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Abstract

We present the design and analysis of the first fully expressive, iterative combinatorial
exchange (ICE). The exchange incorporates a tree-based bidding language (TBBL) that is
concise and expressive for CEs. Bidders specify lower and upper bounds in TBBL on their
value for different trades and refine these bounds across rounds. These bounds allow price
discovery and useful preference elicitation in early rounds, and allow termination with an
efficient trade despite partial information on bidder valuations. All computation in the
exchange is carefully optimized to exploit the structure of the bid-trees and to avoid enu-
merating trades. A proxied interpretation of a revealed-preference activity rule, coupled
with simple linear prices, ensures progress across rounds. The exchange is fully imple-
mented, and we give results demonstrating several aspects of its scalability and economic
properties with simulated bidding strategies.

1. Introduction

Combinatorial exchanges combine and generalize two different mechanisms: double auctions
and combinatorial auctions. In a double auction (DA), multiple buyers and sellers trade
units of an identical good (McAfee, 1992). In a combinatorial auction (CA), a single seller
has multiple heterogeneous items up for sale (de Vries & Vohra, 2003; Cramton, Shoham,
& Steinberg, 2006). Each buyer in a CA may have complementarities (“I want A and B”)
or substitutabilities (“I want A or B”) between goods, and is provided with an expressive
bidding language to describe these preferences. A common goal in the design of both DAs
and CAs is to implement the efficient allocation, which is the allocation that maximizes
total social welfare.

A combinatorial exchange (CE) (Parkes, Kalagnanam, & Eso, 2001) is a combinatorial
double auction that brings together multiple buyers and sellers to trade multiple heteroge-
neous goods. CEs have potential use in wireless spectrum allocation (Cramton, Kwerel, &
Williams, 1998; Kwerel & Williams, 2002), airport takeoff and landing slot allocation (Ball,
Donohue, & Hoffman, 2006; Vossen & Ball, 2006), and in financial markets (Saatcioglu,
Stallaert, & Whinston, 2001). In all of these domains there are incumbents with property
rights, and it is necessary to facilitate a complex multi-way reallocation of resources. An-
other potential application domain for CEs is to allocate resources in shared distributed
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systems, such as PlanetLab (Fu, Chase, Chun, Schwab, & Vahdat, 2003). CEs can also find
use in task allocation in robot teams, making them a potentially powerful tool to the multi-
agent systems community (Gerkey & Mataric, 2002; Bererton, Gordon, & Thrun, 2003;
Dias, Zlot, Kalra, & Stentz, 2006). Finally, CEs have promise as mechanisms for expressive
sourcing by multiple bid-takers, perhaps representing different profit centers within an or-
ganization; see the associated work on expressive sourcing using one-sided CAs (Sandholm,
2007).

This paper presents the design of the first fully expressive, iterative combinatorial ex-
change (ICE). In designing an iterative exchange, we share the motivation of earlier work on
iterative CAs: we wish to mitigate elicitation costs by focusing bidders, in this case through
price discovery and activity rules, on their values for relevant trades. This is important
because determining the value on even a single potential trade can be a challenging prob-
lem in complex domains (Sandholm & Boutilier, 2006; Compte & Jehiel, 2007). Moreover,
bidders often wish to reveal as little information as possible to avoid leaking information to
competitors. In describing the central design principles that support the ICE mechanism,
we highlight the following aspects:

• A bidder interacts with ICE by first defining a structured representation of his val-
uation for different trades. Defined in the tree-based bidding language (TBBL), this
concisely defines the set of trades of interest to the bidder. The bidder must annotate
the tree with initial lower and upper bounds on his value for different trades.

• Having lower and upper bounds on valuations allows the exchange to identify both a
provisional trade and provisional payments in each round, and to generate a provi-
sional clearing price on each item in the market. In each round of ICE, each bidder
is required to tighten the bounds on his TBBL bid so as to make precise which trade
is most preferred given the current prices.

• ICE is a hybrid between a demand-revealing process and a direct-revelation mech-
anism, with simple (linear) prices guiding preference elicitation but bids submitted
through direct claims about valuation functions in the TBBL language, and these
expressive bids being finally used to clear the exchange.

When ICE terminates, a payment rule is used to determine the payments made, and
received, by each participant. While suggesting that these payments be defined in a way
that seeks to mitigate opportunities for manipulation in the exchange, ICE is agnostic to
the particular payment rule that is adopted. For a given rule, the prices that are quoted
in each round are defined in part to approximate these payments, when aggregated across
the provisional trade suggested for a bidder. For concreteness, we adopt the Threshold
rule (Parkes et al., 2001) in defining final payments, which minimizes the ex post regret
for truthful bidding across all budget-balanced payment rules, when holding the bids from
other participants fixed; see also the work of Milgrom (2007). 1 This is not to say that

1. We are not aware of the existence of mechanism design solutions for approximately efficient, but truthful
(i.e., with truthful bidding as a dominant-strategy equilibrium) and budget-balanced, sealed bid (i.e.,
non iterative) CEs. Nevertheless, it is true that any payment rules that are developed can be leveraged
directly within ICE and would allow ICE to inherit truthful bidding (i.e., revising TBBL bounds to
remain consistent with a bidder’s true valuation) in an ex post Nash equilibrium, just as can be achieved
in iterative Generalized Vickrey auctions (Mishra & Parkes, 2007).
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incentive issues related to payment rules are not important in the design of successful CEs.
Rather, this is just orthogonal to the design of ICE and not the main focus of our work. We
do propose novel activity rules, which are themselves designed to mitigate opportunities for
strategic behavior.

We highlight the following technical contributions made in this work:

• The tree-based bidding language (TBBL) extends earlier CA bidding languages to sup-
port bidders that wish to simultaneously buy and sell, the specification of valuation
bounds, and the use of generalized ‘choose’ operators to provide more concise rep-
resentations than OR* and LGB (Boutilier & Hoos, 2001; Nisan, 2006). TBBL can
be directly encoded within a mixed-integer programming (MIP) formulation of the
winner determination problem.

• Despite quoting prices on items and not bundles of items, ICE is able to converge
to the efficient trade with straightforward (i.e., non-strategic) bidders. Efficiency is
established through duality theory when prices are sufficiently accurate. Otherwise, a
direct proof based on reasoning about the upper and lower valuation bounds is always
available, even when the combinatorics of the instance preclude a duality-based proof.

• Preference elicitation is performed through the combination of two novel activity rules.
The first is a modified revealed-preference activity rule (MRPAR), and requires each
bidder to make precise which trade is most preferred in each round. The second is
a delta improvement activity rule (DIAR), and requires each bidder to refine his bid
to improve price accuracy or prove that no improvement is possible. When coupled
together these rules ensure that useful progress towards determining the efficient trade
is made in each round.

To summarize, there are three main reasons to prefer explicit value representations over
repeated demand reports in the context of an iterative CE: (a) a provisional allocation can
be computed from round 1, since both upper and lower bounds on value are available, (b) the
combinatorics of the domain can be directly handled in clearing the exchange and efficiency
is not limited by adopting simple (linear) prices, (c) proofs of (approximate) efficiency
are available by reasoning directly with bounds on valuations and despite adopting simple
(linear) prices.

The exchange is fully implemented in Java (with a C-based MIP solver). We present
scalability results showing performance across a wide number of bidders, goods and val-
uation complexity as well as benchmarks that provide a qualitative understanding of the
characteristics of our mechanism. Our experimental results (with straightforward bidders)
show that the exchange quickly converges to the efficient trade, taking an average of only
7 rounds for an example domain with 100 goods of 20 different types and 8 bidders with
valuation functions containing an average of 112 TBBL nodes. In this same domain, we
find that bidders can leave upwards of 62% of their maximum attainable value undefined
when the efficient trade is known, and 56% once final payments are determined, indicating
that bidders are able to leave large amounts of their value space unrefined. The exchange
terminates on these problems in an average of 8.5 minutes on a 3.2GHz dual-processor dual-
core workstation with 8GB of memory. This includes the time for all winner determination,
pricing, and activity rules, as well as the time to simulate agent bidding strategies.
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1.1 Related Work

Many ascending-price one-sided CAs are known in the literature (Parkes & Ungar, 2000a;
Wurman & Wellman, 2000; Ausubel & Milgrom, 2002; de Vries, Schummer, & Vohra,
2007; Mishra & Parkes, 2007). Direct elicitation approaches, in which bidders respond to
explicit queries about their valuations, have also been proposed for one-sided CAs (Conen &
Sandholm, 2001; Hudson & Sandholm, 2004; Lahaie & Parkes, 2004; Lahaie, Constantin, &
Parkes, 2005). Of particular relevance here are the ascending CAs that are designed to work
with simple prices on items (Dunford, Hoffman, Menon, Sultana, & Wilson, 2003; Kwasnica,
Ledyard, Porter, & DeMartini, 2005). In computing (approximately competitive) linear
prices, we generalize and extend these methods. Building on the work of Rassenti, Smith,
and Bulfin (1982), these earlier papers consider bids on bundles individually, and find prices
that are exact on winning bids and minimize the pricing error to losing bids. Generalizing
to the TBBL expressive language, we propose instead to compute prices that minimize the
worst-case pricing error over all bidders (rather than bids on individual trades), considering
the most preferred trade consistent with the TBBL bid of each bidder. As in the work
of Dunford et al. (2003) and Kwasnica et al. (2005) we incorporate additional tie-breaking
stages, in our case to lexicographically minimize the error and then to find prices that closely
approximate the provisional payments. This latter step appears to be novel.

Linear prices are important in practical applications. Such prices are adopted by the
FCC in their wireless spectrum auctions (Cramton, 2006), within clock auctions for the
procurement of electricity generation (Cramton, 2003), and are an essential part of the
proposed design for an airport landing slot auction at Laguardia airport (Ball et al. 2007).
Linear competitive equilibrium prices exist in two-sided markets with indivisibilities for
the assignment problem in which each agent will buy or sell a single item (but may be
interested in multiple different items) (Shapley & Shubik, 1972). But in general linear,
competitive equilibrium prices will not exist in combinatorial markets with nonconvexities;
see the work of Kelso and Crawford (1982), Bikhchandani and Mamer (1997), Bikhchandani
and Ostroy (2002), and O’Neill, Sotkiewicz, Hobbs, Rothkopf, and Stewart (2005) for related
discussions.

ICE has a “proxied” architecture in the sense that bidders submit and refine bounds
on TBBL bids directly to the exchange, with this information used to drive price dynamics
and ultimately to clear the exchange. Earlier work has considered proxied approaches,
but in application to one-sided ascending-price CAs (Parkes & Ungar, 2000b; Ausubel &
Milgrom, 2002). Given its focus on simple, linear prices, ICE can be considered to provide
a two-sided generalization of the clock-proxy design of Ausubel, Cramton, and Milgrom,
which has an initial stage of linear price discovery followed by a “best-and-final” sealed-
bid stage (Ausubel et al., 2006). Activity rules have been shown to be very important
in practice. For instance, the Milgrom-Wilson activity rule that requires a bidder to be
active on a minimum percentage of the quantity of the spectrum for which it is eligible
to bid is a critical component of the auction rules used by the FCC for wireless spectrum
auctions (Milgrom, 2004). ICE adopts a variation on the clock-proxy auction’s revealed-
preference activity rule.

It is well known that exact efficiency together with budget balance is not possible because
of the Myerson-Satterthwaite impossibility result (Myerson & Satterthwaite, 1983). Given
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this, Parkes et al. study sealed-bid combinatorial exchanges and introduced the Threshold
payment rule (Parkes et al., 2001); see the work of Milgrom (2007) and Day and Ragha-
van (2007) for a recent discussion. Double auctions in which truthful bidding is in a domi-
nant strategy equilibrium are known for unit demand settings (McAfee, 1992) and also for
slightly more expressive domains (Babaioff & Walsh, 2005; Chu & Shen, 2007). However,
no truthful, budget-balanced mechanisms with useful efficiency properties are known for
the general CE problem.

Voucher-based schemes have been proposed as an alternative method to extend one-
sided CAs to exchanges (Kwerel & Williams, 2002). Such mechanisms collect all goods
from sellers and then run a one-sided auction in which sellers can “buy-back” their own
goods with vouchers used to provide a seller with a share of the revenue collected on their
own goods. Although voucher-based schemes can facilitate the design of exchanges through
one-sided auction technology, the ICE design offers the nice advantage of providing equal
and symmetric expressiveness to all participants. We are not aware of any previous studies
of fully expressive iterative CEs. Smith, Sandholm, and Simmons previously studied itera-
tive CEs, but handle only limited expressiveness and adopt a direct-query based approach
with an enumerative internal data structure that does not scale (Smith et al., 2002). A
novel feature in their earlier design (not supported here) is item discovery, where the items
available to trade need not be known in advance. Earlier work has also considered sealed-bid
combinatorial exchanges for the purpose of contingent trades in financial markets, including
aspects of expressiveness and winner determination (Saatcioglu et al., 2001).

Several bidding languages for CAs have previously been proposed, arguably the most
compelling of which allow bidders to explicitly represent the logical structure of their val-
uation over goods via standard logical operators. We refer to these as “logical bidding
languages” (Nisan, 2006). Closest in generality to TBBL is the LGB language (Boutilier &
Hoos, 2001), which allows for arbitrarily nested levels, combining goods and trades by the
standard propositional logic operators, and also provides a k-of operator, used to represent
a willingness to pay for any k trades it quantifies over; see also the work of Rothkopf, Pekeč,
and Harstad (1998) for a restricted tree-based bidding language. In a key insight, Boutilier
specifies a MIP formulation for Winner Determination (WD) using LGB , and provides posi-
tive empirical performance results using a commercial solver, suggesting the computational
feasibility of moving to this more expressive logical language (Boutilier, 2002). TBBL shares
some structural elements with the LGB language but has important differences in its se-
mantics. In LGB , the semantics are those of propositional logic, with the same items in an
allocation able to satisfy a tree in multiple places. Although this can make LGB especially
concise in some settings, the semantics that we propose provide representational locality, so
that the value of one component in a tree can be understood independently from the rest
of the tree.

1.2 Outline

Section 2 introduces preliminary concepts, defining the efficient trade and competitive equi-
librium prices. Section 3 defines a sealed-bid CE, introducing TBBL and providing the MIP
that is used to solve winner determination. Section 4 extends TBBL to allow for valuation
bounds and defines the MRPAR and DIAR activity rules. The main theoretical results are
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also described as well as our method to determine price feedback in each round. Section 5
gives a number of illustrative examples of the operation of ICE. Section 6 presents our main
experimental results. We conclude in Section 7. The Appendix provides an algorithm for
each of the two activity rules together with details on the bidding logic used by simulated
bidding agents.

2. Preliminaries

The basic environment considers a set of bidders, N = {1, . . . , n}, who are interested in
trading multiple units of distinct, indivisible goods, where the set of different types of goods
is denoted G = {1, . . . ,m}. Each bidder has an initial endowment of goods and a valuation
for different trades. Let x0 = (x0

1, . . . , x
0
n) denote the initial endowment of goods, with

x0
i = (x0

i1, . . . , x
0
im) and x0

ij ∈ Z+ to indicate the number of units of good type j ∈ G
initially held by bidder i ∈ N . A trade λ = (λ1, . . . , λn) denotes the change in allocation,
with λi = (λi1, . . . , λim) and λij ∈ Z denoting the change in the number of units of item j
to bidder i. Let M =

∑

i∈N

∑

j∈G x
0
ij denote the total supply in the exchange. We write

i ∈ λ to denote that bidder i is active in the trade, i.e., buys or sells at least one item.

2.1 The Efficient Trade

Each bidder has a value vi(λi) ∈ R for his component of trade λ. This value can be positive
or negative, and represents the change in value between the final allocation x0

i + λi and
the initial allocation x0

i . The valuation and initial allocation information is private to each
bidder, and we assume that there are no externalities, so that each bidder’s value depends
only on his individual trade. We assume free disposal, so that vi(λ

′
i) ≥ vi(λi) for trade

λ′i ≥ λi, i.e., for which λ′ij ≥ λij for all j. Let v(λ) =
∑

i vi(λi).
Utility is modeled as quasi-linear, with ui(λi, p) = vi(λi) − p for trade λi and payment

p ∈ R. This implies that bidders are modeled as being risk neutral and assumes that
there are no budget constraints. The payment, p, can be negative, indicating the bidder
may receive a payment for the trade. We use the term payoff interchangeably with utility.
Because of quasi-linearity, any Pareto optimal (i.e., efficient) trade will maximize the social
welfare, which is equivalent to the total increase in value to all bidders due to the trade.
Given an instance of the CE problem, defined by tuple (v, x0), i.e., a valuation profile
v = (v1, . . . , vn) and an initial allocation x0 = (x0

1, . . . , x
0
n), the efficient trade λ∗, is defined

as follows:

Definition 1 Given CE instance (v, x0), the efficient trade λ∗ solves

max
(λ1,...,λn)

∑

i

vi(λi) (1)

s.t. λij + x0
ij ≥ 0, ∀i,∀j (2)

∑

i

λij = 0, ∀j (3)

λij ∈ Z

Constraints (2) ensure that no bidder sells more items than he has in his initial allocation.
By free disposal, we can impose strict balance in the supply and demand of goods at the
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solution in constraints (3), i.e., we can allocate unwanted items to any bidder. We adopt
F(x0) to denote the set of feasible trades, given these constraints and given an initial
allocation x0, and Fi(x

0) for the set of feasible trades to bidder i. Note that valuation
function vi cannot be explicitly represented as a value for each possible trade to bidder i,
because the number of such trades scales as O(sm), where s is the maximal number of units
of any item in the market and there are m different items. The TBBL language (introduced
in Section 3) leads to a concise formulation of the efficient trade problem as a mixed-integer
program.

The initial allocation x0
i may be private to agent i. We assume throughout that bidders

are truthful in revealing this information, which we motivate by supposing that participants
cannot sell items that they do not actually own (or pay a suitably high penalty if they do).

2.2 Competitive Equilibrium Prices

Linear prices, π = (π1, . . . , πm), define a price πj on each good so that the price to bidder
i on a trade λ is defined as pπ(λi) =

∑

j λijπj = λi · π. Such prices play an important role
in ICE. Of particular interest is the set of competitive equilibrium prices:

Definition 2 Linear prices π are competitive equilibrium (EQ) prices for CE problem
(v, x0) if there is some feasible trade λ ∈ F(x0) such that:

vi(λi) − pπ(λi) ≥ vi(λ
′
i) − pπ(λ′i), ∀λ′i ∈ Fi(x

0), (4)

for every bidder i. We say that such a trade, λ, is supported by prices π.

Theorem 1 (Bikhchandani & Ostroy, 2002) Any trade λ supported by competitive equilib-
rium prices π is an efficient trade.

In practice, exact EQ prices are unlikely to exist. Instead, it is useful to define the
concept of approximate EQ prices and an approximately efficient trade:

Definition 3 Linear prices π are δ-approximate competitive equilibrium (EQ) prices for
CE problem (v, x0) and δ ∈ R≥0, if there is some feasible trade λ ∈ F(x0) such that:

vi(λi) − pπ(λi) + δ ≥ vi(λ
′
i) − pπ(λ′i), ∀λ′i ∈ Fi(x

0), (5)

for every bidder i.

At δ-approximate EQ prices, there is some trade for which every bidder i is within δ ≥ 0
of maximizing his utility. Furthermore, say that trade λ is z-approximate if the total value
of the trade is within z of the total value of the efficient trade.

Theorem 2 Any trade λ supported by δ-approximate EQ prices π is a 2 min(M, n
2 )δ-

approximate efficient trade.

Proof: Fix instance (v, x0) and consider (λ, π). For any trade λ′ 6= λ we have

∑

i∈λ∪λ′

[vi(λi) − pπ(λi) + δ] ≥
∑

i∈λ∪λ′

[vi(λ
′
i) − pπ(λ′i)], (6)
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by δ-EQ prices and because values and prices are zero for bidders that do not participate
in a trade. We have

∑

i∈λ∪λ′ pπ(λi) =
∑

i∈λ∪λ′ pπ(λ′i) = 0 (since
∑

i p
πλ′′i =

∑

i λ
′′
i · π =

∑

i

∑

j λ
′′
ijπj =

∑

j πj

∑

i λ
′′
ij = 0, with

∑

i λ
′′
ij = 0 for all j, for all λ′′i ∈ F(x0)). Then,

∑

i vi(λi) +
∑

i∈λ∪λ′ δi ≥
∑

i vi(λ
′
i). Fix λ′ := λ∗, for efficient trade λ∗. Then,

∑

i vi(λi) +
∆ ≥

∑

i vi(λ
∗
i ), where

∆ =
∑

i∈λ∪λ′

δi ≤ min(2A#(x0), n)δ ≤ min(2 min(M,n), n)δ = 2 min(M,
n

2
)δ (7)

Here A#(x0) is the maximal number of bidders that can trade in a feasible trade given x0.
The second inequality follows because no more bidders can trade than there are number of
goods to trade or bidders in the market and thus A#(x0) ≤ min(M,n). �

3. Step One: A TBBL-Based Sealed-Bid Combinatorial Exchange

We first flesh out the details for a non-iterative, TBBL-based CE in which each bidder
submits a sealed bid in the TBBL language.

Bidding language. The tree-based bidding language (TBBL) is designed to be expressive
and concise, to be entirely symmetric with respect to buyers and sellers, and to easily provide
for bidders that are both buying and selling goods; i.e., ranging from simple swaps to highly
complex trades. Bids are expressed as annotated bid trees, and define a bidder’s change in
value for all possible trades. The main feature of TBBL is that it has a general “interval-
choose” logical operator on internal nodes coupled with a rich semantics for propagating
values within the tree. Leaves of the tree are annotated with traded items and all nodes are
annotated with changes in values (either positive or negative). TBBL is designed such that
these changes in value are expressed on trades rather than the total value of allocations.
Examples are provided in Figures 1 and 2.

Consider bid tree Ti from bidder i. Let β ∈ Ti denote a node in the tree, and let
vi(β) ∈ R denote the value specified at node β (perhaps negative). Let Leaf (Ti) ⊆ Ti be
the subset of nodes representing the leaves of Ti and let Child(β) ⊆ Ti denote the children
of node β. All nodes except leaves are labeled with the interval-choose operator ICy

x(β).
Each leaf β is labeled as a buy or sell, with units qi(β, j) ∈ Z for the good j associated with
leaf β, and qi(β, j

′) = 0 otherwise. The same good j may simultaneously occur in multiple
leaves of the tree, given the semantics of the tree described below.

The IC operator defines a range on the number of children that can be, and must
be, satisfied for node β to be satisfied: an ICy

x(β) node (where x and y are non-negative
integers) indicates that the bidder is willing to pay for the satisfaction of at least x and
at most y of his children. With suitable values for x and y the operator can include many
logical connectors. For instance: ICn

n(β) on node β with n children is equivalent to an AND
operator; ICn

1 (β) is equivalent to an OR operator; and IC1
1(β) is equivalent to an XOR

operator.2

We say that the satisfaction of an ICy
x(β) node is defined by the following two rules:

2. This equivalence implies that TBBL can directly express the XOR, OR and XOR/OR languages (Nisan,
2006).
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R1 Node β with ICy
x(β) may be satisfied only if at least x and at most y of its children

are satisfied.

R2 If some node β is not satisfied, then none of its children may be satisfied.

One can consider R1 as a “first pass” that defines a set of candidates for satisfaction. This
candidate set is then refined by R2. Besides defining how value is propagated, by virtue
of R2 our logical operators act as constraints on what trades are acceptable and provide
necessary and sufficient conditions.3

Given a tree Ti, the (change in) value of a trade λ is defined as the sum of the values on
all satisfied nodes, where the set of satisfied nodes is chosen to provide the maximal total
value. Let sat i(β) ∈ {0, 1} denote whether node β in tree Ti of bidder i is satisfied, with
sat i = {sat i(β), ∀β ∈ Ti}. For solution sat i to be valid for tree Ti and trade λi, written
sat i ∈ valid(Ti, λi), then rules R1 and R2 must hold for all internal nodes β ∈ {Ti\Leaf (Ti)}
with ICy

x(β):

x sat i(β) ≤
∑

β′∈Child(β)

sat i(β
′) ≤ y sat i(β) (8)

Equation (8) enforces the interval-choose constraints, by ensuring that no more and no
less than the appropriate number of children are satisfied for any node that is satisfied. The
constraint also ensures that any time a node other than the root is satisfied, its parent is
also satisfied. We further require, for sat i ∈ valid(Ti, λi), that the total increase in quantity
of each item across all satisfied leaves is no greater than the total number of units awarded
in the trade:

∑

β∈Leaf (Ti)

qi(β, j)sat i(β) ≤ λij , ∀j ∈ G (9)

By free disposal, we allow here for a trade to assign additional units of an item over-
and-above that required in order to activate leaves in the bid tree. This works for sellers
as well as buyers: for sellers a trade is negative and this requires that the total number of
items indicated sold in the tree is at least the total number of items “traded away” from
the bidder in the trade.

Given these constraints, the total value of trade λi, given bid-tree Ti from bidder i, is
defined as the solution to an optimization problem:

vi(Ti, λi) = max
sati

∑

β∈Ti

vi(β)sat i(β) (10)

s.t. (8), (9)

Example 1 Consider an airline operating out of a slot-controlled airport that already owns
several morning landing slots, but none in the evening. In order to expand its business the
airline wishes to acquire at least two and possibly three of the evening slots. However, it
needs to offset the cost of this purchase by selling one of its morning slots. Figure 1 shows
a TBBL valuation tree for expressing this kind of swap.
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AND

IC3

2

Buy 4pm $1 Buy 6pm $4 Buy 8pm $3

XOR

Sell 5am $-2 Sell 7am $-9 Sell 9am $-5

Figure 1: A simple TBBL tree for an airline interested in trading landing slots.

In working through numerous examples we frequently found it very cumbersome to
capture even simple trades in languages that specified values on allocations, as is the case
with all existing languages. Indeed, in earlier work, we demonstrate natural instances for
which TBBL is exponentially more concise than OR* and LGB (Cavallo et al. 2005). In
fact, TBBL’s conciseness is incomparable to OR* and LGB but can be extended in simple
ways to strictly dominate these earlier languages.

Winner Determination. The problem of determining an efficient trade given bids is
called the winner determination (WD) problem. The WD problem in CAs (and thus also
in CEs) is NP-hard (Rothkopf et al., 1998). The approach we adopt here is to formu-
late the problem as a mixed-integer program (MIP), and solve with branch-and-cut algo-
rithms (Nemhauser & Wolsey, 1999). A similar approach has proved successful for solving
the WD problem in CAs (de Vries & Vohra, 2003; Boutilier, 2002; Sandholm, 2006).

Given some tree Ti, it is useful to adopt notation β ∈ λi to denote a node β ∈ Ti that is
satisfied by trade λi. We can now formulate the WD problem for bid trees T = (T1, . . . , Tn)
and initial allocation x0:

WD(T, x0) : max
λ,sat

∑

i

∑

β∈Ti

vi(β)sat i(β)

s.t. (2), (3)

sat i ∈ valid(Ti, λi), ∀i

sat i(β) ∈ {0, 1}, λij ∈ Z,

where sat = (sat1, . . . , satn). The tree structure is made explicit in this MIP formulation:
we have decision variables to represent the satisfaction of nodes and capture the logic
of the TBBL language through linear constraints; a related approach approach has been
considered in application to LGB (Boutilier, 2002). By doing this, there are O(nB +mn)
variables and constraints, where B is the maximal number of nodes in any bid tree. The
formulation determines the trade λ while simultaneously determining the value to all bidders
by activating nodes in the bid trees.

Payments. Given reported valuation functions v̂ = (v̂1, . . . , v̂n) from each bidder, the
Vickrey-Clarke-Groves (VCG) (e.g. Krishna, 2002) mechanism collects the following pay-

3. R1 naturally generalizes the approach taken in LGB , where an internal node is satisfied according to its
operator and the subset of its children that are satisfied. The semantics of LGB , however, treat logical
operators only as a way of specifying when “added value” (positive or negative) results from attaining
combinations of goods. Our use of R2 also imposes constraints on acceptable trades.
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ments from each bidder:

pvcg,i = v̂i(λ
∗
i ) − (V (v̂) − V−i(v̂)), (11)

where λ∗ is the efficient trade, V (v̂) is the reported value of this trade and V−i(v̂) is
the reported value of the efficient trade in the economy without bidder i, where v−i =
(v1, . . . , vi−1, vi+1, . . . , vn). Let us refer to ∆vcg,i = V (v̂) − V−i(v̂) as the VCG discount.
The problem with the VCG mechanism in the context of a CE is that it may run at a bud-
get deficit with the total payments negative. An alternative payment method is provided
by the Threshold rule (Parkes et al., 2001):

pthresh,i = v̂i(λ
∗
i ) − ∆thresh,i, (12)

where the discounts ∆thresh,i are picked to minimize maxi(∆vcg,i − ∆thresh,i) subject to
∆thresh,i ≤ ∆vcg,i for all i and

∑

i ∆thresh,i ≤ V (v̂). Threshold payments are exactly budget
balanced and minimize the maximal deviation from the VCG outcome across all balanced
rules.

Bidder 1

AND

XOR

Sell A $-4 Sell B $-8

Buy C $6

Bidder 2

IC3

1

Buy A $10 Buy B $5 Sell C $-3

Figure 2: Two bidders and three items {A,B,C}. The efficient trade is for bidder 1 to sell
A and buy C.

Example 2 Consider the two bidders in Figure 2. Bidder 1 will potentially sell one of his
items (A or B) if he can get Bidder 2’s item, C, at the right price. Bidder 2 is interested in
buying one or both of Bidder 1’s items and also selling his own item. We consider each of
the possible trades: If Bidder 1 trades A for C he gets $2 of value and Bidder 2 gets $7. If
Bidder 1 trades B for C he gets $-2 of value and Bidder 2 gets $2. And if no trade occurs
both bidders get $0 value. Therefore the efficient trade is to swap A for C.

Because the efficient trade creates a surplus of $9 and removing either bidder results in
the null trade, both bidders have a Vickrey discount of $9. Thus if we use VCG payments,
Bidder 1 pays $2-$9=$-7 and Bidder 2 pays $7-$9=$-2 and the exchange runs at a deficit.
The Threshold payment rule chooses payments that minimally deviate from VCG while
maintaining budget balance. This minimization reduces the discounts to $4.50, and thus
Bidder 1 pays $2-$4.50=$-2.50 and Bidder 2 pays $7-$4.50=$2.50.

4. Step Two: Making the Exchange Iterative

Having defined a sealed-bid, TBBL-based exchange we can now modify the design to make
it iterative. Rather than provide an exact valuation for all interesting trades, a bidder
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Figure 3: ICE system overview

annotates a single TBBL tree with upper and lower bounds on his valuation. The ICE
mechanism then proceeds in rounds, as illustrated in Figure 3.

ICE is a proxied design in which each bidder has a proxy to facilitate his valuation
refinement. In each round, a bidder responds to prices in interacting with his proxy agent
in order to tighten the bounds on his TBBL tree and meet the activity rules. The exchange
chooses a provisional valuation profile (denoted vα = (vα

1 , . . . , v
α
n) in the figure), with the

valuation vα
i for each bidder picked to fall within the bidder’s current valuation bounds

(and to tend towards the lower valuation bound as progress is made towards determining
the final trade). Then, the exchange computes a provisional trade λα and checks whether
the conditions for moving to a last-and-final round are satisfied. Approximate equilibrium
prices are then computed based on valuation profile vα and trade λα and a new round
begins. In the last-and-final round, the final payments and the trade are computed in terms
of lower valuations; the semantics are that these lower bounds guarantee that a bidder
is willing to pay at least this amount (or receive a payment of this amount) in order to
complete the trade.

Let vi and vi denote the lower and upper valuation functions reported by bidder i in
a particular round of ICE, and adopt WD(v) to denote the WD problem for valuation
profile v = (v1, . . . , vn). ICE is parameterized by a target approximation error ∆∗ ∈ (0, 1],
which requires that the total value from the optimal trade λ given the current lower-bound
valuation profile (i.e., λ solves WD(v)) is close to the total value from the efficient trade λ∗i :

EFF(λ) =

∑

i vi(λi)
∑

i vi(λ∗i )
=

v(λ)

v(λ∗)
≥ ∆∗ (13)

However, the true valuation v and thus the trade λ∗ are uncertain within ICE and thus we
will later introduce techniques to estblish this bound.

In each round, ICE goes through the following steps:

1. If this is the last-and-final round, then implement the trade that solves WD(v) and
collect Threshold payments defined on valuations v. STOP.

ELSE,
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2. Solve WD(v) to obtain λ. Use valuation bounds and prices to determine a lower-
bound, ωeff , on the allocative efficiency EFF(λ) of λ. If ωeff ≥ ∆∗ then the next
round will be designated the last-and-final round.

3. Set α ∈ [0, 1], with α tending to 1 as ωeff tends to 1, and provisional valuation profile
vα = (vα

1 , . . . , v
α
n), where vα

i (λi) = αvi(λi)+(1−α)vi(λi), expressed with a TBBL tree
in which the value on node β ∈ Ti is vα

i (β) = αvi(β) + (1 − α)vi(β).

4. Solve WD(vα) to find provisional trade λα, and determine Threshold payments for
provisional valuation profile, vα.

5. Compute linear prices, π ∈ R
m
≥0, that are approximate CE prices given valuations vα

and trade λα, breaking ties to best approximate the provisional Threshold payments
and finally to minimize the difference in price between items.

6. Report (λα
i , π) to each bidder i ∈ N , and whether or not the next round is last-and-

final.

In transitioning to the next round, the proxy agents are responsible for guiding bidders
to make refinements to their lower- and upper-bound valuations in order to meet activity
rules that ensure progress towards the efficient trade across rounds. In what follows, we (a)
extend TBBL to capture lower and upper valuation bounds, (b) describe our two activity
rules, (c) explain how we compute price feedback, (d) provide our main theoretical results.
In developing theoretical and experimental results about ICE we assume straightforward
bidders, so that bidders refine upper and lower bounds on valuations to keep their true
valuation consistent with the bounds.

Extending TBBL. We first extend TBBL to allow bidder i to report a lower and upper
bound (vi(β), vi(β)) on the value of each node β ∈ Ti, which in turn induces valuation
functions vi(Ti, λi) and vi(Ti, λi), using the exact same semantics as in (10). The bounds
on a trade can be interpreted as bounding the payment that the bidder considers acceptable.
The bidder commits to complete the trade for a payment less than or equal to the lower-
bound and to refuse to complete a trade for any payment greater than the upper-bound. The
exact value, and thus true willingness-to-pay, remains unknown except when vi(β) = vi(β)
on all nodes. We say that bid-tree Ti for bidder i is well-formed if vi(β) ≤ vi(β) for all
nodes β ∈ Ti. In this case we also have vi(Ti, λi) ≤ vi(Ti, λi) for all trades λi. We refer
to the difference vi(β) − vi(β) as the value uncertainty on node β. The efficient trade can
often be determined with only partial information about bidder valuations. Consider the
following simple variant on Example 2:

Example 3 The structure of the bidders’ trees in Figure 4 is the same as in Example 2 but
the nodes are annotated with bounds. Let x ∈ [3, 8] denote Bidder 1’s true value for “buy
C” and y ∈ [−4,−1] denote Bidder 2’s true value for “sell C.” The three feasible trades
are: (1) trade A and C, (2) trade B and C, (3) no trade. The first trade is already provably
efficient. Fixing x and y, its minimal value is −4+9+x−y and this is at least −5+7+x−y,
the value of the second trade. Moreover, its worst-case value is −4+9+3−4 ≥ 0, the value
of the null trade.
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Bidder 1

AND

XOR

Sell A $-3
$-4

Sell B $-5
$-10

Buy C $8
$3

Bidder 2

IC3

1

Buy A $12
$9

Buy B $7
$3

Sell C $-1
$-4

Figure 4: Two bidders, each with partial value information defined on their bid tree. One
can already prove that the efficient trade is for bidder 1 to sell A and buy C.

4.1 Activity Rules

Activity rules are used to guide the preference elicitation process in each round of ICE.
Without an activity rule, a rational bidder would likely wait until the very last moment to
revise his valuation information, free-riding on the price discovery enabled by the bids of
other participants. If every bidder were to behave this way then the exchange would reduce
to a sealed-bid mechanism and lose its desirable properties.4 Thus, activity rules are critical
in mitigating opportunities for strategic behavior.5

ICE employs two activity rules. In presenting our activity rules, we will not specify the
explicit consequences of failing to meet an activity rule. One simple possibility is that the
default action is to automatically set the upper valuation bound on every node in a bid
tree to the maximum of the “provisional price on a node”6 and the lower-bound value on
that node. This is entirely analogous to when a bidder in an ascending-clock auction stops
bidding at a price: he is not permitted to bid at a higher price again in future rounds.

Modified Revealed-Preference Activity Rule (MRPAR). The first rule, MRPAR,
is based on a simple idea. We require bidders to refine their valuation bounds in each round,
so that there is some trade that is optimal (i.e., maximizes surplus) for the bidder given the
current prices and for all possible valuations consistent with the bounds. MRPAR is loosely
based around the revealed-preference based activity rule, advocated for the clock-proxy
auction in a one-sided CA (Ausubel et al., 2006).

Let v′i ∈ Ti for TBBL tree Ti denote that valuation v′i is consistent with the value bounds
in the tree. If the bounds are tight everywhere, then v′i is exactly the valuation function
defined by tree Ti. A simple variant (RPAR), requires that there is enough information in
valuation bounds to establish that one trade is weakly preferred to all other trades at the
prices, i.e.

∃λ̆i ∈ Fi(x
0) s.t. v′i(λ̆i) − pπ(λ̆i) ≥ v′i(λ

′
i) − pπ(λ′i), ∀v′i ∈ Ti,∀λ

′
i ∈ Fi(x

0) (RPAR)

Note that a bidder can always meet this rule by defining an exact valuation v̂i and tight
value bounds on every node in his bid tree; in this case, trade λ̆i ∈ arg maxλi∈Fi(x0)[v̂i(λi)−

4. This problem has been evocatively described as the “snake in the grass” problem. See Kwerel’s forward
in Milgrom’s book (2004).

5. There is no conflict here with our assumption about straightforward bidding: we design for the strategic
case despite assuming straightforward bidding to provide for tractable theoretical and experimental
analysis; moreover, the presence of activity rules helps to motivate straightforward bidding.

6. The provisional price on a node is defined as the minimal total price across all feasible trades for which
the subtree rooted at the node is satisfied.
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pπ(λi)] satisfies RPAR. We say that prices π are strict EQ prices for (vα, λα) when:

vα
i (λα

i ) − pπ(λα
i ) > vα

i (λ′i) − pπ(λ′i), ∀λ′i ∈ Fi(x
0) \ {λα

i } , (14)

for every bidder i ∈ N .

Theorem 3 If prices π are strict EQ prices for provisional valuation profile vα and trade
λα, and every bidder i retains vα

i in his bid tree after meeting RPAR, then trade λα is
efficient when all bidders are straightforward.

Proof: Fix bidder i. Let λ̆i denote the trade that satisfies RPAR. Because vα
i is consistent

with the revised bid tree of bidder i, we have:

vα
i (λ̆i) − pπ(λ̆i) ≥ vα

i (λ′i) − pπ(λ′i), ∀λ′i ∈ Fi(x
0). (15)

Moreover, we must have λ̆i = λα
i , because vα

i (λα
i ) − pπ(λα

i ) > vα
i (λ′i) − pπ(λ′i) by the

strictness of prices. Instantiating RPAR with this trade, and with true valuations vi ∈ Ti

(since bidders are straightforward), we have:

vi(λ
α
i ) − pπ(λα

i ) ≥ vi(λ
′
i) − pπ(λ′i), ∀λ′i ∈ Fi(x

0), (16)

from which prices pπ are EQ prices with respect to true valuations. The efficiency claim
then follows from the welfare theorem, Theorem 1. �

In particular, the provisional trade is efficient given strict EQ prices when every bidder
meets the rule without modifying his bounds in any way. Strict EQ prices are required to
prevent problems involving ties:

Buyer

XOR

Buy A $8 Buy B
$4
$4
$2

Seller

OR

Sell A
$-6
$-9
$-20

Sell B
$-2
$-6
$-10

Figure 5: An Example to illustrate the failure of the simple RPAR rule without strict EQ
prices. True values are shown in bold and are such that the efficient outcome is
no trade.

Example 4 The TBBL trees shown in Figure 5 will have no trade occur at the truthful
valuation (which is indicated in bold between the value bounds). However, suppose α = 0 so
that at the provisional valuations it is efficient for A to be traded. Prices π = (6, 2) are EQ
(but not strict EQ) prices given vα and λα, with the buyer indifferent between buying A and
buying B and the seller indifferent between selling A, selling A and B, or making no sale.
The buyer passes RPAR without changing his bounds because the bounds already establish
that he (weakly) prefers A to B, and prefers A to no trade, at all possible valuations.
Similarly, the seller passes RPAR without changing his bounds because the bounds establish
that he weakly prefers no trade to selling any combination of A and B given the current
prices. Thus, we have no activity even though the current provisional trade is inefficient.
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In order to better handle these sorts of ties, we slightly strengthen RPAR to modified
RPAR (MRPAR), which requires that there exists some λ̆i ∈ Fi(x

0) such that

θπ
i (λ̆i, λ

′
i, v

′
i) ≥ 0, ∀v′i ∈ Ti,∀λ

′
i ∈ Fi(x

0) (17)

and either λ̆i = λα
i or θπ

i (λ̆i, λ
α
i , v

′
i) > 0, ∀v′i ∈ Ti. (18)

where θπ
i (λi, λ

′
i, v

′
i) = v′i(λi) − pπ(λi) − (v′i(λ

′
i) − pπ(λ′i)) denotes the profit to bidder i for

trade λi over λ′i given v′i and prices π. (17) is RPAR and the additional requirements enforce
that the satisfying trade λ̆i is either λα

i or strictly preferred to λα
i . This need to show a

strict preference over λα
i prevents the deadlock shown in Example 4. The seller has shown

only a weak preference for not trading over selling A. With MRPAR, the seller must also
show that he strictly prefers λ̆i, in this case by reducing the upper-bounds on both A and
B, thus ensuring progress.

The actual rule adopted in ICE is δ-MRPAR, parameterized with accuracy parameter
δ ≥ 0, and providing a relaxation of MRPAR which is useful even when there are no exact
EQ prices defined with respect to (λα, vα) in some round.

Definition 4 Given provisional trade λα, linear prices π, and accuracy parameter δ ≥ 0,
δ-MRPAR requires that every bidder i refines his value bounds so that his TBBL tree Ti

satisfies:

θπ
i (λα

i , λ
′
i, v

′
i) ≥ −δ, ∀v′i ∈ Ti,∀λ

′
i ∈ Fi (19)

or, that there is some λ̆i ∈ Fi(x
0) such that

θπ
i (λ̆i, λ

′
i, v

′
i) ≥ 0, ∀v′i ∈ Ti,∀λ

′
i ∈ Fi(x

0) (20)

θπ
i (λ̆i, λ

α
i , v

′
i) > δ, ∀v′i ∈ Ti (21)

It is a simple matter to check that δ-MRPAR reduces to MRPAR for δ = 0. Phrasing
the description to allow for the rule to be interpreted with and without the δ relaxation,
δ-MRAPR requires that each bidder must adjust his valuation bounds to establish that the
provisional trade is [within δ of] maximizing profit for all possible valuations (19), or some
other trade satisfies RPAR (20) and is strictly preferred [by at least δ] to the provisional
trade (21). Just as for RPAR, one can show that a bidder can always meet δ-MRPAR (for
any δ) by defining an exact valuation.7

Lemma 1 If every bidder i meets δ-MRPAR without precluding vα
i from his updated bid

tree, and prices π are δ-approximate EQ prices with respect to provisional valuation profile
vα and trade λα, and bidders are straightforward, then the provisional trade is a
2 min(M, n

2 )δ-approximate efficient trade.

7. Let vi denote this valuation. If δ-MRPAR is not satisfied via (19) then λ̆i ∈ arg maxλi∈Fi(x0)[vi(λi) −
pπ(λ)] will satisfy δ-MRPAR. This satisfies (20) by construction. Now, let λ′

i denote the trade with
vi(λ

′
i)− pπ(λ′

i) > vi(λ
α

i )− pπ(λα

i ) + δ. We have vi(λ̆i)− pπ(λ̆i) ≥ vi(λ
′
i)− pπ(λ′

i) > vi(λ
α

i )− pπ(λα

i ) + δ,
and (21).
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Proof: Fix bidder i. By δ-EQ, we have θπ
i (λα

i , λ
′
i, v

α
i ) ≥ −δ for all λ′i ∈ Fi(x

0). Consider
any λ̆i 6= λα

i . Because vα
i remains in the bid tree, we must have θπ

i (λ̆i, λ
α
i , v

α
i ) ≤ δ and

δ-MRPAR cannot be satisfied via (20) and (21). Therefore, δ-MRPAR is satisfied for every
bidder via (19) and with provisional trade λα the satisfying trade. Therefore we prove that
prices, π, are δ-approximate EQ prices for all valuations, and including the true valuation
since bidders are straightforward and this is within their bounds. The efficiency of the trade
follows from Theorem 2. �

This in turn provides a simple proof for the efficiency of ICE when approximate CE
prices exist upon termination. Suppose that ICE is defined to terminate as soon as prices
are δ-accurate and vα is retained in the bid tree by all bidders in meeting the activity rule,
or when quiescence is reached and no bidder refines his bounds in meeting the rule. In this
variation, the provisional trade λα is the trade finally implemented.

Theorem 4 ICE with δ-MRPAR is 2 min(M, n
2 )δ-efficient when prices are δ-accurate with

respect to (vα, λα) upon termination and bidders are straightforward.

Proof: When ICE terminates either (a) prices are δ-accurate and vα is retained in the
bid tree by all bidders and we can appeal directly to Lemma 1, or (b) no bidder refines his
bounds in meeting δ-MRPAR, in which case vα

i remains in the space of valuations consistent
with the bid tree for each bidder. �

We also have the following simple corollary, which considers the property of ICE for a
domain in which approximately accurate EQ prices exist:

Corollary 1 ICE with δ-MRPAR is 2 min(M, n
2 )δ-efficient when δ-accurate competitive

equilibrium prices exist for all valuations in the valuation domain and when all bidders are
straightforward.

Specializing to domains in which exact EQ prices exist (e.g., for unit-demand preferences
as in the assignment model of Shapley and Shubik, 1972; see also the work of Bikhchandani
and Mamer, 1997) then ICE with MRPAR is efficient for straightforward bidders.

XOR

Buy A $8
$2

Buy B $5
$4

(a) Passes δ-MRPAR

XOR

Buy A $8=v
$2=x

Buy B $8=y
$4=w

(b) Fails δ-MRPAR

Figure 6: δ-MRPAR where the provisional trade is “Buy A”, πA = 3, πB = 4 and δ = 2

Example 5 To illustrate the δ-MRPAR rule consider a single bidder with a valuation tree
as in Figure 6(a). Suppose the provisional trade λα

i allocates A to the bidder, and with prices
πA = 3, πB = 4 and δ = 2. Here the bidder has satisfied δ-MRPAR because the guaranteed
$2-$3=$-1 payoff from A is within δ of the possible $5-$4=$1 payoff from B. Now consider
Figure 6(b), with a relaxed upper-bound on “buy B” of $8. Now the bidder fails δ-MRPAR
because the guaranteed $-1 payoff from A is not within δ of the possible payoff from B of
$8-$4=$4. Let [x, v] and [w, y] denote the lower and upper bounds, on “buy A” and “buy
B” respectively, as revised in meeting the rule. To pass the rule, the bidder has two choices:
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• Demonstrate λα
i is the best response. To do so the bidder will need to adjust x and y

to make x − 3 ≥ y − 4 − 2 ⇒ y − x ≤ 3; e.g., values x = $2, y = $5 solve this, as in
Figure 6(a), as do many other possibilities.

• OR Demonstrate that another trade (e.g., “buy B”) is more than $2 better than λα
i ,

i.e., w− 4 > v− 3 + 2 ⇒ w− v > 3, and “buy B” is weakly better than the null trade,
i.e., w − 4 ≥ 0. For instance, if the bidder’s true values are vA = $3, vB = $8 then
x ≤ 3 ≤ v and w ≤ 8 ≤ y and the rule cannot be satisfied in the first case. But, the
buyer can establish that “buy B” is his best-response, e.g., by setting v = $4, w = $7,
or v = $3, w = $6.

Remark: Computation and Bidder Feedback. The definition of MRPAR naively
suggests that checking for compliance requires explicitly considering all valuations v′i ∈ Ti

and all trades λ′i ∈ Fi(x
0). Fortunately, this is not necessary. We present in the Appendix a

method to check MRPAR given prices π, provisional trade λα
i and bid tree Ti by solving three

MIPs. Moreover, we explain that the solution to these MIPs also provides nice feedback for
bidders. ICE can automatically identify a set of nodes at which a bidder needs to increase
his lower bound and a set of nodes at which a bidder needs to decrease his upper bound in
meeting MRPAR.

Delta Improvement Activity Rule (DIAR). With only δ-MRPAR, it is quite possible
for ICE to get stuck, with all bidders satisfying the activity rule without changing their
bounds, but with the prices less than δ accurate (with respect to (λα, vα)). Therefore, we
need an activity rule that will continue to drive a reduction in value uncertainty, i.e., the
gap between upper bound values and lower bound values, even in the face of inaccurate
prices, and ideally in a way that remains “price-directed” in the sense of using prices to
determine which trades (and in turn which nodes in TBBL trees) each bidder should be
focused on.

We introduce for this purpose a second (and novel) activity rule (DIAR), which fills
this role by requiring bidders to reveal information so as to improve price accuracy and,
in the limit, full information on the nodes that matter. Defined this way, the DIAR rule
very nicely complements the δ-MRPAR rule. Because we can establish the efficiency of
the provisional trade directly via the valuation bounds, as we will see in Section 4.3, we
do not actually need fully accurate prices in order to close the exchange. Thus, the DIAR
rule does not imply that bidders will reveal full information. Rather, the presence of DIAR
ensures both good performance in practice as well as good theoretical properties. In our
experiments we enable DIAR in all rounds of ICE, and it fires in parallel with δ-MRPAR.
In practice, we see that most of the progress in refining valuation information occurs due to
δ-MRPAR, and that all the progress in early rounds occurs due to δ-MRPAR. Experimental
support for this is provided in Section 6.8

Before providing the specifics of DIAR, we identify a node β ∈ Ti in the bid tree of
bidder i as interesting for some fixed instance (v, x0), when the node is satisfied in some
feasible trade. We have the following simple lemma:

8. In a variation on the way ICE is defined, DIAR could be used only in rounds in which the price error for
the provisional valuation and trade is greater than the error associated with δ-MRPAR. This is because
δ-MRPAR is sufficient for approximate efficiency when prices are accurate enough.
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Lemma 2 If there is no value uncertainty on any interesting nodes in the bid trees of any
biders, and bidders are straightforward, then λα is efficient.

Proof: No value uncertainty and thus exact information about the value on all interesting
nodes implies that the difference in value is exactly known between all pairs of feasible
trades because for all uninteresting nodes, either the node is never satisfied in any trade
(and thus its value does not matter) or the node is satisfied in every trade and thus its actual
value does not matter in defining the difference in value between pairs of trades. Only the
difference in value between pairs of trades is important in determining the efficient trade.
�

DIAR focuses a bidder in particular on interesting nodes that correspond to trades for
which the pricing error is large, and where this error could still be reduced by refining the
valuation bounds on the node. Given prices π and provisional trade λα

i , the main focus of

DIAR is the following upper-bound δ
k

i , on the amount by which prices π might misprice
some trade λk

i ∈ Fi(x
0) with respect to bidder i’s true valuation:

δ
k

i = max
v′

i
∈Ti

[v′i(λ
k
i ) − pπ(λk

i ) − (v′i(λ
α
i ) − pπ(λα

i ))] (22)

We call this the “DIAR error on trade λk
i ”, and note that it depends on the current

prices as well as the current bid tree and provisional trade, but not the true valuation which
is unknown to the center. The DIAR error provides an upper bound on the additional payoff
that the bidder could achieve from trade λk

i over trade λα
i . If we order trades, λ1

i , λ
2
i , . . ., so

that λ1
i has maximal DIAR error, then δ

1
i ≥ δi, where δi = maxλ′

i
∈Fi(x0)[v

α
i (λ′i) − pπ(λ′i) −

(vα
i (λα

i )− pπ(λα
i ))] is the pricing error with respect to the provisional trade and provisional

valuation profile. This is the error that the pricing algorithm is designed to minimize in
each round, and the same error that is used in Theorem 2 in reference to δ-accurate prices.
Thus, we see that the maximal DIAR error also bounds the amount by which prices are

approximate EQ prices, and that if δ
1
i ≤ 0 for all bidders i then the current prices π are

exact EQ prices with respect to (λα, vα).
To satisfy DIAR a bidder must reduce the DIAR error on the trade with the largest error

for which the error can be reduced (some error may just be intrinsic given the current prices
and not because of uncertainty about the bidder’s valuation), or establish by providing exact
value information throughout the tree that none of the DIAR error on any trades is due
to value uncertainty. Figure 7 illustrates the difference between MRPAR and DIAR. A
bidder can satisfy MRPAR by making it clear that the lower bound on payoff from some
trade is greater than the upper bound on all other trades, but still leave large uncertainty
about value. DIAR requires that a bidder also refine this upper bound if it is on a node
that corresponds to a trade for which the DIAR error (and thus potentially the actual
approximation in prices) is large. The rule is illustrated in Figure 8.

DIAR is parameterized by some ǫ ≥ 0. We refer to the formal rule as ǫ-DIAR:

Definition 5 To satisfy ǫ-DIAR given provisional trade λα
i and prices π, the bidder must

modify his valuation bounds to:
(a) reduce the DIAR error on some trade, λj

i ∈ Fi(x
0), by at least ǫ and

(b) prove that error δ
k

i cannot be improved by ǫ for all trades λk
i ∈ Fi(x

0) for 1 ≤ k < j,

or (c) establish that δ
k

i cannot be improved by ǫ on any trade λk
i ∈ Fi(x

0).
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Figure 7: Stylized effect of MRPAR and
DIAR on the bounds of the λα

i

and λ∗i trades

Figure 8: Trades for bidder i, ordered with
DIAR error reducing from left to
right. The bidder must reduce,
by at least ǫ, the DIAR error
on the trade with the greatest
error for which this is possible
and prove (via valuation bounds)
that it is impossible to improve
by ǫ any trades with larger error.

In particular, even if the bidder is in case (c) above, he will still be forced to narrow his
bounds and progress will be made towards bounding efficiency. In practice, we define the ǫ
parameter to be large at the start and smaller in later rounds.

XOR

Buy A
$6
$4
$2

Buy B
$8
$5
$3

Buy C
$10
$10
$4

(a) Fails DIAR

XOR

Buy A
$6
$4
$2

Buy B
$7
$5
$3

Buy C
$10
$10
$9.01

(b) Passes DIAR

Figure 9: Respecting DIAR where the provisional trade is “Buy A”, πA = 4, πB = 5, πC = 6
and ǫ = 1

Example 6 Consider the tree in Figure 9(a) when the provisional trade is “buy A”, prices
π = ($4, $5, $6) and DIAR parameter ǫ = 1. The DIAR error on each trade, defined via
(22), and listed in decreasing order, are:

C → δ
1

= ($10 − $6) − (−$2) = $6

B → δ
2

= ($8 − $5) − (−$2) = $5

∅ → δ
3

= ($0 − $0) − (−$2) = $2

A→ δ
4

= ($2 − $4) − (−$2) = $0,

where −$2 = $2 − $4 is the worst-case profit from the provisional trade. Now, we see that

δ
1

cannot be made smaller by lowering the upper-bound on leaf “buy C” because this bound
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is already tight against the truthful value of $10. Instead the bidder must demonstrate that
a decrease of ǫ = 1 is impossible by raising the lower bound on “buy C” to 9.01. However

δ
2

can be decreased by ǫ = 1, by reducing the upper-bound on “buy B” from 8 to 7, giving
us the tree in Figure 9(b).

Lemma 3 When ICE incorporates DIAR, a straightforward bidder must eventually reveal
complete value information on all interesting nodes in his bid tree as ǫ→ 0.

Proof: Fix provisional trade λα
i and consider trade, λ1

i ∈ Fi(x
0) 6= λα

i , with the maximal
DIAR error. Continue to assume straightforward bidders. Recall that vi(β) denotes a
bidder’s true value on node β in his TBBL tree. By case analysis on nodes β ∈ Ti, meeting
the DIAR rule on this trade as ǫ→ 0 requires:

(i) Nodes β ∈ λ1
i \ λ

α
i . Decrease the upper-bound to vi(β), the true value, to reduce the

error. Increase the lower-bound to vi(β) to prove that further progress is not possible.

(ii) Nodes β ∈ λα
i \ λ1

i . Increase the lower-bound to vi(β), the true value, to reduce
the error. Decrease the upper-bound to vi(β) to prove that further progress is not
possible.

(iii) Nodes β ∈ λα
i ∩ λ1

i . No change is required.

(iv) Nodes β /∈ λ1
i ∪ λ

α
i . No change is required.

Continue to fix some λα
i , and consider now the impact of DIAR as ǫ → 0 and as the

rule is met for successive trades, moving from λ1
i to λ2

i and onwards. Eventually, the value
bounds on all nodes β /∈ λα

i but in at least one other feasible trade are driven to truth by
(i), and the value bounds on all nodes β ∈ λα

i but not in at least one other feasible trade
are driven to truth by (ii). Noting that the null trade is always feasible, the bidder will
ultimately reveal complete value information except on nodes that are not satisfied in any
feasible trade. �

Putting this together we have the following simple theorem, which considers the con-
vergence property of ICE when DIAR is the only activity rule.

Theorem 5 ICE with the ǫ-DIAR rule will terminate with the efficient trade when all
bidders are straightforward and as ǫ→ 0.

Proof: Immediate by Lemma 2 and Lemma 3. �

In practice, we use both δ-MRPAR and DIAR and the role of DIAR is to ensure con-
vergence in instances for which there do not exist good, supporting EQ prices. The use
of DIAR does not lead, in any case, to full revelation of bidder valuations because we can
prove efficiency directly in terms of valuation bounds on different trades (see Section 4.3).

Remark: Computation and Bidder Feedback. We present in the Appendix a method
to check ǫ-DIAR given prices π, provisional trade λα

i , the bidder’s bid tree from the past
round and proposed new bid tree by solving two MIPs. Moreover, the solution to these
MIPs also provides nice feedback for bidders. ICE can automatically identify the trade,
and in turn the corresponding nodes in the bid tree, for which the bidder must provide
more information.
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4.2 Generating Linear Prices

Given the provisional trade λα, provisional valuations vα, and given that provisional pay-
ments have also been determined (according to the payment rule, such as Threshold,
adopted in the exchange), approximate clearing prices are computed in each round ac-
cording to the following rules:

I: Accuracy (ACC). First, we compute prices that minimize the maximal error in the
best-response constraints across all bidders.

II: Fairness (FAIR). Second, we break ties to prefer prices that minimize the maximal
deviation from provisional payments across all bidders.

III: Balance (BAL). Third, we break ties to prefer prices that minimize the maximal
difference in price across all items.

Taken together, these steps are designed to promote the informativeness of prices in
driving progress across rounds. Balance is well motivated in domains where items are more
likely to be similar in value than dissimilar, preferring prices to be similar across items
and rejecting extremal prices. Note that these prices may ascend or descend from round
to round – but that they will in general tend towards increasing accuracy, as we shall see
experimentally in Section 6.

Buyer

AND

Buy A $8 Buy B $8

Seller

AND

Sell A $-6 Sell B $-6

Figure 10: A simple example to illustrate pricing. ACC prices AB between $12 and $16,
FAIR narrows this to $14 and BAL requires A = $7, B = $7

Example 7 Consider the example in Figure 10 with one buyer interested in buying AB and
one seller interested in selling AB. Here the buyer’s and seller’s values for each item are
8 and -6 respectively. The efficient outcome given these values is for the trade to complete.
ACC requires 12 ≤ πA+πB ≤ 16, and thus allows a range of prices. The Threshold payment
splits the difference, so that the buyer pays 14 to the seller and so FAIR adds the constraint
πA + πB = 14. Finally, BAL requires πA = πB = 7.

Each of the three stages occur in turn. In the interest of space, here we only present the
basic formulation of the Accuracy stage: We define maximally accurate EQ prices by first
considering the following LP:

δ∗acc = min
π,δacc

δacc

s.t. vα
i (λ′i) −

∑

j

πjλ
′
ij ≤ vα

i (λα
i ) −

∑

j

πjλ
α
ij + δacc, ∀i,∀λ′i ∈ Fi(x

0) (23)

δacc ≥ 0,

πj ≥ 0, ∀j ∈ G
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These prices minimize the maximal loss in payoff across all bidders for trade λα com-
pared to the trade that a bidder would most prefer given provisional valuation vα, i.e.,
minimize the maximal value of θπ

i (λ∗i , λ
α
i , v

α
i ), where λ∗i = arg maxλi∈Fi(x0)[v

α
i (λi)−p

π(λi)].
Prices that solve this LP are then refined lexicographically, fixing the worst-case pricing er-
ror (ACC) and then working down to try to additionally minimize the next largest pricing
error and so on. Given maximally accurate prices, this then triggers a series of lexicograph-
ical refinements to best approximate the payments (FAIR) without reducing the pricing
accuracy, and eventually a series of lexicographical refinements to try to maximally bal-
ance prices across distinct items (BAL). In addition to further improving the quality of the
prices, this process also ensures uniqueness of prices.

Each of the Accuracy, Fairness and Balance problems have an exponential number of
constraints because the price accuracy constraints (23) (which are carried forward into
the subsequent stages) are defined over all trades λ′i ∈ Fi(x

0) and all bidders i. It is
therefore infeasible to even write these problems down. Rather than solve them explicitly,
we use constraint generation (e.g. Bertsimas & Tsitsiklis, 1997) and dynamically generate
a sufficient subset of constraints. Constraint generation (CG) considers a relaxed program
that only contains a manageable subset of the constraints, and solves this to optimality.
Given a solution to this relaxed program, a subproblem is used to either prove that the
solution is optimal to the full program, or find a “violated constraint” in the full problem
that is then introduced and the (now strengthened) relaxed program resolved. In this case
the subproblem is a variation of the winner determination IP from Section 3, and can be
concisely formulated and solved via branch-and-cut.9

4.3 Establishing Bounds on Efficiency

Consider some round t in ICE. The round starts with the announcement of prices, denote
them πt, and the provisional trade. The round ends with every bidder having met the
δ-MRPAR and ǫ-DIAR activity rules. The question to address is: what can be established
about the efficiency of the trade defined on lower-bound valuations at the end of the round?
It is perhaps unsurprising that MRPAR by itself is sufficient to provide efficiency claims
when prices are suitably accurate. What is interesting is that the coupling of MRPAR
with DIAR ensures that ICE converges to a provably efficient trade in all cases, with
efficiency often established independently of prices by reasoning directly about lower and
upper valuation bounds. For the theoretical analysis of convergence to efficiency, we assume
straightforward bidders, by which we mean a bidder that always retains his true valuation
within the valuation bounds. (All results could equivalently be phrased in terms of efficiency
claims with respect to reported valuations.)

At the closing of each round, ICE makes a determination about whether to move to
the last-and-final round. Bidders are notified when this occurs. This last-and-final round

9. The pricing step is the most computationally intensive of all steps in ICE and therefore heavily optimized.
In practice, we have found it useful to employ heuristics to seed the set of constraints used in CG. We
have also developed algorithmic techniques to speed the search for the appropriate set of constraints
in the context of lexicographic refinement: provisional Locking of multiple lexicographic values for each
CG check, and lazy constraint checks in which only a subset of the conditions for CG are routinely
checked, even though the complete set is eventually enforced. Please see the technical report at www.

eecs.harvard.edu/~blubin/ice for complete details of the pricing method.
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provides a final opportunity for bidders to update their lower valuation bound information
(without exceeding their upper bounds). The exchange finally terminates with the efficient
trade and payments determined with respect to the lower valuation bounds: it is these
lower bounds that can be considered to be the ultimate bid submitted by each bidder when
ICE terminates. Let λ ∈ arg maxλ∈F(x0)

∑

i vi(λi) denote the trade that is optimal given
the lower bound valuations. As explained in Section 4, ICE is parameterized by target
approximation error, ∆∗, providing a lower-bound on the relative efficiency of λ to the
efficient trade λ∗ for true valuations. The challenge is to obtain useful bounds on the
relative efficiency EFF(λ) of trade λ. We provide two methods, one of which is price-based
and uses duality theory and the second of which directly reasons about the bounds on bidder
valuations. We now consider each in turn.

A price-based proof of efficiency. We have already seen in Section 2.2 that a bound on
the efficiency of provisional trade λα can sometimes be established via prices. This provides
a simple method to establish a bound on the efficiency of trade λ. Fix some δ ≥ 0. For vα

denoting the provisional valuation profile at the start of round t, and λα the corresponding
provisional trade, we know that if

(a) bidders meet δ-MRPAR while leaving vα within their bounds,

(b) prices πt were δ-approximate EQ prices for vα and λα, and

(c) λα is equal to λ, i.e., the efficient trade given the refined lower bound valuations,

then trade λ is a 2 min(M, n
2 )δ-approximation to the efficient trade λ∗ by Theorem 2. We

have
∑

i vi(λi) + 2 min(M, n
2 )δ ≥

∑

i vi(λ
∗
i ), and then,

EFF(λ) =

∑

i vi(λi)
∑

i vi(λ∗)
≥ 1 −

2 min(M, n
2 )

∑

i vi(λ∗i )
δ ≥ 1 −

2 min(M, n
2 )

maxλ∈F(x0)

∑

i vi(λ)
δ, (24)

which we define as ωprice. Conditioned on (a–c) being met, so that the bound is available,
it will satisfy ωprice ≥ ∆∗ for a small enough δ parameter. When the bound is not available
we set ωprice := 0.

A direct proof of efficiency. We also provide a complementary, direct, method to
establish the relative efficiency of λ by working with the refined valuation bounds at the
end of round t. First, given a bid tree Ti, it is useful to define the perturbed valuation

with respect to a trade λi, by assigning the following values to each node β:

ṽi(β) =

{

vi(β) , if β ∈ sat i(λi)
vi(β) , otherwise,

(25)

where β ∈ sat i(λi) if and only if node β is satisfied given tree Ti and lower bound valuations
vi on nodes, and given trade λi. The valuation function ṽi associated with TBBL tree Ti

is defined to minimize the value on nodes satisfied by trade λi and maximize the value on
other nodes. With this concept, and given the valuation bounds, we can now establish the
following bound,

EFF(λ) =
v(λ)

v(λ∗)
≥ min

v′∈T,λ′∈F(x0)

[

v′(λ)

v′(λ′)

]

= min
λ′∈F(x0)

[

ṽ(λ)

ṽ(λ′)

]

=
v(λ)

ṽ(λ̃)
, (26)
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Figure 11: Determining an efficiency bound based on lower and upper valuations.

which we define as ωdirect. Notation ṽ = (ṽ1, . . . , ṽn), and λ̃ is the trade that maximizes
∑

i ṽi(λi) across all feasible trades. The first inequality holds because the domain of the
minimization includes v ∈ T and trade λ′ = λ∗. The first equality holds because for any
λ′ 6= λ, the worst-case efficiency for λ occurs when the value v′ ∈ T is selected to minimize
the value on nodes λ \ λ′, maximize the value on nodes λ′ \ λ, and minimize the value on
shared nodes, λ′∩λ. Whatever the choice of λ′, this valuation is provided through perturbed
valuation ṽ. For the final equality, ṽ(λ) = v(λ) by definition, and the optimal trade λ′ is
that which maximizes the value of the denominator, i.e., trade λ̃. Figure 11 schematically
illustrates the various trades and values used in this bound, and in particular provides
some graphical intuition for why ṽ(λ̃) − v(λ) ≥ ṽ(λ∗) − v(λ) = maxv′∈T [v′(λ∗) − v′(λ)] ≥
v(λ∗) − v(λ).

Combining together. Given the above methods we can establish lower-bound ωeff =
max(ωprice, ωdirect) on the relative efficiency of trade λ. ICE is defined to move to the
last-and-final round when either of the following hold:

(a) the error bound ωeff ≥ ∆∗

(b) there is no trade even at optimistic (i.e., upper-bound) valuations.

Combining this with Theorem 5, we immediately get our main result.

Theorem 6 When ICE incorporates δ-MRPAR and ǫ-DIAR and when all bidders are
straightforward, then the exchange terminates with a trade that is within target approxi-
mation error ∆∗, for any ∆∗ ≥ 0 as ǫ→ 0.

The use of ǫ-DIAR by itself is sufficient to establish this result. However, it is the use
of prices and MRPAR that drives most elicitation in practice, particularly as we fix δ in
δ-MRPAR to a tiny constant in actual use. Empirical support for this, along with the
quality of the price-based bound and the direct efficiency bounds, is provided in Section 6.
For the ǫ parameter in ǫ-DIAR, we find that a simple rule:

ǫ :=
1

2n

∑

i

∑

β∈Ti

vi∈N (β) − vi(β)

|Ti|
, (27)

works well. This tends towards zero as more value information is revealed by participants.

One last element of the design of ICE is the precise method by which the provisional
valuation profile vα = αv + (1 − α)v is constructed. This is important because it is then
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used to determine the provisional trade and price feedback. A simple approach that works
well is to define α := max(0.5, ωeff). We find that the lower bound of 0.5 is a useful heuristic
for early rounds when ωeff is likely to be small, making ICE adopt a provisional valuation
in the middle of the valuation bounds when not much is known. The effect is then to push
α towards 1 and thus vα towards v as the efficiency bound ωeff improves.10

5. Illustrative Examples

In this section we illustrate the behavior of the exchange on two simple examples. These
examples are provided to give a qualitative feel for its behavior. To construct the examples
we populate ICE with very simple, automated bidding agents. These agents use MIP-
guided heuristics to minimize the amount of information revealed in the course of passing
the activity rules, while maintaining their true value within their lower- and upper-bounds
(i.e., they act in a ‘straightforward’ way). Their reluctance to reveal information models
a basic tenet of our design, that it is costly for participants to refine and then reveal
information about their values for different trades. A detailed explanation of the operation
of these bidding agents is provided in the Appendix.

In this section, and also in presenting our main experimental results, we do not move to
a last-and-final round. Rather, the bidding agents are programmed to continue to improve
their bids past the round at which efficiency is already proved (and when a last-and-final
round would ordinarily be declared), and until payments are within some desired accuracy
tolerance. We do this to avoid the need to program agents with a strategy for how to bid
in the last-and-final round.
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Figure 12: AgentA: A $8, AgentB: B $8, AgentAB: A AND B $10.

10. In some domains, it may also be important to require that payments (rather than just the efficiency
of trade λ) be accurate enough before moving to the last-and-final round. A bound on payments can
be computed in an analogous way to that on efficiency. Whether this is required in practice is likely
domain-specific and to depend, for instance, on whether the payments tend to be accurate anyway by
the time the trade is approximately accurate, and also on the impact on strategic behavior.
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Example 8 Consider a market with a no-reserve seller of two items A and B, and three
buyers. AgentA demands A with a value of $8, AgentB demands B with a value of $8, and
AgentAB demands A AND B with a value of $10. Figure 12(a) shows that very quickly
the exchange discovers the correct trade. A price between $5 and $8 will be accurate in
this situation, and we can see that the prices in Figure 12(b) quickly meet this condition.
Fairness drives the prices towards $6, which will be the eventual Threshold payments to
AgentA and AgentB. Balance ensures that the prices remain the same for the two items.
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Figure 13: Seller A -$10, Swapper: swap B for A $8, Buyer B $4

Example 9 Consider an example with a Seller offering A for a reserve of $10, a “Swapper”
who is willing to pay $8 if he can swap his B for A, and a Buyer willing to pay $4 for B.
In this more complex example, it takes 4 rounds, as illustrated in Figure 13(a), for a trade
to be found in the pessimistic trade. Revelation drives progress towards a completed trade,
and as we can see in Figure 13(b), this is reflected in falling prices on the goods. Thus we
can see that the price feedback is providing accurate information to the participants: only
when the price eventually becomes low enough do the buying bidders actually want a trade
to occur– and that is also when the exchange’s provisional trade switches. It is also worth
noting that the greater valuations the Seller and Swapper place on good A result in a net
higher price than that for good B.

6. Experimental Analysis

In this section we report the results of a set of experiments that are designed to provide a
proof-of-concept for ICE. The results illustrate the scalability of ICE to realistic problem
sizes and provide evidence of the effectiveness of the elicitation process and the techniques
to bound the efficiency of the provisional trade.
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Implementation. First, a brief aside on our experimental implementation. ICE is ap-
proximately 20,000 lines of extremely tight Java code, broken up into the functional packages
described in Table 1.11 The prototype is modular so that researchers may easily replace
components for experimentation.12 Because of ICE’s complexity, it is essential that the
code be constructed in a rigid hierarchy that avoids obscuring the high level logic behind
the details of generating, running and integrating the results of MIPs. To this end, the
system is written in a series of progressively more abstract“mini-languages” each of which
defines a clean, understandable API to the next higher level of logic. Our hierarchy provides
a way to hide the extremely delicate steps needed to handle the numerical issues that come
out of trying to repeatedly solve coupled optimization problems, where the constraints in
one problem may be defined in terms of slightly inaccurate results from an earlier problem.
Most of the constraints presented in this paper must be carefully relaxed and monitored
in order to handle these numerical precision issues. At the bottom of this hierarchy the
MIP specification is fed into our generalized back-end optimization solver interface13 (we
currently support CPLEX and the LGPL-licensed LPSolve), that handles machine load-
balancing and parallel MIP/LP solving. This concurrent solving capability is essential, as
we need to handle tens of thousands of comparatively simple MIPs/LPs.

Component Purpose Lines

Agent Strategic behavior and information revelation decisions 2001
Model XML support to load goods and true valuations 1353

Bidding Language Implements TBBL 2497
Exchange Driver & Communication Controls exchange, and coordinates agent behavior 1322
Activity/Closing Rule Engines MRPAR, DIAR and Closing Rules 1830
WD Engine Logic for WD 685
Pricing Engine Logic for three pricing stages 1317
MIP Builders Translates from engines into our optimization APIs 2206

Framework & Instrumentation Wire components together & Gather data 2642
JOpt Our Optimization API wrapping CPLEX 2178
Instance Generator Random Problem Generator 497

Table 1: Exchange components and code breakdown

Experimental set-up. In the experiments, the δ-parameter in MRPAR is set to near
zero and both the MRPAR and DIAR activity rule fire in every round. The rule used
to define the ǫ-parameter in DIAR is exactly as described in Section 4.1. We adopt the
same straightforward bidding agents that were employed in Section 5 (see the Appendix
for details). In simulation, we adopt the Threshold payment rule and terminate ICE when
the per-agent error in payment relative to the correct payment is within 5% of the average
per-agent value for the efficient trade. On typical instances, this incurs an additional 4
rounds beyond those that would be required if we had a last-and-final round. All timing
is wall clock time, and does not separately count the large number of parallel threads of
execution in the system. The experiments were run on a dual-processor dual-core Pentium

11. Code size is measured in physical source line of code (SLOC).
12. Please contact the authors for access to the source code.
13. http://www.eecs.harvard.edu/econcs/jopt
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IV 3.2GHz with 8GB of memory and CPLEX 10.1. All results are averaged over 10 trials.
The problem instances are available at http://www.eecs.harvard.edu/~blubin/ice.

Our instance generator begins by generating a setG of good types. Next, for each j ∈ G it
creates s ≥ 1 copies of each good type, forming a total potential supply in the market of s|G|
goods (exactly how many units are in supply depends on the precise structure of bid trees).
Each unit is assigned to one of the bidders uniformly at random. The generator creates a
bid tree Ti for each bidder by recursively growing it, starting from the root and adopting
two phases. For the tree above depthLow, each node receives a number of children drawn
uniform between outDegreeLow and outDegreeHigh (a percentage of which are designated
as leaves), resulting in an exponential growth in the number of nodes during this phase. By
the width at some depth we refer to the number of nodes at that depth. Below this point,
we carefully control the expected number of children at each node in order to make the
expected width conform to a triangle distribution over depth from depthLow to depthMid
to depthHigh: we linearly increase the expected width at each depth between depthLow and
depthMid to a fixed multiple (ξ) of the width at depthLow, and then linearly decrease the
expected width back to zero by depthHigh.14 This provides complex and deep trees without
inherently introducing an exponential number of nodes.

Each internal node must be assigned the parameters for its interval choose operator. We
typically choose y with a high-triangle distribution between 1 and the number of children and
x with a low-triangle distribution between 1 and y. This will bias towards the introduction
of IC operators that permit a wide choice in the number of children. Each internal node is
also assigned a bonus drawn according to a uniform distribution. Each leaf node is assigned
as a “buy” node with a probability ψ ∈ [0, 1], and then a specific good type for that node
is chosen from among those good types for sale in the market. The node is assigned a
quantity by drawing from a low-triangle distribution between 1 and the total number in
existence.15 A unit value for the node is then drawn from a specific “buy” distribution,
typically uniform, which is multiplied by the quantity and assigned as the node’s bonus.
The leaf nodes assigned as “sell” nodes have their goods and bonuses determined similarly,
this time with goods selected from among those previously assigned to the bidder.16

6.1 Experimental Results: Scalability

The first set of results that we present focuses on the computational properties of ICE.
Figure 14 shows the runtime performance of the system as we increase the number of
bidders while holding all other parameters constant. In this example, 100 goods in 20 types
are being traded by bidders with an average of 104 node trees. The graph shows the total
wall clock time for all parts of the system. While we see super-linear growth in solve time

14. Note that by setting depthLow=depthMid=depthHigh one can still grow a full tree of a given depth by
eliminating phase 2.

15. The total number of goods of a given type in existence may not actually be available for purchase at any
price given the structure of seller trees. Thus a bias towards small quantities in “buy” nodes and large
quantities in “sell” nodes produces more interesting problem instances.

16. In our experiments, we vary 2 ≤ |G| ≤ 128, 1 ≤ d ≤ 128, 2 ≤ |N | ≤ 20, 2 ≤ outDegreeLow ≤ 8,
2 ≤ outDegreeHigh ≤ 8, 2 ≤ depthLow ≤ 6, 2 ≤ depthMid ≤ 6, 2 ≤ depthHigh ≤ 8, set a balanced buy
probability ψ = 0.5, and set width multiplier during the second phase to ξ = 2. In these examples,
buy node bonuses were drawn uniformly from [10, 100], sell nodes bonuses were drawn uniformly from
[−100,−10] and internal nodes bonuses uniformly from [−25, 25].
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Figure 14: Effect of the number of bidders
on the run-time of ICE
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Figure 15: Effect of the number of good
types on the run-time of ICE

with the number of bidders, the constants of this growth are such that markets with large
numbers of bidders can be efficiently solved (solving for 20 bidders in around 40 minutes).
The error bars in all plots are for the standard error of the statistic.

In Figure 15 we can see the effect of varying the number of types of goods (retaining
5 units of each good in the supply) on computation time. For this example we adopt
10 bidders, and the same tree generation parameters. A likely explanation for eventual
concavity of the run-time performance is suggested by the decrease in the average (item)
price upon termination of ICE as the number of types of goods are increased (see Figure 16).
The average price provides a good proxy for the competitiveness of the market. Adding
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Figure 16: Effect of the number of goods on the average item price upon termination of
ICE.
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Figure 17: Effect of bid-tree size on run-
time of ICE: Varying the node-
out degree.
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Figure 18: Effect of bid-tree size on run-
time of ICE: Varying the tree
depth.

goods to the problem will initially make the winner determination problem more difficult,
but only until there is a large over-supply, at which point the outcome is easier to determine.

Figures 17 and 18 illustrate the change in run time with the size of bid trees. Here we
use only the first phase of our tree-generator to avoid confounding the effects of size with
structural complexity. In both experiments, 100 goods in 20 types were being traded by 10
bidders. In Figure 17 we vary the number of children of any given node while in Figure 18
we vary the depth of the tree. Increasing the branching factor and/or tree depth results in
an exponential growth in tree size, which necessarily corresponds to an exponential growth
in runtime. However, if we account for this by instead plotting against the number of nodes
in the trees, we see that both graphs indicate a near-polynomial increase in runtime with
tree size. We fit a polynomial function to this data of the form y = Axb, indicating that
this growth is approximately of degree 1.5 in the range of tree sizes considered in these
experiments.

6.2 Empirical Results: Economic Properties

The second set of results that we present focus on the economic properties of ICE: the
efficiency of trade across rounds, the effectiveness of preference elicitation, and the accuracy
and stability of prices. For this set of experiments we average over 10 problem instances,
each with 8 bidders, a potential supply of 100 goods in 20 types, and bid trees with an
average of 104 nodes.

Figure 19 plots the true efficiency of the trades computed at pessimistic (lower bounds
v), provisional (α-valuation vα) and optimistic (upper bounds v) valuations across rounds.
In this graph and those that follow, the x-axis indicates the number of rounds completed
as a percentage of the total number of rounds until termination which enables results to
be aggregated across multiple instances, each of which can have a different number of total
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Figure 19: Efficiency of the optimistic, pro-
visional, and pessimistic trades
across rounds.
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Figure 20: Average reduction in value un-
certainty due to each rule.

rounds.17 The vertical (dashed) line indicates the average percentage complete when the
trade is provably 95% efficient. The exchange remains open past this point while payments
converge (and because we simulate the outcome of the last-and-final round by continuing
progress with our straightforward bidding agents). The two lines on either side represent
one standard error of this statistic.

In Figure 19, we see that the exchange quickly converges to highly efficient trades, taking
an average of 6.8 rounds to achieve efficiency. In general, the optimistic trade (i.e., computed
from upper bounds v) has higher (true) efficiency than the pessimistic one (i.e., computed
from lower bounds v), while the efficiency of the provisional trade λα is typically better than
both. This justifies the design decision to adopt the provisional valuations and provisional
trade in driving the exchange dynamics. It also suggests that exchanges with the traditional
paradigm of improving bids (i.e., increasing lower bound claims on valuations) would allow
little useful feedback in early rounds: the efficiency of the pessimistic trade—all that would
be available without information about the upper-bounds of bidder valuations—is initially
very poor.

Figure 20 shows the average amount of revelation caused by MRPAR and DIAR in each
round of ICE. Revelation is measured here in terms of the absolute tightening of upper and
lower bounds, summed across the bid trees. The MRPAR activity rule is the main driving
force behind the revelation of information and the vast majority of revelation (in absolute
terms) occurs within the first 25% of rounds. DIAR plays a role in making progress towards
identifying the efficient trade but only once MRPAR has substantially reduced the value
uncertainty and despite firing in every round. One can think of MRPAR as our rocket’s
main engine, and DIAR as a thruster for mid-course correction. ICE determines the efficient

17. Each data point represents the average across the 10 instances, and is determined by averaging the
underlying points in its neighborhood. Error-bars indicate the standard error (SE) of this mean. Thus,
the figures are essentially a histogram rendered as a line graph.
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Figure 21: Price trajectory: Closeness of
prices in each round to the final
prices
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Figure 22: Regret in best-response by bid-
ders due to price inaccuracy rel-
ative to final prices.

trade when the average node in a TBBL tree still retains a gap between the upper and lower
bounds on value at the node equal to around 62% of the maximum (true) value that a node
could contribute to a bidder’s value, roughly the maximum marginal value contributed by a
node over all feasible trades. We see that ICE is successful in directing preference elicitation
to information that is relevant to determining the efficient trade.

We now provide two different views on the effectiveness of prices. Figure 21 shows the
mean percentage absolute difference between the prices computed in some round and the
prices computed in the final round. Prices quickly converge. In our experiments we have
driven the exchange beyond the efficient solution in order to converge to the Threshold
payments, but we see that most of the price information is already available at the point of
efficiency. Figure 22 provides information about the quality of the price feedback. We plot
the ‘regret’, averaged across bidders and runs, from the best-response trade as determined
from intermediate prices in comparison to the best-response to final prices, where the regret
is defined in terms of lost payoff at those final prices. Define the regret to bidder i for his
best response λ′i = arg maxλi∈Fi(x0)[vi(λi) − pπ̂(λi)], to prices π̂, given that the final prices
are π, as:

Regreti(λ
′
i, π) =



1 −
vi(λ

′
i) − pπ(λ′i)

max
λi∈Fi(x0)

vi(λi) − pπ(λi)



 × 100%. (28)

As the payoff from trade λ′i, when evaluated at prices π, approaches that from the best-
response trade at prices π, then Regreti(λ

′
i, π) approaches 0%. Figure 22 plots the average

regret across all bidders as a function of the number of rounds completed in ICE. The regret
is low: 11.2% when averaged across all rounds before the efficient trade is determined and
7.0% when averaged across all rounds. That regret falls across rounds also shows that prices
become more and more informative as the rounds proceed.

65



Lubin, Juda, Cavallo, Lahaie, Shneidman & Parkes

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

% Complete

%
 E

ffi
ci

en
t

 

 

Closing Rule Prediction
Truth

Figure 23: Comparison between the actual efficiency of the pessimistic trade and the ωdirect

bound.

Finally, we present experimental results that relate to the two methods that ICE employs
to bound the final efficiency of the pessimistic trade. The total pricing error across all
bidders in each round as determined within pricing in terms of (λα, vα), and normalized
here by the total true value of the efficient trade, is already small (at 8.5%) in initial rounds
and falls to around 3% by final rounds of ICE. This suggests that a price-based bound is
quite informative, although note that this is defined in terms of the error given (λα, vα) and
does not immediately map to a price-based accuracy claim for true valuations and for the
current trade λ defined on lower bound valuations. Figure 23 compares the actual efficiency
of the pessimistic trade λ in each round with that estimated by the ωdirect bound on efficiency
that is available to the exchange. This confirms that the direct bound is reasonably tight,
and very effective in bounding the true efficiency regardless of the accuracy of the prices.

7. Conclusions

In this work we designed and implemented a scalable and highly expressive iterative com-
binatorial exchange. The design includes many interesting features, including: a new tree-
based language for combinatorial exchange environments, a new method to construct ap-
proximate linear prices from expressive languages, a proxied architecture with optimistic
and pessimistic valuations coupled with price-based activity rules to drive preference elicita-
tion, and a direct method to estimate the final efficiency of the trade in terms of valuation
bounds. By adopting proxy agents that receive direct, expressive claims on upper and
lower valuations bounds we are able to form claims about efficiency despite using only
linear prices. These bounds also allow for good progress in early rounds, and even when
there is no efficient trade at lower bound (pessimistic) values. Experimental results with
automated, simple bidding agents indicate good behavior in terms of both scalability and
economic properties.
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There are many intriguing opportunities for future work. It will be especially interesting
to instantiate special-cases of the ICE design to domains for which there exist strategyproof,
static (two-sided) combinatorial market designs. This would bring straightforward bidding
strategies into an ex post Nash equilibrium. For example, it should be possible to integrate
methods such as trade-reduction (McAfee, 1992) and its generalizations (Babaioff & Walsh,
2005; Chu & Shen, 2007) in domains with restricted expressiveness. We can also consider
ICE as a combinatorial auction rather than exchange, where a direct appeal to VCG pay-
ments would provide incentive compatibility. The other two major directions for future work
are to: (a) modify the design to allow bidders to refine the structure, not just the valuation
bounds on their TBBL tree, across rounds; (b) extend ICE to work in a dynamic envi-
ronment with a changing bidder population, for instance maintaining linear price feedback
and periodically clearing. Recent progress in on-line mechanism design includes truthful,
dynamic double auctions for very simple expressiveness (Blum, Sandholm, & Zinkevich,
2006; Bredin, Parkes, & Duong, 2007), but does not extend to the kind of expressiveness
and price sophistication present in ICE; see the work of Parkes (2007) for a recent survey.
Lastly, the incentive properties of ICE are very much dependent on the payment rule used
which argues for further analysis of the Threshold rule and its alternatives.
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Appendix A. Computation for MRPAR

In this section we show that MRPAR can be computed by solving a sequence of 3 MIPs. We
begin by considering the special case of δ = 0. The general case follows almost immediately.
Define a candidate passing trade, λL

i , as:

λL
i ∈ arg max

λi∈Fi(x0)
vi(λi) − pπ(λi) (29)

breaking ties

(i) to maximize vi(λi) − vi(λi)

(ii) in favor of λα
i
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This can be computed by solving one MIP to maximize vi(λi) − pπ(λi), followed by
a second MIP in which this objective is incorporated as a constraint and vi(λi) − vi(λi)
becomes the objective. Given perturbed valuation ṽi, defined with respect to trade λL

i (as
in Section 4), we can define a witness trade, λU

i , as:

λU
i ∈ arg max

λi∈Fi(x0)
ṽi(λi) − pπ(λi). (30)

This can be found by solving a third MIP. Given prices π, provisional trade λα
i and

bid tree Ti, the computational MRPAR rule (C-MRPAR) for the case of δ = 0 can now be
defined as:

(1) vi(λ
L
i ) − pπ(λL

i ) ≥ ṽi(λ
U
i ) − pπ(λU

i ) ,and

(2) λL
i = λα

i , or vi(λ
L
i ) − pπ(λL

i ) > ṽi(λ
α
i ) − pπ(λα

i )

We now establish that C-MRPAR is equivalent to MRPAR, as defined by (19)–(21).

Lemma 4 Given trades λi and λ′i, prices π, and tree Ti, we have θπ
i (λi, λ

′
i, v

′
i) ≥ 0, ∀v′i ∈ Ti

if and only if vi(λi)− pπ(λi) ≥ ṽi(λ
′
i)− pπ(λ′i), where ṽi is defined with respect to trade λi.

Proof: Direction (⇒) is immediate since ṽi ∈ Ti. Consider direction (⇐) and suppose, for
contradiction, that vi(λi)− pπ(λi) ≥ ṽi(λ

′
i)− pπ(λ′i) but there exists some v′i ∈ Ti such that

v′i(λi) − pπ(λi) < v′i(λ
′
i) − pπ(λ′i). Subtract

∑

β∈λi∩λ′
i

[v′i(β) − vi(β)] from both sides, where
β ∈ λi indicates that node β is satisfied by trade λi, to get

∑

β∈λi\λ′
i

v′i(β) +
∑

β∈λi∩λ′
i

v′i(β) −
∑

β∈λi∩λ′
i

v′i(β) +
∑

β∈λi∩λ′
i

vi(β) − pπ(λi) <

∑

β∈λ′
i
\λi

v′i(β) +
∑

β∈λi∩λ′
i

v′i(β) −
∑

β∈λi∩λ′
i

v′i(β) +
∑

β∈λi∩λ′
i

vi(β) − pπ(λ′i) (31)

⇒
∑

β∈λi\λ′
i

vi(β) +
∑

β∈λi∩λ′
i

vi(β) − pπ(λi) <
∑

β∈λ′
i
\λi

vi(β) +
∑

β∈λi∩λ′
i

vi(β) − pπ(λ′i) (32)

⇒ vi(λi) − pπ(λi) < ṽi(λ
′
i) − pπ(λ′i), (33)

which is a contradiction. �

Lemma 5 Given trade λi, prices π, and tree Ti then θπ
i (λi, λ

′
i, v

′
i) ≥ 0, ∀v′i ∈ Ti, ∀λ′i ∈

Fi(x
0), if and only if vi(λi) − pπ(λi) ≥ ṽi(λ

U
i ) − pπ(λU

i ), where ṽi is defined with respect to
trade λi and λU

i is the witness trade.

Proof: Direction (⇒) is immediate since ṽi ∈ Ti and λU
i ∈ Fi(x

0). Consider direction
(⇐) and suppose, for contradiction, that vi(λi)− p

π(λi) ≥ ṽi(λ
U
i )− pπ(λU

i ) but there exists
some λ′i ∈ Fi(x

0) and v′i ∈ Ti such that θπ
i (λi, λ

′
i, v

′
i) < 0. By Lemma 4, this means

vi(λi) − pπ(λi) < ṽi(λ
′
i) − pπ(λ′i). But, we have a contradiction because

vi(λi) − pπ(λi) ≥ ṽi(λ
U
i ) − pπ(λU

i ) (34)

= max
λ′′

i
∈Fi(x0)

ṽi(λ
′′
i ) − pπ(λ′′i ) ≥ ṽi(λ

′
i) − pπ(λ′i) (35)

�
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Theorem 7 C-MRPAR is equivalent to δ-MRPAR for δ = 0.

Proof: Comparing (17) and (18) with C-MRPAR, and given Lemmas 4 and 5, all that is
left to show is that it is sufficient to check λL

i , as the only candidate to pass MRPAR. That
is, we need to show that if there is some λ̆i ∈ Fi(x

0) that satisfies MRPAR then λL
i satisfies

MRPAR. We argue as follows:

1. Trade λ̆i must solve maxλi∈Fi(x0)[vi(λi) − pπ(λi)]. Otherwise, there is some λ′i with

vi(λ
′
i) − pπ(λ′i) > vi(λ̆i) − pπ(λ̆i). A contradiction with (17).

2. Trade λ̆i must also break ties in favor of maximizing vi(λi)− vi(λi). Otherwise, there
is some λ′i with the same profit as λ̆i at vi, with vi(λ

′
i)− vi(λ

′
i) > vi(λ̆i)− vi(λ̆i). This

implies vi(λ
′
i) − vi(λ̆i) > vi(λ

′
i) − vi(λ̆i), and θπ

i (λ′i, λ̆i, vi) > θπ
i (λ′i, λ̆i, vi). But, since

λ′i has the same profit as λ̆i at vi we have θπ
i (λ′i, λ̆i, vi) = 0 and so θπ

i (λ′i, λ̆i, vi) > 0.
This is a contradiction with (17).

3. Proceed now by case analysis. Either λ̆i = λα
i , in which case we are done because

this will be explicitly selected as candidate passing trade λL
i . For the other case, let

ΛL
i denote all feasible solutions to (29) and consider the difficult case when |ΛL

i | > 1.
We argue that if λ̆i ∈ ΛL

i satisfies MRPAR, then so does any other trade λ′i ∈ ΛL
i ,

with λ′i 6= λ̆i. By MRPAR, we have θπ
i (λ̆i, λ

′
i, v

′
i) ≥ 0, ∀v′i ∈ Ti. In particular,

ṽi(λ̆i)−p
π(λ̆i) ≥ ṽi(λ

′
i)−p

π(λ′i), where ṽi is defined with respect to λ̆i, and equivalently,

vi(λ̆i) − pπ(λ̆i) ≥ ṽi(λ
′
i) − pπ(λ′i). (36)

On the other hand,

vi(λ̆i) − pπ(λ̆i) = vi(λ
′
i) − pπ(λ′i), (37)

since both are in ΛL
i . Taking (36) together with (37), we must have that λ′i satisfies

no uncertain value nodes in Ti not also satisfied in λ̆i. Moreover, since vi(λ̆i) −
vi(λ̆i) = vi(λ

′
i) − vi(λ

′
i), both trades must satisfy exactly the same uncertain value

nodes. Finally, by (37) the profit from all fixed value nodes in Ti must be the same
in both trades. We conclude that the profit is the same for all v′i ∈ Ti for λ̆i and λ′i
at the current prices and MRPAR is satisfied by either trade.

�

To understand the importance of the tie-breaking rule (i) in selecting the candidate
passing trade, λL

i , in C-MRPAR, consider the following example for MRPAR with δ = 0:

Example 10 A bidder has XOR(+A,+B) and a value of 5 on the leaf +A and a value range
of [5,10] on leaf +B. Suppose prices are currently 3 for each of A and B and λα

i = +B.
The MRPAR rule is satisfied because the market knows that however the remaining value
uncertainty on +B is resolved the bidder will always (weakly) prefer +B to +A and +B is
λα

i . Notice that both +A and +B have the same pessimistic utility, but only +B can satisfy
MRPAR. But +B has maximal value uncertainty, and therefore this is selected over +A by
C-MRPAR.
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To understand the importance of selecting, and evaluating, λU
i with respect to ṽi rather

than vi, consider the following example (again for δ = 0). It illustrates the role of “shared
uncertainty” in the tree, which occurs when multiple trades share a node with uncertain
value and the value, although uncertain, will be resolved in the same way for both trades.

Example 11 A bidder has XOR(+A,+B) and value bounds [5, 10] on the root node and a
value of 1 on leaf +A. Suppose prices are currently 3 for each of A and B and λα

i = +B.
The MRPAR rule is satisfied because the bidder strictly prefers +A to +B, whichever way
the uncertain value on the root node is ultimately resolved. C-MRPAR selects λL

i as “buy
A”, with payoff vi(λ

L
i )−pπ(λL

i ) = 5+1−3 = 3. At valuation vi, the witness trade “buy B”
would be selected and have payoff 10 − 3 = 7 and seem to violate MRPAR. But, whichever
way the uncertain value at the root is resolved it will affect +A and +B in the same way.
This is addressed by setting ṽi(β) = vi(β) = 5 on the root node, the same value adopted
in determining the payoff from λL

i . Evaluated at ṽi, the witness is “buy A” and (1) of
C-MRPAR is trivially satisfied while (2) is satisfied since 3 > 5 − 3 = 2.

For δ-MRPAR with δ > 0, we adopt a slight variation, with a δ-C-MRPAR procedure
defined as:

(1) Check θπ
i (λα

i , λ
′
i, v

′
i) ≥ −δ for all v′i ∈ Ti, all λ′i ∈ Fi(x

0) directly, by application of
Lemma 5 with valuation ṽi defined with respect to trade λα

i , and test

vi(λ
α
i ) − pπ(λα

i ) ≥ ṽi(λ
U
i ) − pπ(λU

i ) − δ (38)

(2) If this is not satisfied then fall back on C-MRPAR to verify (20) and (21), with
candidate passing trade λL

i modified from (29) to drop tie-breaking in favor of λα
i and

with the second step of C-MRPAR modified to require vi(λ
L
i ) − pπ(λL

i ) > ṽi(λ
α
i ) −

pπ(λα
i ) + δ, again with ṽi defined with respect to λL

i .

The argument adopted in the proof of Theorem 7 remains valid in establishing that it
is sufficient to consider λL

i , as defined in δ-C-MRPAR, in the case that λα
i does not pass

the activity rule.

Appendix B. Computation for DIAR

The ǫ-DIAR rule can be verified by solving two MIPs. The first optimization problem
identifies the trade with maximal DIAR error for which the current bounds refinement has
improved this error by at least ǫ:

∆P
i = max

λi∈Fi(x0)
[ṽ0

i (λi) − pπ(λi) − (v0
i (λ

α
i ) − pπ(λα

i ))] (39)

s.t. (ṽ0
i (λi) − pπ(λi) − (v0

i (λ
α
i ) − pπ(λα

i )))

− (ṽ1
i (λi) − pπ(λi) − (v1

i (λ
α
i ) − pπ(λα

i ))) ≥ ǫ (40)

= −C + max
λi∈Fi(x0)

ṽ0
i (λi) − pπ(λi) (41)

s.t. ṽ0
i (λi) − v0

i (λ
α
i ) − ṽ1

i (λi) + v1
i (λ

α
i ) ≥ ǫ, (42)
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where ṽ0
i and ṽ1

i are defined with respect to λα
i , v0 and v1 represent valuations defined

before and after the bidder’s refinement respectively, and C = v0
i (λ

α
i ) − pπ(λα

i ). Note that
the problem could be infeasible, in which case we define ∆P

i := −∞.

The second optimization identifies the trade with maximal DIAR error for which v1 still
allows for the possibility of valuation bounds that provide an ǫ error reduction over v0:

∆F
i = max

λi∈Fi(x0)
[ṽ0

i (λi) − pπ(λi) − (v0
i (λ

α
i ) − pπ(λα

i ))] (43)

s.t. (ṽ0
i (λi) − pπ(λi) − (v0

i (λ
α
i ) − pπ(λα

i )))

− (v1
i (λi) − pπ(λi) − (v̆1

i (λ
α
i ) − pπ(λα

i ))) ≥ ǫ (44)

= −C + max
λi∈Fi(x0)

ṽ0
i (λi) − pπ(λi) (45)

s.t. ṽ0
i (λi) − v0

i (λ
α
i ) − v1

i (λi) + v̆1
i (λ

α
i ) ≥ ǫ, (46)

where ṽi is defined with respect to λα
i , and v̆i is similarly defined with respect to λi. The

second term in (44) recognizes that it remains possible to decrease the value on λi to the
new lower-bound v1

i (λi), while increasing the value on λα
i to the new upper-bound v1

i (λ
α
i )

except on those nodes that are shared with λi, giving v̆1
i (λ

α
i ). We see that (46) is equivalent

to:
∑

β∈λi\λα

i

[v0
i (β) − v1

i (β)] +
∑

β∈λα

i
\λi

[v1
i (β) − v0

i (β)] ≥ ǫ,

which calculates the amount of refinement that is still possible in service of reducing the
DIAR error. Note the problem could be infeasible, in which case we define ∆F

i := −∞. We
ultimately compare the two solutions, and the bidder passes DIAR if and only if ∆P

i ≥ ∆F
i .

Appendix C. The Automated Bidding Agents and Bidder Feedback

The bidding agents that are used for the simulation experiments are designed to minimize
the amount of information revealed in order to pass the activity rules and while remaining
straightforward so that the true valuation is consistent with lower and upper valuations. In
summarizing the behavior of the bidding agents, there are three things to explain: (a) the
method that we adopt in place of the last-and-final round; (b) the feedback that is provided
by ICE to bidders in meeting MRPAR and DIAR; and (c) the logic that is followed by the
bidding agents. Rather than define a method for bidding agents to adjust their bounds in
a last-and-final round, we keep ICE open in simulation past the point in which it would
ordinarily go to last-and-final. Past this point, the bidding agents continue to refine their
bounds and ICE terminates when the payments are within some desired accuracy. Each
bidding agent in this phase reduces its uncertainty by some multiplicative factor on all
nodes that are active in the current provisional trade or in any of the provisional trades for
the economies with bidder i removed. This is adopted for simulation purposes only.

Our bidding agents operate in a loop, heuristically modifying their valuation bounds in
trying to meet MRPAR and DIAR and querying the proxy for advice. The proxy provides
guidance to help the bidding agent further refine its valuation so it can meet the activity
rule. For both MRPAR and DIAR, the optimization problems that are solved in checking
whether a bidder has satisfied the activity rule also provide information that can guide the
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bidder. First consider MRPAR and recall that λL
i is the candidate passing trade and λU

i is
the witness trade. The following lemma is easy, and stated without proof:

Lemma 6 When MRPAR is not satisfied for the current valuation bounds, a bidder must
increase a lower bound on at least one node in {λL

i \ λU
i }, or decrease an upper bound on

at least one node in {λU
i \ λL

i }, in order to meet the activity rule.

Once a simple bidder makes some changes on some subset of these nodes, the bidder
can inquire if he has passed the activity rule. The proxy can then respond “yes” or can
revise the set of nodes on which the bidding agent should refine its valuation bounds. A
similar functionality is provided for DIAR. This time the trade that solves the second MIP
(with DIAR error ∆F

i ) is provided as feedback, together with information about how much
the bidder must either further reduce the error, or further constrain the possibilities on this
trade, to satisfy DIAR. The bidding agent can determine from this information which nodes
it must modify, and by how much in total, and is free to decide how much to modify each
node to satisfy the rule. The key to our agent design is the following lemma:

Lemma 7 The trade with which a straightforward bidder passes MRPAR (for δ = 0) must
be a trade that is weakly preferred by the bidder to all other trades for his true valuation.

Proof: By contradiction. Suppose true valuation vi ∈ Ti and trade λ̆i meets MRPAR but
is not a weakly preferred trade at the true valuation and prices π. Then, there exists a
trade λ∗i ∈ Fi(x

0) such that θπ
i (λ∗i , λ̆i, vi) > 0. But, this is a contradiction with MRPAR

since θπ
i (λ̆i, λ

′
i, v

′
i) ≥ 0 for all v′i ∈ Ti and all λ′i ∈ Fi(x

0), including v′i = vi and λ′i = λ∗i . �

We use this observation to define a procedure UpdateMRPAR by which a bidder
can intelligently refine its valuation bounds to meet MRPAR. Let λ̆i be the trade with
which we hope to pass MRPAR, and define ui(λi, π) = vi(λi) − pπ(λi), ui(λi, π) = vi(λi) −
pπ(λi), ũi(λi, π) = ṽi(λi) − pπ(λi), where ṽi is defined with respect to candidate passing
trade λ̆i. The high-level approach is as follows:

function UpdateMRPAR

λ̆i ∈ arg maxλi∈Fi(x0) ui(λi, π)

if ui(λ̆i, π) < 0 then
reduce slack on λ̆i by ui(λ̆i, π)

end if
λU

i ∈ arg maxλi∈Fi(x0) ũi(λi, π)

while ui(λ̆i, π) < ũi(λ
U
i , π) do

Heuristically reduce upper bounds on λU
i \ λ̆i by ũi(λ

U
i , π) − ui(λ̆i, π)

If remaining slack heuristically reduce lower bounds on λ̆i \ λ
U
i

λU
i ∈ arg maxλi∈Fi(x0) ũi(λi, π)

end while
if λ̆i 6= λα

i then
while ui(λ̆i, π) ≤ ũi(λ

α
i , π) do

Heuristically reduce upper bounds on λα
i \ λ̆i by ũi(λ

α
i , π) − ui(λ̆i, π)

If remaining slack heuristically reduce lower bounds on λ̆i \ λ
α
i
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end while
end if
return λ̆i

end function

The bidding agent makes use of a couple of optimization modalities that are exposed
by the proxy to the bidder. The procedure first chooses the most preferred trade at truth
as the trade to pass MRPAR with λ̆i; the bidding agent requests that the proxy finds this
trade by solving a MIP. If the trade has negative profit, then the bidding agent attempts to
demonstrate positive profit for this trade. Next, the bidding agent enters a loop, wherein it
repeatedly requests the proxy to run a MIP that calculates a witness trade λU

i with respect
to λ̆i. As long as this witness has more profit than that of what should be the most preferred
trade, the bidding agent adjust bounds so as to reverse this mis-ordering. Lastly, because
the bidding agent must pass MRPAR, not merely RPAR, the bidding agent attempts to
show a strict preference for λ̆i over λα

i when they are not identical.

In meeting DIAR, the bidding agent responds to the ∆F ≥ 0 and ǫ ≥ 0 parameter
provided by the proxy as follows. Let λF be the trade chosen in the maximization that
calculates ∆F . The high-level approach is as follows:

function updateDIAR

while Proxy says we still have not passed DIAR do
if λF or λα can be modified to reduce DIAR error by ǫ over last round then

Heuristically reduce the upper-bound slack in λF \ λα

Heuristically reduce the lower-bound slack in λα \ λF

else
Heuristically reduce the upper-bound slack in λα \ λF

Heuristically reduce the lower-bound slack in λF \ λα

end if
end while

end function

The bidding agent attempts to make the current failing trade pass DIAR if possible by
reducing the error with respect to that trade. Otherwise, it reduces bounds to prove that
DIAR could not be made to pass on that trade and loops on to the next trade.
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