its
value depends on ui both explicitly and through R̃i. Clearly,
for positive ui, the period length increases. For negative ui,
the contribution from the explicit term decreases but the
contribution from R̃i increases by the same amount. Thus
the period is minimized when ui ≤ 0 for all i. In particular
it is minimized with the zero control.

Thus the optimal choice of the switching condition is
for the agent to leave its current target as soon as the
uncertainty reaches zero. This result relies only on the fact
that the uncertainty converges, as established in Sec. III.
In particular, it does not depend on the distance between
the targets, their layout, the sequence of visiting them, or
even their particular dynamics (outside of the convergence
criterion). In the context of the larger problem of finding the
best sequence, this result establishes that evaluating the cost
of a given sequence is the calculation of a straightforward
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analytical expression and no longer requires the solution of
a nonlinear optimization problem.

B. Optimal switching condition for 〈Ri〉.
The switching condition that optimizes the average value

of the uncertainty is not as simple to determine. In general,
the optimizing choice depends on the details of the targets
and there is not a single result. However, the next proposition
establishes that under the special condition of homogenous
targets, the zero control is once again optimal.

Proposition 7: Consider the discrete system (10) with a
constant input U(k) ≡ [u1, u2, ..., un] and assume that
ai = a, bi = b ∀ i. If b > (n − 1)a, then the sum of the
average values over the steady state condition,

∑n
i=1〈Ri〉, is

minimized when ui ≡ 0.
Proof: From Prop. 3 we have that

R̃i =ai

(
n∑

q=1

(∆tq + uq +
R̃q

bq
)− ui −

R̃i

bi

)
− biūi.

Rearranging we get
n∑

i=1

R̃i

bi
=

n∑
i=1

ai
bi
·

n∑
i=1

(∆ti + ui +
R̃i

bi
)

−
n∑

i=1

aiui
bi
−

n∑
i=1

aiR̃i

b2i
−

n∑
i=1

ūi.

(18)

Since ai = a, bi = b, (18) can be simplified to
n∑

i=1

R̃i

bi
=
na
∑n

i=1 ∆ti + (n− 1)a
∑n

i=1 ui −
∑n

i=1 ūi
b− (n− 1)a

.

Therefore,

R̃i =a

(
n∑

q=1

(∆tq + uq)− ui −
R̃i

b

)
− būi

+
a2
∑n

q=1 (n∆tq + (n− 1)uq)− ab
∑n

q=1 ūq

b− (n− 1)a
.

From this we get

R̃i

b
=

a

a+ b− na

n∑
q=1

(
∆tq +

b

(a+ b)
uq

)
− aui + būi

a+ b
.

(19)

We denote the peak uncertainty when the inputs are set to
zero for all targets as R̃0

i . According to (19) we have

R̃0
i

b
=

a

a+ b− na

n∑
q=1

∆tq, (20)

and according to (17) the average uncertainty over time
subject to this set of inputs is

〈R0
i 〉 =

1

2
R̃0

i =
ab

2(a+ b− na)

n∑
q=1

∆tq. (21)

Now consider an input sequence that is not identically
zero. We start with analyzing one target among the group.

For this selected target i, if we have ui = 0, then regardless
of the other inputs, we will always have

〈Ri〉 =
1

2
R̃i =

ab

2(a+ b− na)

n∑
q=1

(
∆tq +

b

a+ b
uq

)
so that

〈Ri〉 − 〈R0
i 〉 =

ab2

2(a+ b)(a+ b− na)

n∑
q=1

uq ≥ 0. (22)

Similarly, if ui < 0, we have ūi = ui and

〈Ri〉 =
1

2
R̃i − būi

=
ab

2(a+ b− na)

n∑
q=1

(
∆tq +

b

(a+ b)
uq

)
− 3bui

2

≥〈R0
i 〉+

ab2

2(a+ b)(a+ b− na)

n∑
q=1

uq ≥ 〈R0
i 〉 (23)

regardless of the other inputs. The above results indicate
that, for any target with a non-positive switching condition,
no matter what value the other inputs shall be, the agent’s
performance with this specific target is no better than with
the all-zero inputs. Furthermore, if a set of inputs contains no
positive entries, we will have 〈Ri〉 ≥ 〈R0

i 〉 for every target,
and thus

∑n
i=1〈Ri〉 ≥

∑n
i=1〈R0

i 〉 .
When an input set contains at least one positive entry, the

situation becomes more complicated. We first consider a set
of inputs with exactly one positive input, that is ui > 0. For
this specific target i we have

〈Ri〉 − 〈R0
i 〉 =

(a+ b)R̃2
i

2(a+ b)R̃i + 2abui
− 1

2
R̃0

i

=
(a+ b)R̃i(R̃i − R̃0

i )− abuiR̃0
i

2(a+ b)R̃i + 2abui
. (24)

Consider now a different target, l. Since by assumption the
ith target is the only with a positive value of the switching
condition, we have ul ≤ 0. Then

〈Rl〉 = 〈R0
l 〉+

ab2

2(a+ b)(a+ b− na)

n∑
q=1

uq.

Under this scenario,
∑n

q=1 uq = ui. Then(
〈Ri〉 − 〈R0

i 〉
)

+
(
〈Rl〉 − 〈R0

l 〉
)
> 0

⇔ ab2ui

(
(a+ b)

n∑
q=1

∆tq + bui

)
+ ab (bui − (a+ b− na)ui)

2

+ ab(a+ b)

n∑
q=1

∆tq (bui − 2(a+ b− na)ui) > 0

⇔ b2u2i + (bui − (a+ b− na)ui)
2

+ (n− 1)aui > 0

and this last holds for n > 1. As stated above, (22) and (23)
guarantee that 〈Rq〉 ≥ 〈R0

q〉 for all other targets, q 6= i, l.
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Thus when ui > 0 and uq ≤ 0 for all q 6= i we have
n∑

q=1

〈Rq〉 >
n∑

q=1

〈R0
q〉, s.t. ui > 0, and uq ≤ 0, ∀q 6= i.

Finally we consider an input set with z ≥ 2 positive
entries. Without loss of generality we let u1, ..., uz > 0 and
uz+1, ..., un ≤ 0. According to (24) we have

z∑
i=1

(
〈Ri〉 − 〈R0

i 〉
)
≥ 0 ⇔

(a+ b)

n∑
q=1

∆tq

z∑
i=1

(
b

n∑
q=1

uq − 2(a+ b− na)ui

)
≥ 0.

(25)

Since
n∑

q=1

uq =

z∑
i=1

ui,

(25) turns into

(a+ b)

n∑
q=1

∆tq

(
zb

z∑
i=1

ui − 2(a+ b− na)

z∑
i=1

ui

)
≥ 0

which holds for z ≥ 2. The remaining targets all have non-
positive switching conditions so that their average uncer-
tainty exceeds the value under an all-zero input set. Now
we have shown that Prop. 7 holds for a set of inputs
that contains multiple positive entries. Together with the
conclusions above we have established Prop. 7.

Notice that under the zero policy, (21) leads to
n∑

i=1

〈Ri〉∗ =
nab

2(a+ b− na)

n∑
q=1

∆tq. (26)

This in turn implies that for a single agent assigned to a set of
homogeneous targets, the average uncertainty is minimized
with the total traveling time,

∑n
q=1 ∆tq . The problem is

then reduced exactly to a TSP. It is important to note that
this does not hold when the targets are heterogeneous nor
does it imply anything about the multi-agent problem. In
fact, (26) suggests that the number of targets assigned to
an agent affects the cost of the sequences and therefore the
weight of the edges in the graph formulation. However, in
the multiagent case with homogeneous targets, the result in
(26) can be used to determine the optimal partitioning of the
targets to the agents.

Finally, we note that the constraint of homogeneous targets
is sufficient but not necessary. Following the proof of Prop.7
it can be shown that the same result holds if the homogeneity
constraint is replaced by bi

ai
= k > n− 1, ∀i. However, the

optimality of the zero switching condition may not hold if
the targets are strongly heterogeneous. The optimal switching
conditions can still be determined on a case by case basis
through numerical solution of the optimization problem.

V. CONCLUSION

In this paper we considered the problem of determining
the optimal dwell time of an agent moving between multiple
targets while seeking to minimize some function of the
targets’ uncertainty states. The problem was abstracted into
a discrete system and we showed the existence of stable
solutions to the dynamics of the uncertainty under certain
conditions. We further showed that the simple choice of
staying with a target until its uncertainty reaches zero and
then switching to another is optimal for minimizing the
steady state uncertainty, peak uncertainty, and period length.
In addition, when the targets have homogeneous dynamics in
their uncertainty, the zero policy also minimizes the steady
state average uncertainty and, under this special condition,
the problem is in fact reduced to a TSP.
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