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A central question of marine ecology is, how far do larvae disperse? Coupled biophysical models predict that

the probability of successful dispersal declines as a function of distance between populations. Estimates of

genetic isolation-by-distance and self-recruitment provide indirect support for this prediction. Here, we con-

duct the first direct test of this prediction, using data from the well-studied system of clown anemonefish

(Amphiprion percula) at Kimbe Island, in Papua New Guinea. Amphiprion percula live in small breeding

groups that inhabit sea anemones. These groups can be thought of as populations within a metapopulation.

We use the x- and y-coordinates of each anemone to determine the expected distribution of dispersal

distances (the distribution of distances between each and every population in the metapopulation). We

use parentage analyses to trace recruits back to parents and determine the observed distribution of dispersal

distances. Then, we employ a logistic model to (i) compare the observed and expected dispersal distance

distributions and (ii) determine the relationship between the probability of successful dispersal and

the distance between populations. The observed and expected dispersal distance distributions are signifi-

cantly different (p , 0.0001). Remarkably, the probability of successful dispersal between populations

decreases fivefold over 1 km. This study provides a framework for quantitative investigations of larval disper-

sal that can be applied to other species. Further, the approach facilitates testing biological and physical

hypotheses for the factors influencing larval dispersal in unison, which will advance our understanding of

marine population connectivity.

Keywords: propagule dispersal; dispersal kernel; parentage analyses; population connectivity;
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1. INTRODUCTION
Understanding patterns of larval dispersal is a major goal

of twenty-first century marine ecology [1–4]. These pat-

terns determine the probability of larval exchange, or

connectivity, among populations [1,5]. Population con-

nectivity, in turn, has major consequences for all aspects

of an organism’s biology [6], from individual behaviour

[7,8] to metapopulation dynamics [9,10], and from evol-

ution within metapopulations [11,12] to the origin and

extinction of species [13,14]. Further, understanding pat-

terns of larval dispersal is critical for the design of

effective networks of marine reserves—vital tools in the

development of sustainable fisheries [15–20].

A fundamental question of marine larval dispersal and

population connectivity is: how does the probability of

larval exchange vary as a function of distance between

populations? Coupled biophysical models predict that the

probability of successful dispersal declines dramatically

over 10–100 km for a variety of species [20–24]. Estimates

of genetic isolation-by-distance provide indirect support for

this prediction [11,12,25–27], as do demonstrations of
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high levels of self-recruitment to natal populations

[28–32]. However, direct measures of the relationship

between the probability of successful dispersal and distance

between populations are lacking. Direct measures,

obtained by tracing individual larvae back to their parents

using molecular markers, will generate new insights and

enable us to test predictions of biophysical models, just as

they have been carried out in terrestrial systems [33–37].

The clown anemonefish (Amphiprion percula) offers a

tractable system to test directly the hypothesis that the

probability of successful dispersal declines as a function

of distance between populations. Amphiprion percula live

in small breeding groups that inhabit sea anemones

[38–41]. These groups can be considered populations

within a metapopulation (sensu [42]). In any given meta-

population of A. percula, all anemones can be located and

all fish can be genotyped [43,44]. These data can be used

to generate the observed dispersal distance distribution

(the distribution of distances between recruits and their

parents; figure 1a) and the expected dispersal distance

distribution (the distribution of distances between each

and every anemone in the metapopulation; figure 1b),

which can be compared statistically [33,35,43]. Here,

we use such data from a metapopulation of A. percula to
This journal is q 2011 The Royal Society
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(a) (b)

Figure 1. Dispersal distances in a hypothetical metapopulation composed of six populations (black circles). (a) Observed dis-
persal distances are the distances between recruits and their parents in the metapopulation—there are two observed dispersal
distances in this metapopulation (solid lines). (b) Expected dispersal distances are the distances between each and every popu-

lation in the metapopulation—there are 6 � 6 ¼ 36 expected dispersal distances in this metapopulation (dashed lines). In a
well-mixed metapopulation, the observed distribution of dispersal distances will be the same as the expected distribution of
dispersal distances.
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test two hypotheses: (i) the observed distribution of

dispersal distances will differ from the expected distri-

bution of dispersal distances and (ii) the probability of

successful dispersal will decline as a function of distance

between populations.
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Figure 2. Dispersal distance distributions in a metapopula-
tion of the clown anemonefish Amphiprion percula: observed

dispersal distance distribution, determined by tracing
recruits back to their parents using molecular markers
(black bars, n ¼ 106); expected dispersal distance distri-
bution determined by estimating the distance between each
and every anemone in the metapopulation (white bars, n ¼
75 635 scaled to n ¼ 106). To facilitate visualization of the
data, observed and expected dispersal distances are assigned
to 100 m bins. Counts of successful dispersal are the counts
over approximately eight months.
2. MATERIAL AND METHODS
(a) Study population

This study was conducted using a metapopulation of the clown

anemonefish, A. percula (Family: Pomacentridae), at Kimbe

Island, Papua New Guinea—an area of approximately 1 km

square [44]. All fieldwork was conducted using self-contained

underwater breathing apparatus (SCUBA) at depths of up to

15 m. In December2004, 275 anemones occupied by A.percula

were located. At this site, all anemones were occupied, consist-

ent with observations at other sites in Papua New Guinea

[38,40]. All anemones were mapped [44] and their depths

were measured. The two largest fish (i.e. potential breeders

[39,45]) in each anemone were captured, fin-clipped and

returned to their anemone. In December 2004 and April

2005, all juvenile fish (i.e. recent recruits [38,46]) in each ane-

mone were collected. Based on otolith increment counts, these

recruits were no more than four months old (N. Raventos 2008,

unpublished data). Thus, counts of dispersal events and prob-

abilities of dispersal, reported below, represent counts and

probabilities for a period of approximately eight months.

(b) Observed dispersal distances

To generate an observed distribution of dispersal distances, we

traced recruits back to their parents using nuclear DNA mar-

kers. Five hundred and six breeders and 469 new recruits

were genotyped at 16 highly polymorphic microsatellite loci

that satisfied Hardy–Weinberg assumptions [44]. Parentage

analyses, implemented using FAMOZ [17,18], were used to

assign recruits to parents around Kimbe Island. One hundred

and six recruits to the island were assigned to parents from the

island [44]. Some dispersal events will have been missed

because settlers can be driven from the anemone within

hours of their arrival [38,47]. Individuals that we trace back

to their parents are those individuals that managed to disperse

and recruit to an anemone. For brevity, we define the combi-

nation of dispersal and recruitment as ‘successful dispersal’.

Tracing recruits back to their parents and estimating the
Proc. R. Soc. B (2012)
distance between anemones (see below) enabled us to generate

an observed dispersal distance distribution (figure 2).

(c) Expected dispersal distances

To generate an expected distribution of dispersal distances, we

estimated the distance between each and every anemone in the

metapopulation. The x-, y- and z-coordinates of each anemone

were entered into a database. These coordinates were then used

to estimate the shortest in-water distance between each and

every anemone. Further, these coordinates were used to esti-

mate the direction and depth change between each pair of

anemones, so that we could control for these factors in our stat-

istical analysis (see below). In this metapopulation of 275

anemones, there are 2752 ¼ 75 625 expected dispersal

http://rspb.royalsocietypublishing.org/
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Figure 3. Probability of successful dispersal between populations as a function of distance between populations, within a meta-
population of the clown anemonefish Amphiprion percula. Solid line represents the relationship between probability of successful
dispersal and distance between populations estimated from a logistic model (table 1). Dashed lines represent the 95% confi-

dence intervals (CIs) around this estimated relationship (table 1). Reported probability of successful dispersal is the probability
of successful dispersal over approximately eight months.

Table 1. Probability of successful dispersal between populations in relation to multiple independent variables. Summary of
the results of a stepwise logistic model that investigated the effects of distance, direction, depth change and all interactions.

parameter estimate lower 95% upper 95% x2 prob . x2

intercept 25.8880 26.2263 25.5717 1246.00 ,0.0001
depth 20.0839 20.1374 20.0299 9.36 0.0022
distance 20.0016 20.0023 20.0009 21.31 ,0.0001
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distances. However, we exclude 275 distances that involve

return to the natal anemone because A. percula do not form

kin groups [43] and larvae actively avoid settling with kin

[48]. Estimating the distance between each and every anemone

in the metapopulation enabled us to generate an expected

dispersal distance distribution (figure 2).
(d) Statistical analyses

We tested the hypotheses that (i) the observed distribution of

dispersal distances will differ from the expected distribution of

dispersal distances and (ii) the probability of successful

dispersal will decline as a function of distance between popu-

lations, using a logistic model (JMP v. 8.0.1). The probability

of successful dispersal between anemones (0 or 1) was used as

the dependent variable, whereas distance (continuous), direc-

tion (categorical) and depth change (continuous) between

anemones were used as independent variables. There was

never more than one dispersal event between any two anemones,

so there is no loss of numeric information when using the binary

response variable. This approach enabled us to test for the effect

of one variable (e.g. distance) while controlling statistically for

the effect of other variables (e.g. direction and depth change),

and explore the effect of interactions between variables. Inde-

pendent variables were removed from the model in a backward

stepwise fashion if they did not have a significant effect. We
Proc. R. Soc. B (2012)
confirmed that the model generated in this way was the same

as the model generated using a forward stepwise approach.
3. RESULTS
The observed dispersal distance distribution was signifi-

cantly different from the expected dispersal distance

distribution (whole model Chi-square test: x2 ¼ 31.8,

d.f. ¼ 2, p , 0.0001, r2 ¼ 0.02). The probability of

successful dispersal between populations declined as a

function of distance between populations: larvae were five

times as likely to successfully disperse 1 m as they were to

successfully disperse 1 km (table 1 and figure 3). The

95% confidence intervals (CIs) around the model par-

ameter estimates indicate that larvae were between 2.5

and 10 times more likely to disperse 1 m than they were

to disperse 1 km.

The probability of successful dispersal between popu-

lations was not related to the direction between

populations. That is to say, at this spatial scale (up to

1 km) and this temporal resolution (lumping dispersal

events that occurred over four months), there was no

consistent bias in the direction of dispersal. The prob-

ability of successful dispersal between populations was,

however, related to the difference in depth between

http://rspb.royalsocietypublishing.org/
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populations: larvae were more likely to recruit to popu-

lations deeper than the population of their birth, than

they were to recruit to populations shallower than the

population of their birth (table 1).
4. DISCUSSION
Quantifying how the probability of larval exchange varies

as a function of distance between populations remains a

daunting logistical challenge for marine ecologists. Here,

we take on this challenge, using data from a population of

the clown anemonefish, A. percula, at Kimbe Island, in

Papua New Guinea. Amphiprion percula live in small breed-

ing groups that inhabit sea anemones, and these groups

can be thought of as populations within a metapopulation.

We used the x- and y-coordinates of each anemone to

estimate the distance between each population and deter-

mine the expected distribution of dispersal distances; we

traced recruits back to their parents using parentage ana-

lyses to determine the observed distribution of dispersal

distances. We used these data to test two hypotheses:

(i) the observed distribution of dispersal distances will

differ from that expected by random chance and (ii) the

probability of successful dispersal will decline as a function

of distance between populations.

(a) Dispersal with respect to random chance

We show that the probability of successful dispersal

between populations is not random: the probability of

successful dispersal varies as a function of distance and

depth displacement. While significant, the whole model

explains only a small proportion of the total variation in

the data. This is probably because we are trying to explain

which of 75 000þ possible dispersal trajectories are used

with only 106 observed dispersal events. Presumably,

there were many dispersal trajectories not used simply

because our observed number of dispersal events was

low. We anticipate that increasing sample size will increase

the proportion of the variation explained. Furthermore,

in this study, we are investigating the pattern of dispersal

in three-dimensional space, without investigating any

causal agents. We know that behavioural and physical pro-

cesses influence the probability that a particular dispersal

trajectory will be taken. Incorporating these factors into

the model in the future will, probably, improve the pro-

portion of the variation explained beyond the baseline

set here.

(b) Dispersal with respect to distance

Most strikingly, we found that the probability of successful

dispersal declined significantly as the distance between

populations increased. Larvae are five times more likely

to disperse 1 m than they are to disperse 1 km. The 95%

CIs show that larvae are 2.5–10 times more likely to dis-

perse 1 m than they are to disperse 1 km. This suggests

that the A. percula dispersal kernel is a unimodal leptokur-

tic distribution with a peak close to source, analogous to

the majority of terrestrial seed dispersal kernels [6].

We note that many dispersal events will have gone

undocumented because residents sometimes drive settlers

from anemones within hours of arrival [38,47] and

we were unable to sample at this temporal resolution.

Given this limitation, there are two plausible alternative

hypotheses for the relationship that we observe between
Proc. R. Soc. B (2012)
the probability of successful dispersal and distance:

(i) the probability of dispersal itself decreases as a func-

tion of distance and (ii) the probability of recruitment

decreases with distance. We favour the former hypothesis

because it is difficult to envisage why recruitment would

vary so dramatically with distance at this small spatial

scale. Furthermore, if the probability of recruitment

were to decline with distance, then this would create natu-

ral selection for behaviours that facilitate larvae dispersing

short distances.

To the best of our knowledge, these are the first quan-

titative estimates of population connectivity parameters

and associated error, based on direct measures of larval

dispersal, in the marine environment. Such data hold

the key to fisheries management and the design of effec-

tive networks of marine reserves [1]. The rapid decline

in the probability of successful dispersal with distance, if

it were also found in other species, would have significant

implications for the spacing of marine protected areas and

the scale of fisheries management.
(c) Dispersal with respect to direction and depth

In contrast to the effect of distance, we found that the

probability of successful dispersal did not vary consist-

ently with direction between populations. This result

is perhaps surprising given that currents are predicted

to have strong effects on the probability of dispersal

[20–23]. It should be noted that there was a mismatch

between the temporal resolution at which our data were

collected (we lumped dispersal events that occurred

over an eight-month period) and the temporal scales at

which currents around Kimbe Island are likely to vary.

Having said that, for clownfish in Kimbe Bay, it is possible

that currents do not play a significant role in determining

the pattern of dispersal at this small spatial scale (less than

1 km). We expect that currents will play a more significant

role in determining the pattern of dispersal at larger

spatial scales.

Unexpectedly, we found that the probability of success-

ful dispersal varied with depth displacement between

populations. Larvae were more likely to recruit to popu-

lations deeper than the population of their birth than they

were to recruit to populations shallower than the popu-

lation of their birth. It is beyond the scope of this paper

to speculate on the causes of this pattern. Further work is

clearly warranted to test alternative biological (proximate

and ultimate) and physical hypotheses for the causes of

the pattern.
(d) Future directions

We have used the clownfish (A. percula) as a model to

develop a framework for quantitative investigations of

marine larval dispersal and population connectivity.

In the future, we will use this approach to investigate

spatial and temporal variation in the pattern of dispersal

in A. percula. We suggest that the approach could also

be used to investigate the pattern of dispersal in other

species and to test the generality of the findings emerging

from A. percula. One challenge in doing this would be tra-

cing sufficient numbers of recruits back to their parents,

but similar levels of self-recruitment to those found in

A. percula have been recorded in other damselfishes

[29], wrasses [30], butterflyfishes [28], triple-fin blennies

http://rspb.royalsocietypublishing.org/
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[49] and a rapidly increasing list of reef fish species [50],

suggesting that this would be possible. Furthermore,

many of these species exhibit quite specialized breeding

and recruitment sites and, with appropriate sampling, it

would be possible to generate the observed and expected

distributions of dispersal trajectories that hold the key to

the analysis employed here. Because A. percula is some-

times regarded as being unique, we consider that testing

the generality of the findings emerging from A. percula

should be made a priority.

Our study also provides a framework for testing

alternative hypotheses regarding the biological and phys-

ical factors that might influence marine larval dispersal

and population connectivity. Considering biological fac-

tors, in A. percula, male growth and female body size

influence the numbers of eggs produced in each popu-

lation [39,45], whereas anemone saturation and reef

type influence the likelihood of recruitment to each popu-

lation [38,51]. It should be relatively straightforward to

include these factors as additional independent variables

in the logistic model and also determine whether they

influence the probability of successful dispersal. Consid-

ering physical factors, high-resolution biophysical

models predict connectivity based on the probability

that water parcels from one location are advected to

another location [21–24]. It should be possible to include

the physical connectivity estimates derived from these

models as an additional independent variable in the logis-

tic model and determine the extent to which they explain

population connectivity. By developing a framework for

testing biological and physical hypotheses in unison, this

study lays the foundation for a deeper understanding of

marine larval dispersal and population connectivity.
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