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omAbstra
tThe primary bene�t of geneti
 s
hedulers isthat they 
an often 
onstru
t high qualitys
hedules for long term s
heduling. A 
om-mon 
ost asso
iated with geneti
 s
hedulingis that it may take tremendous amounts oftime and 
omputing power to produ
e highquality s
hedules, and these 
osts 
an makegeneti
 s
heduling impra
ti
al for many dy-nami
 environments. The Air Crew S
hed-uler (ACS) system is built to 
rew tours formultiple squadrons in the United Stated AirFor
e. This system is built around a ge-neti
 s
heduling engine that is designed towork alongside human s
hedulers to make
rew assignments to tours. The 
rew s
hedul-ing problem itself is 
onstraint-laden and re-quires rapid s
hedule updates for 
hanges to
rew member information and tour 
hanges.This paper will provide a high-level overviewof the problem and its 
onstraints. Wewill provide a design overview of the ge-neti
 s
heduler that has been 
onstru
ted torapidly s
hedule in this dynami
 setting.1 Introdu
tionThe Air For
e fa
es a number of 
hallenging s
hedul-ing problems as well as other resour
e allo
ation prob-lems. The Unit-Level Planning and S
heduling System(ULPS)1 is a system designed to support the 
onstru
-tion of tours and to manage and 
oordinate the per-sonnel assigned to tours for the Air For
e. For thepurposes of this paper, we 
onsider a tour is an order-ing of 
ights su
h that the departure point of the �rst
ight is the same as the arrival point of the last 
ight.1Developed under prime 
ontra
t by Unisys Corp.

The ULPS system is divided into two 
omponents:Mission Builder (MB) and the Air Crew S
heduler(ACS). The Mission Builder (MB) system 2 
onstru
tstours and provides details on departure and arrivalpoints, a
tivities to take pla
e, ne
essary quali�
ationsfor the tour, type of 
rew to assign to the tour, theair
raft type to be used, as well as other tour relatedinformation. The se
ond 
omponent of ULPS is theACS System3. The ACS system is designed to pro
essthe tours 
onstru
ted by MB and allo
ate a set of ap-propriate personnel (
rew) assignments so the tour 
an
y. The ACS system is both an automati
 s
heduleras well as a s
heduling tool for the human s
hedulers.The fo
us of this paper is the s
heduling engine in-side the ACS system. The ACS System uses a geneti
s
heduler 
ustomized for the Air Crew s
heduling en-vironment, where it must rapidly res
hedule based on
hanges 
oming in from Mission Builder, in the form oftour additions, 
hanges, and deletions as well as fromseveral human s
hedulers, who 
an simultaneously ma-nipulate the 
rew assignments. The geneti
 s
hedulerwas 
arefully designed to work in 
onjun
tion and non-intrusively with the human s
hedulers to optimize and
rew assignments. This paper will outline the ACStool ar
hite
ture in Se
tion 2, provide details on thes
heduling problem in Se
tion 3, and present the de-sign of the s
heduling engine in Se
tion 4.2 The ACS ToolAs motivation for the geneti
 s
heduler design, it isne
essary to explain the 
ontext in whi
h the s
heduleris used. This se
tion provides a brief overview of theACS System design and des
ribes how the system isintended to be used. We will also des
ribe the GUIs
reens and buttons that allow the human s
hedulers2Developed by Federated Software Group3Developed by BBN Te
hnologies
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Figure 1: Overview of the ACS Ar
hite
ture.to pass information to the geneti
 s
heduler.ACS is a distributed system, 
onsisting of a set of pro-
esses running on one or more server ma
hines and aset of GUI pro
esses running on multiple 
lient ma-
hines. Figure 1 presents an overview of the system.Data 
ows from an external data sour
e (the ULPSdatabase) into the ACS database pro
ess. The data ispartitioned into squadrons of 
rewmembers and toursand ea
h squadron is s
heduled independently: ea
hsquadron gets its own s
heduling pro
ess and its ownset of GUI-
lients. When a given s
heduling pro
essre
ognizes that its data has 
hanged, it begins an op-timization 
y
le. This 
y
le ends when the s
hedulerdetermines that it is only making marginal improve-ments to the s
hedule. At this point the 
omputeds
hedule is written ba
k to the ACS database and thes
heduling pro
ess waits until more 
hanges are 
om-mitted to the database.At the same time that the optimization is o

urring,multiple GUI 
lient-pro
esses may be intera
ting withthe ACS Database pro
ess. The GUI 
lients permithuman s
hedulers to view the existing s
hedule andthen either approve or modify portions of it. Theseapprovals are are sent ba
k to the ACS database andthe ULPS database so other systems may view theassignment information. Any 
hanges to the s
hed-ule, either made by a single GUI-
lient or the auto-mated s
heduler, are posted to the ACS database andmade available to other GUI-
lients and the automateds
heduler.The automated s
heduler is designed to not inter-rupt the human s
hedulers' a
tivities. The automateds
heduler runs passively in the ba
kground, whi
h wewill explain in more detail in Se
tion 4.7. If 
hanges tothe database o

ur, it prepares to start running, butwaits some (parameterized) time before automati
allystarting. This is to allow the GUI-
lients to dete
t andmake additional 
hanges before the automated s
hed-uler makes its suggested assignments. If the humans
hedulers want to for
e the s
heduler to start running

Figure 2: The ACS Rainbow S
reen for tra
k and editall 
rewmember a
tivities.rather than waiting for it to time-out and start runningautomati
ally, they 
an press the S
hedule Now but-ton that tells the automated s
heduler that the humans
heduler is ready for it to build and post its re
om-mended s
hedule.2.1 The Graphi
al User Interfa
eThe ACS system has a tab based interfa
e, where ea
htab represents a di�erent view of the 
urrent s
heduledata. The two GUI tabs that allow the human s
hed-uler to indire
tly intera
t with the automated s
hed-uler are the Rainbow and Crew Assignment tabs.The Rainbow (Figure 2) tab displays a resour
e-
entri
 view of the s
hedule. Down the left hand-sideof the s
reen a list of 
rewmembers is displayed. Cli
k-ing on one of the names displays details about thatindividual in the panel on the bottom of the s
reen.To the right of ea
h name is a 
hart showing time-blo
ks for ea
h a
tivity that person is s
heduled todo. Several di�erent types of time-blo
ks 
an be dis-played a

ording to the 
olor-
oding indi
ated at the



Figure 3: The ACS Crew Assignment S
reen edit andviewing details on s
heduled tour assignments.top the s
reen. Most of the blo
ks represent a posi-tion and tour to whi
h a given 
rewmember is 
ur-rently assigned. However, the human s
heduler 
anadd and edit tour and other a
tivities on this s
reen.Any a
tivities added here will 
hange a 
rewmember'savailability and may 
ause the automated s
heduler tores
hedule.The Crew Assignment (Figure 3) tab displays anassignment-
entri
 view of the s
hedule. A given as-signment 
an be generated either by the automateds
heduler, or by manual human intervention. Thiss
reen allows the human s
heduler to manipulate theset of assignments by manually assigning (or unassign-ing) 
rewmembers to positions, lo
king down assign-ments to positions (making them ineligible for auto-mati
 s
heduling), approving an assignment and noti-fying a 
rewmember of his/her assignment. In addi-tion, the human s
heduler 
an add new positions or
hange requirements for the positions, su
h as 
hang-ing a regular pilot position to an Instru
tor pilot po-sition (meaning that only Instru
tor pilots 
an be as-signed to that position).The Rainbow s
reen, the Crew Assignment s
reenand the S
hedule Now button are the only means forthe human s
heduler to intera
t with the automateds
heduler. The Rainbow s
reen maintains availabilityinformation for the 
rewmembers (resour
es) and theCrew Assignment s
reen maintains the status of thetour assignment. When the human s
hedulers make
hanges on those s
reens by adding/removing avail-abilities or by manually assigning or unassigning a
rewmember to a position, the automated s
hedulerneeds to in
orporate the human s
heduler's 
hangesinto the 
urrent s
hedule to make any new assignments

that it 
an or verify that the human s
hedulers areworking with a near optimal or optimal set of assign-ments. To expedite the pro
ess or if they are simplynot satis�ed with the 
urrent assignment, the humans
hedulers are always given the option to press theS
hedule Now button to for
e the automated s
hed-uler to start the res
heduling pro
ess.3 The ACS S
heduling ProblemGeneti
 algorithms are typi
ally designed as bla
k boxoptimizers that use an evaluation fun
tion to providefeedba
k that dire
ts the sear
h [2℄. In s
heduling do-mains, this evaluation fun
tion is usually a model ofthe problem that is applied to di�erent 
andidate solu-tions to determine how e�e
tive ea
h solution is withrespe
t to the model. Modelling s
heduling domains
an be done through simulation that tra
ks parti
ulardomain-spe
i�
 metri
s that are used to distinguishhigh-quality solutions from low-quality solutions [3, 5℄.Real-world domains 
an also involve 
onstraints thatdi
tate what is or is not a feasible s
hedule. The AirCrew S
heduling problem uses both simulation and
onstraints to evaluate 
andidate s
hedules.At the highest level, the Air Crew S
heduling (ACS)problem is to mat
h positions on pre-de�ned toursto quali�ed and available personnel. The �tness of as
hedule is measured by the degree to whi
h the s
hed-ule meets 
onstraints; thus, the multi-obje
tive eval-uation fun
tion is designed to assign a single s
ore toindi
ate how well a parti
ular s
hedule meets several(potentially 
on
i
ting) 
onstraints. The 
onstraintsto whi
h a s
hedule must adhere in order to be fea-sible are 
alled hard 
onstraints referring to the fa
tthat these 
onstraints 
annot be violated. A di�erentset of 
onstraints, known as soft 
onstraints, may beviolated, but doing so in
urs a penalty that is in
or-porated into the evaluation fun
tion. Many of thesehard and soft 
onstraints are not entirely �xed butpartially dependent on data and logi
 that potentiallyvary with the air
raft type and squadron. Editablebusiness rules 
apture this variable data and logi
in su
h a way that it is easy to modify them without
hanging the software.3.1 Hard ConstraintsThe ACS system has a number of hard 
onstraints thatmust be applied to all s
hedules to ensure feasibility.We ensure that the hard 
onstraints are not violatedduring the s
heduling pro
ess by using many of thehard 
onstraints to dynami
ally 
onstru
t the initials
heduling problem 
on�guration. We also ensure that



the remaining hard 
onstraints are never violated dur-ing the s
heduling pro
ess. The following list des
ribesthe eight hard 
onstraints:Crew Complement: A 
rew 
omplement is the set ofpositions to be �lled on a parti
ular tour. The MissionBuilder system sends in tours and their details, fromwhi
h ACS dedu
es the skeleton 
rew that ea
h tourneeds in order to 
y. A sample 
rew 
omplement maybe �ve positions that require a Pilot, a Co-Pilot, aFlight Engineer, a Boom Operator, and a Loadmaster.Asso
iated with ea
h position is a set of quali�
ationsthat personnel must have in order to be assigned tothat parti
ular task during the s
heduling pro
ess.Lo
ked Assignments: The automated s
heduler isnot allowed to 
hange the 
rewmember(s) lo
ked to agiven position by a human s
heduler.One Person Per Position: The automated s
hed-uler 
an assign only one 
rewmember per position.Availability: A 
rewmember 
annot be assigned to atour if the tour 
on
i
ts with other a
tivities.Crew Rest: Before and after ea
h mission, a requiredperiod of time is designated, during whi
h a 
rewmem-ber 
annot be assigned to other duties.Quali�
ations:The automated s
heduler 
an only as-sign a quali�ed 
rewmember to a given position.Curren
y: A 
urren
y task is a training a
tivity that
rewmembers must do periodi
ally in order to be 
on-sidered 
urrent. A person 
an be quali�ed to performa parti
ular duty, but if they are not 
urrent for thatduty (due to not performing the task re
ently), thenthey 
annot be s
heduled until they regain 
urren
y.A 
rewmember will not be assigned to a tour if the
rewmember is non-
urrent.Person-Person and Person-Tour: These are ed-itable rules, 
alled business rules, that 
an potentiallyspe
ify soft or hard 
onstraints on who 
an 
y togetherand who 
an 
y on whi
h tours. When a rule is desig-nated as Impossible it be
omes a hard 
onstraint thatthe automated s
heduler does not violate.When a s
heduling problem is 
onstru
ted from theset of positions and resour
es that need to be assigned,most hard 
onstraints 
an be used to �lter the set ofpossible 
rewmembers that are eligible for assignmentto a spe
i�
 position. We use the Crew Complement,Lo
ked Assignments, Availability, Quali�
ations, Cur-ren
y, and Person-Tour 
onstraints to determine whi
hresour
es 
ould, hypotheti
ally, be assigned to a par-ti
ular position. The remaining hard 
onstraints aremaintained during the s
heduling pro
ess.

3.2 Soft ConstraintsSin
e the hard 
onstraints are being used to 
on�g-ure/formulate the problem, the �tness of a s
heduleis 
omputed based on the soft 
onstraints (or prefer-en
es). We 
urrently 
ompute and tra
k �ve variables,S1 through S5, to provide the estimates for how welldi�erent soft 
onstraints are being met by a parti
-ular s
hedule. The variables represent penalties thatneed to be minimized by the geneti
 algorithm. Theoverall s
ore 
al
ulated by the evaluation fun
tion is aweighted sum of �ve penalties:S = w1S1 + w2S2 + w3S3 + w4S4 + w5S5The weights in the equation are parameters that weare setting to assign an importan
e to ea
h of the vari-ables. We now dis
uss these �ve subs
ores:Crew the Tours: The primary s
heduling goal is toassign 
omplete 
rews to all Tours, where a 
omplete
rew is a set of assignments to ea
h position in the tour.The s
ore also 
onsiders priority of di�erent tours.Redu
e S
hedule Turbulen
e: This s
ore 
om-putes how mu
h a s
hedule has 
hanged from what ahuman s
heduler had approved or noti�ed. On
e a hu-man s
heduler has approved of a s
hedule, the geneti
algorithm attempts to keep approved assignments overrepla
ing them with similar, but unapproved, assign-ments. A 
onsiderably higher penalty is given if thehuman s
heduler has a
tually noti�ed the 
rewmemberof his/her duty assignment. The noti�
ation penalty isfurther weighted (nonlinearly) depending on how soonthe assigned tour was s
heduled to depart.Maintain Training Curren
y: Crewmembersshould be pla
ed on tours that help them to ful�ll
urren
y requirements. Ea
h tour has opportunitiesfor di�erent training events. When 
rewmembers areassigned to positions on these tours, they 
an be given
redit for these training a
tivities to help them meettheir 
urren
y needs for a spe
i�ed period of time. Apenalty is given for ea
h 
rewmember who has 
ur-ren
y requirements to �ll. As the deadlines for ful�ll-ing the 
urren
y requirements get 
loser, the penaltyin
reases nonlinearly.S
hedule Equity: Crewmembers should be s
hed-uled evenly based on their availabilities.Person-Person, Person-Tour, Quali�
ations:These editable rules 
apture preferen
es from Smithshould not 
y with Jones to an inexperien
ed pilotshould not 
y on a tour that lands at a parti
ular desti-nation. Ea
h user-de�ned preferen
e has a qualitativevalue for the asso
iated penalty (very bad, bad, good,very good). An extra penalty of Impossible translatesthe preferen
e into a hard 
onstraint. A Quali�
ation



penalty is applied when someone is overquali�ed toperform an a
tivity, su
h as a pilot �lling a 
o-pilotposition.3.3 The SimulationThe simulation step of the s
heduling pro
ess involvesallo
ating training events to 
rewmembers. This stepis ne
essary to evaluate the soft 
onstraint penaltyfor Maintaining Curren
ies. For ea
h 
urren
y itemneeded, we partition the number of un�lled 
urren
yevents into needs and wants, where a need is the num-ber of events due in the next 30 days and a want isanything else. In most 
ases, the 
urren
y tasks willfall into the want 
ategory. This simply establisheswhat absolutely needs to get done this s
heduling pe-riod and what we would like to get done this s
hedulingperiod.For ea
h tour, we maintain information for ea
h train-ing event to indi
ate how many training event slotsare available and allo
ated. The training event allo
a-tion pro
ess is a two-pass 
al
ulation. First, 
rewmem-bers will be allo
ated as many of their needed 
ur-ren
y items as possible. A �rst 
ome �rst served re-solves any ties when training events need to be sharedbetween 
rewmembers. Se
ond, 
rewmembers mustshare wants on tours. If there are more wanted 
ur-ren
y events than available training event slots, theslots are divided based on how many positions thereare on the tour so ea
h 
rewmember assigned to thosepositions gets some of their wanted 
urren
y items.4 The Geneti
 S
hedulerChoosing the right representation and sear
h opera-tors for a s
heduling problem or any other optimizationproblem 
an di
tate sear
h performan
e, both in termsof solution quality and 
omputation time. The most
ommon representation for a 
hromosome in geneti
s
heduling is a permutation of tasks [4, 5℄ to whi
h asubsequent assignment of resour
es is made. How thesubsequent assignment of resour
es is made 
an be ei-ther knowledge-intensive (i.e., spe
ialized heuristi
s for
hoosing the best resour
e for the task) or knowledgepoor (i.e., a purely greedy, random or �rst-
ome �rst-served approa
h). Using task permutations requiresspe
ialized 
rossover and mutation operators. Severalgeneri
 
rossover operators have been developed forpermutations [4, 5℄. The permutation representationis appli
able when tasks and resour
es both need tobe s
heduled; however, the ACS s
heduler uses pre-s
heduled and �xed task start and end times. There-fore, the ACS s
heduler uses an alternative represen-

tation and operators to dire
tly manipulate the task-to-resour
e mapping rather than manipulating a taskordering.4.1 Representational IssuesTwo fa
tors that are often overlooked when develop-ing representations for geneti
 s
hedulers are repre-sentational isomorphisms and feasibility maintenan
e.These fa
tors 
an dramati
ally in
rease the size of thesear
h spa
e and make optimization mu
h more diÆ-
ult.
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Figure 4: Sample four task three resour
e s
hedulingproblem.Representational isomorphisms o

ur when di�erentpermutation 
hromosomes represent exa
tly the sames
hedule. A potential problem with using task per-mutations at the 
hromosome level is that indepen-dent tasks 
an be arbitrarily reordered with respe
tto one another and still 
ompete for the same re-sour
es. Consider Figure 4 in whi
h we have fournon-related s
heduling tasks to perform and three re-sour
es 
apable of performing those tasks. Supposewe have a resour
e assignment algorithm that treatsour task permutation as a priority queue and assignsan available resour
e, either deterministi
ally or non-deterministi
ally, to the next task in line. Giventhe time ordering of the tasks, a valid s
hedule isf(1; A); (2; B); (3; A); (4; B)g meaning Resour
e A isassigned to Tasks 1 and 3 and Resour
e B is assigned toTasks 2 and 4. If we use a non-deterministi
 resour
eassignment strategy, it is possible to produ
e this sames
hedule using 4! di�erent task permutations. Evenwith a deterministi
 resour
e assignment strategy we
an still have multiple task permutations that resultin identi
al s
hedules.Feasibility maintenan
emeans that we require that thegeneti
 algorithm work only with feasible s
hedules.The feasibility maintenan
e issue 
an arise when weuse a geneti
 algorithm (or simulated annealing [6℄)to simultaneously optimize the task ordering and re-sour
e assignment. If we are expli
itly working with



task to resour
e mappings, then we may need to repairs
hedules to ensure that they are feasible.4.2 The Multi-Set RepresentationThe ACS geneti
 s
heduler uses a multi-set to repre-sent the mapping of resour
es to tasks, where a multi-set is a set that 
ontains dupli
ate elements. We aug-ment our set of resour
es with a null resour
e (�) torepresent that no resour
e is assigned to a parti
ulartask. This representation is a mapping and a dire
ten
oding of a s
hedule, so it is unne
essary to per-mute the s
heduling tasks. This expli
it mapping pre-vents representational isomorphisms. Using our exam-ple from the previous se
tion, there is only one s
hed-ule that represents f(1; A); (2; B); (3; A); (4; B)g !ABAB (assuming a �xed ordering of the tasks).4.3 FillThe Fill algorithm is a non-deterministi
 algorithmthat randomly assigns quali�ed, 
urrent, and availableresour
es to tasks that are assigned the null resour
e.Fill is 
alled to postpro
ess all 
hromosomes beforethe s
hedule is evaluated and maintains any additionalhard 
onstraints. A random initialization pro
edure
onsists of applying the Fill algorithm to 
hromosomesthat have the null assignment to all tasks. The Fill al-gorithm then randomly �lls tours and 
reates fast ini-tial feasible s
hedules. The Fill pro
edure ensures thatany positions that 
an be assigned will be assigned be-fore a s
hedule is evaluated. It �lls the assignmentsdire
tly onto the GA 
hromosome so no added repre-sentational overhead is in
urred.4.4 Constraint Based CrossoverThe Constraint Based Crossover is a variant of Uni-form Crossover that is applied to feasible task to re-sour
e mappings in a random order. As we are restri
t-ing 
rossover to take two valid s
hedules and produ
ea single new valid s
hedule, we need to ensure thatno hard 
onstraints are violated during 
rossover. Toavoid this situation, we use task overlap 
onstraintsto pro
ess ea
h 
rossover assignment to verify that no
on
i
ts o

urred. We use an adja
en
y matrix to rep-resent 
on
i
ting tasks, where entries in the matrixindi
ate whi
h tasks overlap. We use the matrix torestri
t 
hoi
es at ea
h lo
us in the o�spring 
hromo-some based on the values that have been set. As anassignment is made, we use the task overlap informa-tion to restri
t future 
hoi
es at ea
h lo
us that hasyet to be set in the o�spring 
hromosome.In general, the s
hedules that are produ
ed by
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onstraint based 
rossover.
rossover are underspe
i�ed, meaning that there maybe positions that 
ould not be assigned due to 
on-
i
ts in ea
h parent, but may be assignable in the o�-spring as other 
on
i
ts may have been eliminated dur-ing 
rossover. It is not the role of 
rossover to exploitthese obvious holes in the s
hedule. The Fill algorithmwill perform that task in a subsequent pro
edure.4.5 Mutation By OmissionThe motivation for Crossover is to exploit 
ommon-alities between parent strings while the motivationfor Mutation is to ensure that exploration 
ontinuesthroughout sear
h. The postpro
essing step using theFill algorithm means that we 
an mutate a lo
us byassigning it to the null resour
e and leave that posi-tion unassigned until Fill postpro
esses the 
hromo-some. Thus, when mutation o

urs, that means thatwe have not made an assignment to a task.4.6 Example of Crossover and MutationA simple example of our 
rossover and mutation op-erators is given in Figure 5. The task 
on
i
ts are seton
e when the s
heduling problem is read from thedatabase. When parent strings are re
ombined, thetask 
on
i
t information is applied to restri
t the setof possible resour
e assignments. In the example, task4 is 
hosen as the �rst 
rossover point. The parentstrings have resour
e assignments of C and B; thus,these values, along with � are valid resour
e 
hoi
es.Sin
e C was 
hosen, task 6 
an no longer be assigned
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SLEEPFigure 6: Geneti
 Algorithm 
ontroller.to resour
e C sin
e task 4 
on
i
ts with task 6. Sim-ilarly task 2 is assigned to C, so C is eliminated asa 
hoi
e for task 3, but task 1 does not have C as a
hoi
e so no further restri
tions need to be made. Fortask 1, however, a mutation was 
hosen, so the � re-sour
e was assigned and will be �lled in by the Fillpro
edure after 
rossover is 
omplete.4.7 The Dynami
 Exe
utionThe ACS geneti
 s
heduler is working in a dynami
environment where 
hanges are 
onstantly o

urringdue to tour and 
rewmember 
hanges 
oming in fromthe ULPS database and from the human s
hedulers.This means the geneti
 s
heduler must 
onstantly re-vise s
hedules to �ll in any assignments and to opti-mize the s
hedules over the long term s
heduling win-dow. At the same time, the geneti
 s
heduler needs tobe 
autious in how it makes 
hanges so the 
hanges donot intrude on the human s
hedulers' a
tivities.The dynami
 exe
ution requires rapid (on the orderof se
onds or a few minutes) s
hedule produ
tion, sousers are not waiting long for new s
hedules to arrive.We use a geneti
 algorithm 
ontroller to 
ontrol howand when the geneti
 algorithm runs and we designedthe geneti
 algorithm to produ
e a s
hedule qui
kly,within 1000 evaluations. An outline of the 
ontrollerfor the geneti
 s
heduler is given in Figure 6.The 
ontroller loop 
ontrols when the geneti
 algo-rithm enters and exits the Read, Exe
ute, Sleep states.The Read state queries for any updates to the ACSdatabase. The database sends all up-to-date s
hedul-ing information from whi
h the geneti
 algorithm 
on-�gures its s
heduling problem. If there is no s
hedulingto be done, the 
ontroller enters the Sleep state. Oth-erwise, the geneti
 algorithm 
a
hes the 
urrent setof assignments to seed the initial population of the ge-neti
 algorithm. This means ea
h exe
ution step of thegeneti
 algorithm 
an be thought of as a partial restartthat is initialized from a valid solution. The Exe
ute

Conditionally Write

Choose parents
Recombine parents

       Insert if better than worst schedule in the population

If (offspring not in Population)
       Fill and Evaluate offspring schedule

Initialize

Conditionally Restart

Figure 7: Geneti
 Algorithm exe
ution algorithm.state of the 
ontroller runs the geneti
 s
heduler andperiodi
ally posts 
hanges to the ACS database. Whenthe geneti
 s
heduler has run to 
ompletion, the au-tomated s
heduler enters its Sleep state. The sleepstate will be exited immediately if 
hanges happenedwhile the geneti
 algorithm had been running, or if auser pressed the S
hedule Now button. Otherwise, thes
heduler will wait for 
hanges and wake up upon de-te
ting 
hanges to the database (with a parameterizeddelay). This Sleep state is the key to giving the geneti
s
heduler a passive behavior, whi
h keeps it from in-terfering with the human s
heduler's a
tivities. TheGUI-s
reens have a 
olor-
oded status indi
ator thatreports whether the geneti
 algorithm is preparing torun, running, or sleeping so the user is aware that anew s
hedule might be arriving soon.4.8 The Exe
ute StateA more detailed outline of the Exe
ute state of theACS geneti
 s
heduler is shown in Figure 7. The de-sign of the population and exe
ution was inspired bythe CHC geneti
 algorithm [1℄. Our population size is30 individuals, but we do not allow dupli
ate 
hromo-somes into the population. The innermost loop in thediagram represents a single exe
ution of the geneti
 al-gorithm, using sele
tion, 
rossover, mutation, Fill andevaluation. Naturally, using su
h a small populationresults in fast 
onvergen
e. Like CHC, we perform apartial restart upon 
onvergen
e, whi
h is representedby the se
ond loop in the diagram. A partial restarto

urs by using the best member of the populationto seed the remainder of the population. There are alimited number of partial restarts that 
an take pla
e



before the geneti
 algorithm is for
ed to write its solu-tion to the ACS database; however, the geneti
 algo-rithm will automati
ally stop and write if it 
onvergesto the same solution repeatedly (the 
uto� is spe
i�edby a parameter). When the geneti
 algorithm is �n-ished with a single run, it attempts to write its solutionba
k to the database. The write will not take pla
e ifthe database has 
hanged sin
e the problem was reador if the 
a
hed s
hedule has the same �tness as thebest solution in the population. Finally, the outermostloop is used to perform a larger s
ale restart. This loopdetermines, based on a parameter, whether the di�er-en
e between two 
onse
utive solutions is large enoughto 
ontinue sear
hing. If the di�eren
e is above thetoleran
e, sear
h is restarted, otherwise, the 
ontrollermoves into the Sleep state.5 Con
lusionThe ULPS ACS s
heduling system is a dynami
 ge-neti
 s
heduler designed to fun
tion in the real world.The design of the s
heduler is motivated by the needfor rapid rea
tion to 
hanges in the system. To thisend, we use spe
ial geneti
 operators that ensure thatthe geneti
 algorithm is always manipulating valid fea-sible s
hedules and our representation guarantees thata 
hromosome de
odes to a unique s
hedule. Fur-thermore, the s
heduler takes an iterative approa
hto sear
h { using small populations that yield fast-runtimes on a single exe
ution to post s
hedule 
hangesqui
kly. However, the fa
t that the s
heduler is run-ning multiple times, as di
tated by 
hanges to the sys-tem or by human dire
tion means that the s
hedulewill be re�ned over the long term. Furthermore, sin
ethe geneti
 s
heduler is always starting from the 
ur-rent s
hedule that is being used by the human s
hed-ulers, it will tend to produ
e s
hedules that in
orpo-rate those assignments into it. This design is one ap-proa
h to making geneti
 s
heduling more 
omputa-tionally tra
table for rapidly 
hanging s
heduling en-vironments.6 A
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