The Air Crew Scheduling System: The Design of a Real-world,
Dynamic Genetic Scheduler

Soraya Rana-Stevens
BBN Technologies
Cambridge, MA 02138
email: sstevens@bbn.com

Abstract

The primary benefit of genetic schedulers is
that they can often construct high quality
schedules for long term scheduling. A com-
mon cost associated with genetic scheduling
is that it may take tremendous amounts of
time and computing power to produce high
quality schedules, and these costs can make
genetic scheduling impractical for many dy-
namic environments. The Air Crew Sched-
uler (ACS) system is built to crew tours for
multiple squadrons in the United Stated Air
Force. This system is built around a ge-
netic scheduling engine that is designed to
work alongside human schedulers to make
crew assignments to tours. The crew schedul-
ing problem itself is constraint-laden and re-
quires rapid schedule updates for changes to
crew member information and tour changes.
This paper will provide a high-level overview
of the problem and its constraints. We
will provide a design overview of the ge-
netic scheduler that has been constructed to
rapidly schedule in this dynamic setting.

1 Introduction

The Air Force faces a number of challenging schedul-
ing problems as well as other resource allocation prob-
lems. The Unit-Level Planning and Scheduling System
(ULPS)! is a system designed to support the construc-
tion of tours and to manage and coordinate the per-
sonnel assigned to tours for the Air Force. For the
purposes of this paper, we consider a tour is an order-
ing of flights such that the departure point of the first
flight is the same as the arrival point of the last flight.

'"Developed under prime contract by Unisys Corp.

Benjamin Lubin
BBN Technologies
Cambridge, MA 02138
email: blubin@bbn.com

David Montana
BBN Technologies
Cambridge, MA 02138
email: dmontana@bbn.com

The ULPS system is divided into two components:
Mission Builder (MB) and the Air Crew Scheduler
(ACS). The Mission Builder (MB) system ? constructs
tours and provides details on departure and arrival
points, activities to take place, necessary qualifications
for the tour, type of crew to assign to the tour, the
aircraft type to be used, as well as other tour related
information. The second component of ULPS is the
ACS System®. The ACS system is designed to process
the tours constructed by MB and allocate a set of ap-
propriate personnel (crew) assignments so the tour can
fly. The ACS system is both an automatic scheduler
as well as a scheduling tool for the human schedulers.

The focus of this paper is the scheduling engine in-
side the ACS system. The ACS System uses a genetic
scheduler customized for the Air Crew scheduling en-
vironment, where it must rapidly reschedule based on
changes coming in from Mission Builder, in the form of
tour additions, changes, and deletions as well as from
several human schedulers, who can simultaneously ma-
nipulate the crew assignments. The genetic scheduler
was carefully designed to work in conjunction and non-
intrusively with the human schedulers to optimize and
crew assignments. This paper will outline the ACS
tool architecture in Section 2, provide details on the
scheduling problem in Section 3, and present the de-
sign of the scheduling engine in Section 4.

2 The ACS Tool

As motivation for the genetic scheduler design, it is
necessary to explain the context in which the scheduler
is used. This section provides a brief overview of the
ACS System design and describes how the system is
intended to be used. We will also describe the GUI
screens and buttons that allow the human schedulers

2Developed by Federated Software Group
®Developed by BBN Technologies

Outside Data change
Systems ogers

automatic

scheduling
ULPS
Database

New/changed Datq

<

Crew Assignments|

ACS Server Machine

Scheduling)
Process /

[
[

[

“Schedule Now”

ACS Client Machines

User Interface

Manual Crew
Assignments

Figure 1: Overview of the ACS Architecture.

to pass information to the genetic scheduler.

ACS is a distributed system, consisting of a set of pro-
cesses running on one or more server machines and a
set of GUI processes running on multiple client ma-
chines. Figure 1 presents an overview of the system.
Data flows from an external data source (the ULPS
database) into the ACS database process. The data is
partitioned into squadrons of crewmembers and tours
and each squadron is scheduled independently: each
squadron gets its own scheduling process and its own
set of GUI-clients. When a given scheduling process
recognizes that its data has changed, it begins an op-
timization cycle. This cycle ends when the scheduler
determines that it is only making marginal improve-
ments to the schedule. At this point the computed
schedule is written back to the ACS database and the
scheduling process waits until more changes are com-
mitted to the database.

At the same time that the optimization is occurring,
multiple GUI client-processes may be interacting with
the ACS Database process. The GUI clients permit
human schedulers to view the existing schedule and
then either approve or modify portions of it. These
approvals are are sent back to the ACS database and
the ULPS database so other systems may view the
assignment information. Any changes to the sched-
ule, either made by a single GUlI-client or the auto-
mated scheduler, are posted to the ACS database and
made available to other GUI-clients and the automated
scheduler.

The automated scheduler is designed to not inter-
rupt the human schedulers’ activities. The automated
scheduler runs passively in the background, which we
will explain in more detail in Section 4.7. If changes to
the database occur, it prepares to start running, but
waits some (parameterized) time before automatically
starting. This is to allow the GUI-clients to detect and
make additional changes before the automated sched-
uler makes its suggested assignments. If the human
schedulers want to force the scheduler to start running

[ULPS-ACS [-[O0=]
File View Special Help
Calendar Rainbow | Tours | Tour Detal| Crew Aesignment| Business Rutes| Status |
W issionTour ¥ Alert(vBl) W CrewRest I Ground Train..I” Ground Dut M Leave W DNIF I Unavailable
I~ Local Mission Ml LentToFly I~ Simulator Tra.. Block Training I~ StafDuty [~ Appointment [~ TDY I Available
{ i ' i i i i l i i 0 i i
Fosticn: [0 =l §1 o0sm2 0503 0601 0605 0606 0507 0608 0SS O06MO 0611 0612 06/ ®
IRWIN, JOHN =
ROBINSON, GARY J
JOLLY, CHUCK |
ANDERSON, KEN
DANIELL MARK
DAVIS, MARK |
DICK, PETER |||
ELLARD, PENNY |]
EURLE, BILL]I
GOELLNER, BOB]
JOHNSON, CHRIS
ROGERS, KNOX 5]
@ fifie St A I _>l_I
[Crew Mernber Detail Quals. Training Event:
Name [SMITH, JOHN Home Phone [Bo0-655-1212 | ||[uc__ al|[event [Re..|Due| LeadTime,
D lBooo00 Dsn Phane o0 Q090 (FLT PUB. laF1 31-4.. [1 ue/g_i’ W Overdue
Position JUc__ Primary Aircraft [Mone QI70(FEFREV || |ADSCLA.D (1213 I Critical
Flying Org g 30 DayFlying Hrs 10 QnoziCLsBK (||| PROFS.. 4 063 I Current
Mcangannae-1 |||[CBT2 .1 DEM3
Unit sa 90 DayFlying Hre [0.0 Y840 ONIT 31-1 INITCMB.0 {1213, @ Flight
Viow Activtios e Avea | Total Fiying Hrs [5411.7 _,Ll FLYSAFE |1 B3|
. 2 i ara o L] © Ground
‘ Update ‘ | Schedule Now ‘ |b Stopped

Figure 2: The ACS Rainbow Screen for track and edit
all crewmember activities.

rather than waiting for it to time-out and start running
automatically, they can press the Schedule Now but-
ton that tells the automated scheduler that the human
scheduler is ready for it to build and post its recom-
mended schedule.

2.1 The Graphical User Interface

The ACS system has a tab based interface, where each
tab represents a different view of the current schedule
data. The two GUI tabs that allow the human sched-
uler to indirectly interact with the automated sched-
uler are the Rainbow and Crew Assignment tabs.

The Rainbow (Figure 2) tab displays a resource-
centric view of the schedule. Down the left hand-side
of the screen a list of crewmembers is displayed. Click-
ing on one of the names displays details about that
individual in the panel on the bottom of the screen.
To the right of each name is a chart showing time-
blocks for each activity that person is scheduled to
do. Several different types of time-blocks can be dis-
played according to the color-coding indicated at the

[uLps-acs [_[o[x]
File View Special Help
Galendar| Rainbow| Tours | Tour Detail Crew Assignment | Business Rules| Status|

“Assigned Crew “Available Crew Members-

[buty Grew Member | Locked [Anprov...| Nofified Crew Member Duty Code
|MP__ | WALZAK, MIKE 4 | R 7 W
IMC___[SHULTZ, ANDREW I F I 0Z, FRANK |F32_
||MF__IMOORE, SEAN u [[= BEAR, FOZZY [IF32_
I STATLER, WALDORF [IF326
T = A N i e 1 || [[armars e ai e TF2>]
Capy Edit Delete Apprave All T A Filter by [Available [Qualiied [¥ Current
- SCHOAFF, CHRISTINE Information 1 Tour 4 Information
| Training Events
Event Rernain| Due [Lead Time; || | Tour [Tour4 Dest Area [
INTIAL AERPE-C_ [0 12131169 | 4| | M Overdus| || | Depariure [11Juni580r306L | AlertTime |
INIT CMET SRV-C_[0 23188 = Critieal || |Return [13Jun1898/1806L Show Time
QUAL GHECK -G |1 ovovon || urrent ||| B
USEFORCE -N |t [12/31/29 |
HRT SCENSTY_[1 rai3ime | | Flight
‘%NTHRMANNUAU 01101100 |+ € Ground
e 3 S

[Req. Quals | Remark: T

Member Details Currency Detail EE ‘

| [GQuals. | Reemarks 1

P ﬁE |
|aos0 FLTPUBE

la170 FEf REVWHL
T

3

‘ Update H Schedule Now ‘ ‘.SIDI’I’EI‘

Figure 3: The ACS Crew Assignment Screen edit and
viewing details on scheduled tour assignments.

top the screen. Most of the blocks represent a posi-
tion and tour to which a given crewmember is cur-
rently assigned. However, the human scheduler can
add and edit tour and other activities on this screen.
Any activities added here will change a crewmember’s
availability and may cause the automated scheduler to
reschedule.

The Crew Assignment (Figure 3) tab displays an
assignment-centric view of the schedule. A given as-
signment can be generated either by the automated
scheduler, or by manual human intervention. This
screen allows the human scheduler to manipulate the
set of assignments by manually assigning (or unassign-
ing) crewmembers to positions, locking down assign-
ments to positions (making them ineligible for auto-
matic scheduling), approving an assignment and noti-
fying a crewmember of his/her assignment. In addi-
tion, the human scheduler can add new positions or
change requirements for the positions, such as chang-
ing a regular pilot position to an Instructor pilot po-
sition (meaning that only Instructor pilots can be as-
signed to that position).

The Rainbow screen, the Crew Assignment screen
and the Schedule Now button are the only means for
the human scheduler to interact with the automated
scheduler. The Rainbow screen maintains availability
information for the crewmembers (resources) and the
Crew Assignment screen maintains the status of the
tour assignment. When the human schedulers make
changes on those screens by adding/removing avail-
abilities or by manually assigning or unassigning a
crewmember to a position, the automated scheduler
needs to incorporate the human scheduler’s changes
into the current schedule to make any new assignments

that it can or verify that the human schedulers are
working with a near optimal or optimal set of assign-
ments. To expedite the process or if they are simply
not satisfied with the current assignment, the human
schedulers are always given the option to press the
Schedule Now button to force the automated sched-
uler to start the rescheduling process.

3 The ACS Scheduling Problem

Genetic algorithms are typically designed as black box
optimizers that use an evaluation function to provide
feedback that directs the search [2]. In scheduling do-
mains, this evaluation function is usually a model of
the problem that is applied to different candidate solu-
tions to determine how effective each solution is with
respect to the model. Modelling scheduling domains
can be done through simulation that tracks particular
domain-specific metrics that are used to distinguish
high-quality solutions from low-quality solutions [3, 5].
Real-world domains can also involve constraints that
dictate what is or is not a feasible schedule. The Air
Crew Scheduling problem uses both simulation and
constraints to evaluate candidate schedules.

At the highest level, the Air Crew Scheduling (ACS)
problem is to match positions on pre-defined tours
to qualified and available personnel. The fitness of a
schedule is measured by the degree to which the sched-
ule meets constraints; thus, the multi-objective eval-
uation function is designed to assign a single score to
indicate how well a particular schedule meets several
(potentially conflicting) constraints. The constraints
to which a schedule must adhere in order to be fea-
sible are called hard constraints referring to the fact
that these constraints cannot be violated. A different
set of constraints, known as soft constraints, may be
violated, but doing so incurs a penalty that is incor-
porated into the evaluation function. Many of these
hard and soft constraints are not entirely fixed but
partially dependent on data and logic that potentially
vary with the aircraft type and squadron. Editable
business rules capture this variable data and logic
in such a way that it is easy to modify them without
changing the software.

3.1 Hard Constraints

The ACS system has a number of hard constraints that
must be applied to all schedules to ensure feasibility.
We ensure that the hard constraints are not violated
during the scheduling process by using many of the
hard constraints to dynamically construct the initial
scheduling problem configuration. We also ensure that

the remaining hard constraints are never violated dur-
ing the scheduling process. The following list describes
the eight hard constraints:

Crew Complement: A crew complement is the set of
positions to be filled on a particular tour. The Mission
Builder system sends in tours and their details, from
which ACS deduces the skeleton crew that each tour
needs in order to fly. A sample crew complement may
be five positions that require a Pilot, a Co-Pilot, a
Flight Engineer, a Boom Operator, and a Loadmaster.
Associated with each position is a set of qualifications
that personnel must have in order to be assigned to
that particular task during the scheduling process.

Locked Assignments: The automated scheduler is
not allowed to change the crewmember(s) locked to a
given position by a human scheduler.

One Person Per Position: The automated sched-
uler can assign only one crewmember per position.

Availability: A crewmember cannot be assigned to a
tour if the tour conflicts with other activities.

Crew Rest: Before and after each mission, a required
period of time is designated, during which a crewmem-
ber cannot be assigned to other duties.

Qualifications:The automated scheduler can only as-
sign a qualified crewmember to a given position.

Currency: A currency task is a training activity that
crewmembers must do periodically in order to be con-
sidered current. A person can be qualified to perform
a particular duty, but if they are not current for that
duty (due to not performing the task recently), then
they cannot be scheduled until they regain currency.
A crewmember will not be assigned to a tour if the

crewmember is non-current.

Person-Person and Person-Tour: These are ed-
itable rules, called business rules, that can potentially
specify soft or hard constraints on who can fly together
and who can fly on which tours. When a rule is desig-
nated as Impossible it becomes a hard constraint that
the automated scheduler does not violate.

When a scheduling problem is constructed from the
set of positions and resources that need to be assigned,
most hard constraints can be used to filter the set of
possible crewmembers that are eligible for assignment
to a specific position. We use the Crew Complement,
Locked Assignments, Availability, Qualifications, Cur-
rency, and Person-Tour constraints to determine which
resources could, hypothetically, be assigned to a par-
ticular position. The remaining hard constraints are
maintained during the scheduling process.

3.2 Soft Constraints

Since the hard constraints are being used to config-
ure/formulate the problem, the fitness of a schedule
is computed based on the soft constraints (or prefer-
ences). We currently compute and track five variables,
S1 through S5, to provide the estimates for how well
different soft constraints are being met by a partic-
ular schedule. The variables represent penalties that
need to be minimized by the genetic algorithm. The
overall score calculated by the evaluation function is a
weighted sum of five penalties:
S = w181 + we Sy + w3 S3 + wy Sy + ws Sk

The weights in the equation are parameters that we
are setting to assign an importance to each of the vari-
ables. We now discuss these five subscores:

Crew the Tours: The primary scheduling goal is to
assign complete crews to all Tours, where a complete
crew is a set of assignments to each position in the tour.
The score also considers priority of different tours.

Reduce Schedule Turbulence: This score com-
putes how much a schedule has changed from what a
human scheduler had approved or notified. Once a hu-
man scheduler has approved of a schedule, the genetic
algorithm attempts to keep approved assignments over
replacing them with similar, but unapproved, assign-
ments. A considerably higher penalty is given if the
human scheduler has actually notified the crewmember
of his/her duty assignment. The notification penalty is
further weighted (nonlinearly) depending on how soon
the assigned tour was scheduled to depart.

Maintain Training Currency: Crewmembers
should be placed on tours that help them to fulfill
currency requirements. Each tour has opportunities
for different training events. When crewmembers are
assigned to positions on these tours, they can be given
credit for these training activities to help them meet
their currency needs for a specified period of time. A
penalty is given for each crewmember who has cur-
rency requirements to fill. As the deadlines for fulfill-
ing the currency requirements get closer, the penalty
increases nonlinearly.

Schedule Equity: Crewmembers should be sched-
uled evenly based on their availabilities.

Person-Person, Person-Tour, Qualifications:
These editable rules capture preferences from Smith
should mot fly with Jones to an inexperienced pilot
should not fly on a tour that lands at a particular desti-
nation. Each user-defined preference has a qualitative
value for the associated penalty (very bad, bad, good,
very good). An extra penalty of Impossible translates
the preference into a hard constraint. A Qualification

penalty is applied when someone is overqualified to
perform an activity, such as a pilot filling a co-pilot
position.

3.3 The Simulation

The simulation step of the scheduling process involves
allocating training events to crewmembers. This step
is necessary to evaluate the soft constraint penalty
for Maintaining Currencies. For each currency item
needed, we partition the number of unfilled currency
events into needs and wants, where a need is the num-
ber of events due in the next 30 days and a want is
anything else. In most cases, the currency tasks will
fall into the want category. This simply establishes
what absolutely needs to get done this scheduling pe-
riod and what we would like to get done this scheduling
period.

For each tour, we maintain information for each train-
ing event to indicate how many training event slots
are available and allocated. The training event alloca-
tion process is a two-pass calculation. First, crewmem-
bers will be allocated as many of their needed cur-
rency items as possible. A first come first served re-
solves any ties when training events need to be shared
between crewmembers. Second, crewmembers must
share wants on tours. If there are more wanted cur-
rency events than available training event slots, the
slots are divided based on how many positions there
are on the tour so each crewmember assigned to those
positions gets some of their wanted currency items.

4 The Genetic Scheduler

Choosing the right representation and search opera-
tors for a scheduling problem or any other optimization
problem can dictate search performance, both in terms
of solution quality and computation time. The most
common representation for a chromosome in genetic
scheduling is a permutation of tasks [4, 5] to which a
subsequent assignment of resources is made. How the
subsequent assignment of resources is made can be ei-
ther knowledge-intensive (i.e., specialized heuristics for
choosing the best resource for the task) or knowledge
poor (i.e., a purely greedy, random or first-come first-
served approach). Using task permutations requires
specialized crossover and mutation operators. Several
generic crossover operators have been developed for
permutations [4, 5]. The permutation representation
is applicable when tasks and resources both need to
be scheduled; however, the ACS scheduler uses pre-
scheduled and fixed task start and end times. There-
fore, the ACS scheduler uses an alternative represen-

tation and operators to directly manipulate the task-
to-resource mapping rather than manipulating a task
ordering.

4.1 Representational Issues

Two factors that are often overlooked when develop-
ing representations for genetic schedulers are repre-
sentational isomorphisms and feasibility maintenance.
These factors can dramatically increase the size of the
search space and make optimization much more diffi-
cult.

TASKS: 1,2,3,4
RESOURCES: A, B, C

TASKS

TIME

Figure 4: Sample four task three resource scheduling
problem.

Representational isomorphisms occur when different
permutation chromosomes represent exactly the same
schedule. A potential problem with using task per-
mutations at the chromosome level is that indepen-
dent tasks can be arbitrarily reordered with respect
to one another and still compete for the same re-
sources. Consider Figure 4 in which we have four
non-related scheduling tasks to perform and three re-
sources capable of performing those tasks. Suppose
we have a resource assignment algorithm that treats
our task permutation as a priority queue and assigns
an available resource, either deterministically or non-
deterministically, to the next task in line. Given
the time ordering of the tasks, a valid schedule is
{(1,A4),(2,B),(3,4),(4,B)} meaning Resource A is
assigned to Tasks 1 and 3 and Resource B is assigned to
Tasks 2 and 4. If we use a non-deterministic resource
assignment strategy, it is possible to produce this same
schedule using 4! different task permutations. Even
with a deterministic resource assignment strategy we
can still have multiple task permutations that result
in identical schedules.

Feasibility maintenance means that we require that the
genetic algorithm work only with feasible schedules.
The feasibility maintenance issue can arise when we
use a genetic algorithm (or simulated annealing [6])
to simultaneously optimize the task ordering and re-
source assignment. If we are explicitly working with

task to resource mappings, then we may need to repair
schedules to ensure that they are feasible.

4.2 The Multi-Set Representation

The ACS genetic scheduler uses a multi-set to repre-
sent the mapping of resources to tasks, where a multi-
set is a set that contains duplicate elements. We aug-
ment our set of resources with a null resource (@) to
represent that no resource is assigned to a particular
task. This representation is a mapping and a direct
encoding of a schedule, so it is unnecessary to per-
mute the scheduling tasks. This explicit mapping pre-
vents representational isomorphisms. Using our exam-
ple from the previous section, there is only one sched-
ule that represents {(1,A4),(2,B),(3,4),(4,B)} —

3 3

ABAB (assuming a fixed ordering of the tasks).

4.3 Fill

The Fill algorithm is a non-deterministic algorithm
that randomly assigns qualified, current, and available
resources to tasks that are assigned the null resource.
Fill is called to postprocess all chromosomes before
the schedule is evaluated and maintains any additional
hard constraints. A random initialization procedure
consists of applying the Fill algorithm to chromosomes
that have the null assignment to all tasks. The Fill al-
gorithm then randomly fills tours and creates fast ini-
tial feasible schedules. The Fill procedure ensures that
any positions that can be assigned will be assigned be-
fore a schedule is evaluated. It fills the assignments
directly onto the GA chromosome so no added repre-
sentational overhead is incurred.

4.4 Constraint Based Crossover

The Constraint Based Crossover is a variant of Uni-
form Crossover that is applied to feasible task to re-
source mappings in a random order. As we are restrict-
ing crossover to take two valid schedules and produce
a single new valid schedule, we need to ensure that
no hard constraints are violated during crossover. To
avoid this situation, we use task overlap constraints
to process each crossover assignment to verify that no
conflicts occurred. We use an adjacency matrix to rep-
resent conflicting tasks, where entries in the matrix
indicate which tasks overlap. We use the matrix to
restrict choices at each locus in the offspring chromo-
some based on the values that have been set. As an
assignment is made, we use the task overlap informa-
tion to restrict future choices at each locus that has
yet to be set in the offspring chromosome.

In general, the schedules that are produced by

PARENTS

— — Task | Conflicts
A A 1 2,3
B c 2 1,3
c B 3 1,2,5
¢ B 4 |6
B A s |3
1B] L€} 6 4
P1 P2

APPLY CROSSOVER/ MUTATI ON PER TASK
4: C, 1. A 6:B

Figure 5: Example constraint based crossover.

crossover are underspecified, meaning that there may
be positions that could not be assigned due to con-
flicts in each parent, but may be assignable in the off-
spring as other conflicts may have been eliminated dur-
ing crossover. It is not the role of crossover to exploit
these obvious holes in the schedule. The Fill algorithm
will perform that task in a subsequent procedure.

4.5 Mutation By Omission

The motivation for Crossover is to exploit common-
alities between parent strings while the motivation
for Mutation is to ensure that exploration continues
throughout search. The postprocessing step using the
Fill algorithm means that we can mutate a locus by
assigning it to the null resource and leave that posi-
tion unassigned until Fill postprocesses the chromo-
some. Thus, when mutation occurs, that means that
we have not made an assignment to a task.

4.6 Example of Crossover and Mutation

A simple example of our crossover and mutation op-
erators is given in Figure 5. The task conflicts are set
once when the scheduling problem is read from the
database. When parent strings are recombined, the
task conflict information is applied to restrict the set
of possible resource assignments. In the example, task
4 is chosen as the first crossover point. The parent
strings have resource assignments of C' and Bj; thus,
these values, along with ¢ are valid resource choices.
Since C' was chosen, task 6 can no longer be assigned

Figure 6: Genetic Algorithm controller.

to resource C since task 4 conflicts with task 6. Sim-
ilarly task 2 is assigned to C, so C is eliminated as
a choice for task 3, but task 1 does not have C as a
choice so no further restrictions need to be made. For
task 1, however, a mutation was chosen, so the ¢ re-
source was assigned and will be filled in by the Fill
procedure after crossover is complete.

4.7 The Dynamic Execution

The ACS genetic scheduler is working in a dynamic
environment where changes are constantly occurring
due to tour and crewmember changes coming in from
the ULPS database and from the human schedulers.
This means the genetic scheduler must constantly re-
vise schedules to fill in any assignments and to opti-
mize the schedules over the long term scheduling win-
dow. At the same time, the genetic scheduler needs to
be cautious in how it makes changes so the changes do
not intrude on the human schedulers’ activities.

The dynamic execution requires rapid (on the order
of seconds or a few minutes) schedule production, so
users are not waiting long for new schedules to arrive.
We use a genetic algorithm controller to control how
and when the genetic algorithm runs and we designed
the genetic algorithm to produce a schedule quickly,
within 1000 evaluations. An outline of the controller
for the genetic scheduler is given in Figure 6.

The controller loop controls when the genetic algo-
rithm enters and exits the Read, Execute, Sleep states.
The Read state queries for any updates to the ACS
database. The database sends all up-to-date schedul-
ing information from which the genetic algorithm con-
figures its scheduling problem. If there is no scheduling
to be done, the controller enters the Sleep state. Oth-
erwise, the genetic algorithm caches the current set
of assignments to seed the initial population of the ge-
netic algorithm. This means each execution step of the
genetic algorithm can be thought of as a partial restart
that is initialized from a valid solution. The Execute

Choose parents
Recombine parents
If (offspring not in Population)
Fill and Evaluate offspring schedule
Insert if better than worst schedule in the population

Conditionally Restart

Figure 7: Genetic Algorithm execution algorithm.

state of the controller runs the genetic scheduler and
periodically posts changes to the ACS database. When
the genetic scheduler has run to completion, the au-
tomated scheduler enters its Sleep state. The sleep
state will be exited immediately if changes happened
while the genetic algorithm had been running, or if a
user pressed the Schedule Now button. Otherwise, the
scheduler will wait for changes and wake up upon de-
tecting changes to the database (with a parameterized
delay). This Sleep state is the key to giving the genetic
scheduler a passive behavior, which keeps it from in-
terfering with the human scheduler’s activities. The
GUI-screens have a color-coded status indicator that
reports whether the genetic algorithm is preparing to
run, running, or sleeping so the user is aware that a
new schedule might be arriving soon.

4.8 The Execute State

A more detailed outline of the Execute state of the
ACS genetic scheduler is shown in Figure 7. The de-
sign of the population and execution was inspired by
the CHC genetic algorithm [1]. Our population size is
30 individuals, but we do not allow duplicate chromo-
somes into the population. The innermost loop in the
diagram represents a single execution of the genetic al-
gorithm, using selection, crossover, mutation, Fill and
evaluation. Naturally, using such a small population
results in fast convergence. Like CHC, we perform a
partial restart upon convergence, which is represented
by the second loop in the diagram. A partial restart
occurs by using the best member of the population
to seed the remainder of the population. There are a
limited number of partial restarts that can take place

before the genetic algorithm is forced to write its solu-
tion to the ACS database; however, the genetic algo-
rithm will automatically stop and write if it converges
to the same solution repeatedly (the cutoff is specified
by a parameter). When the genetic algorithm is fin-
ished with a single run, it attempts to write its solution
back to the database. The write will not take place if
the database has changed since the problem was read
or if the cached schedule has the same fitness as the
best solution in the population. Finally, the outermost
loop is used to perform a larger scale restart. This loop
determines, based on a parameter, whether the differ-
ence between two consecutive solutions is large enough
to continue searching. If the difference is above the
tolerance, search is restarted, otherwise, the controller
moves into the Sleep state.

5 Conclusion

The ULPS ACS scheduling system is a dynamic ge-
netic scheduler designed to function in the real world.
The design of the scheduler is motivated by the need
for rapid reaction to changes in the system. To this
end, we use special genetic operators that ensure that
the genetic algorithm is always manipulating valid fea-
sible schedules and our representation guarantees that
a chromosome decodes to a unique schedule. Fur-
thermore, the scheduler takes an iterative approach
to search using small populations that yield fast-run
times on a single execution to post schedule changes
quickly. However, the fact that the scheduler is run-
ning multiple times, as dictated by changes to the sys-
tem or by human direction means that the schedule
will be refined over the long term. Furthermore, since
the genetic scheduler is always starting from the cur-
rent schedule that is being used by the human sched-
ulers, it will tend to produce schedules that incorpo-
rate those assignments into it. This design is one ap-
proach to making genetic scheduling more computa-
tionally tractable for rapidly changing scheduling en-
vironments.

6 Acknowledgements

The authors wish to acknowledge the support of the
United States Air Force AMC and Unisys Corporation.
This work was funded under a Task Order through US
Government Contract DCA100-96-D-0048. The au-
thors wish to thank the Unisys domain experts, John
Irwin and Gary Robinson and the BBN ULPS develop-
ment team: Ken Anderson, Mark Danieli, Mark Davis,
Peter Dick, Penny Ellard, Bill Euerle, Bob Goellner,
Chris Johnson, Chuck Jolly, Knox Rogers, Christine

Schoaff, and Mike Walczak.

References

[1] L. Eshelman. The CHC adaptive search algorithm.
how to have safe search when engaging in non-
traditional genetic recombination. In G. Rawlins,
editor, Foundations of Genetic Algorithms, pages
265 283. Morgan Kaufmann, 1991.

[2] D. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley
Publishing, Co., Reading, MA, 1989.

[3] T. Starkweather, D. Whitley, K. E. Mathias, and
S. McDaniels. Sequence scheduling with genetic
algorithms. In Springer-Verlag, editor, New Direc-
tions for Operations Research in Manufacturing,
New York, 1991.

[4] G. Syswerda and J. Palmucci. The application
of genetic algorithms to resource scheduling. In
L. Booker and R. Belew, editors, Proceedings of the
Fourth International Conference on Genetic Algo-
rithms. Morgan Kaufmann, 1991.

[5] D. Whitley, T. Starkweather, and D. Fuquay.
Scheduling problems and traveling salesmen: The
genetic edge recombination operator. In J. D.
Schaffer, editor, Proceedings of the Third Interna-
tional Conference on Genetic Algorithms. Morgan
Kaufmann, 1989.

[6] M. Zweben, B. Daun, E. Davis, and M. Deale.
Scheduling and rescheduling with iterative repair.
In Monte Zweben and Mark Fox, editors, Intel-
ligent Scheduling, pages 241 255. Morgan Kauf-
mann, 1994.

