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1. Introduction
The spectrum auctions conducted by governments around the world over the last twenty years are
a true success story for market design in general and auction design in particular. Sophisticated
mechanisms have been used to sell resources worth billions of dollars, forming the basis for today’s
wireless industry (Cramton, 2013). Recent versions of these markets have used a combinatorial auction
(CA) mechanism. The advantage of CAs (e.g., in contrast to running multiple single-item auctions) is
that buyers can express complex valuation functions over bundles of goods. In this work, we focus
on the payments that will be charged after the auction closes and the winners have been determined.
Furthermore, we treat the CA as a one-shot game.1 Thus, we study direct payment rules which take
as input the bidders’ value reports and compute payments for each of the winning bidders.

At first sight, the famous VCG mechanism may seem like an appealing payment rule for a CA
because it is strategyproof. Unfortunately, VCG is generally viewed as unsuitable in a CA domain
where items can be complements because it often produces outcomes outside of the core. Informally,
this means that payments may be so low that a coalition of bidders may be willing to pay more in total
than what the seller receives from the current winners. From a revenue perspective, VCG is also often
deemed undesirable, because in a CA domain it can produce very low or even zero revenue, despite
high competition for the goods in the auction. For this reason, recent auction designs have employed
core-selecting payment rules (Day and Raghavan, 2007; Day and Milgrom, 2008). The payment rule
that is most commonly used in practice, the Quadratic rule proposed by Day and Cramton (2012),
selects prices that are (1) enforced to be in the core (with respect to the submitted bids), and within
this (2) minimal in their total revenue to the seller, and then within this (3) minimal in the Euclidean
distance to VCG prices.

Of course, because the Quadratic rule is a core-selecting payment rule, it is not strategyproof, and
thus incentives for strategic bidding remain. Only recently has the research community started to
graple with the incentive properties of the Quadratic rule. For the so-called Local-Local-Global setting,
with 2 items and 3 bidders, Goeree and Lien (2014) as well as Ausubel and Baranov (2013) have
independently derived the Bayes-Nash equilibrium of the Quadratic rule. It turns out that, even though
the rule minimizes the Euclidean distance to VCG, large incentives to deviate remain in equilibrium.
This motivates the search for better payment rules in this paper.

1.1. Bidder Heterogeneity in Real-world Spectrum Auctions

In this paper, we are particularly concerned with studying the “differential” effects of a payment rule
on the bidders in an auction, assuming an anonymous auction mechanism (i.e., a mechanism that
ignores the bidder identities). If the bidders in the auction were homogeneous (in terms of size, budgets,
and values, etc.), then each bidder would, in expectation, have the same incentives, and also receive
the same expected payoff. However, in real-word auctions, some bidders may be small (e.g., regional)
bidders while other bidders may be large (e.g., national) bidders. Naturally, this heterogeneity in size
translates into a heterogeneity of budgets, which translates into a heterogeneity of values for bundles
of goods in the auction.

For example, an empirical analysis of the bidding data from the British 4G auction in 2013 has
identified four heterogeneous classes of bidders (Kroemer, Bichler and Goetzendorf, 2015). The two
incumbents, Vodafone and Telefonica won the most valuable spectrum (800 MHz) that can be used
to build out a nation-wide network with maximum reach, and they both paid over £550 Million for
their allocations. In contrast, the much smaller bidder Niche Spectrum Ventures only won 2.6 GHz

1We note that the techniques considered are also applicable in the mult-stage designs commonly used in practice.
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Values VCG Quadratic Rule Fractional Rule
Bidders A B AB Prices Payoff Prices Payoff % of VCG Payoff Prices Payoff % of VCG Payoff

1 50� 0 50 10 40 30 20 50% 21.5 28.5 �71%
2 0 150� 150 50 100 70 80 80% 78.5 71.5 �71%
3 10 0 100 - - - - - - - -

Table 1: Motivating Example: Comparing VCG, the Quadratic Rule, and the Fractional Rule. The �

sign indicates the bids selected under the efficient allocation.

spectrum, whose reach is unsuited to build out a nation-wide network, and paid roughly £200 Million
for its allocation. Other, even smaller bidders, submitted bids (but did not win) suggesting a valuation
of roughly £10 Million for the least valuable spectrum band.2

Another example is the FCC Auction-73 from 2008, which generated approximately $19 Billion in
revenue. Out of the 214 qualified bidders, 101 were winners.3 Their winning bid amounts ranged
between $20,000 for one of the smallest bidders to more than $9 Billion (Verizon Wireless).4 Finally,
the most recent FCC Auction-97, which closed in January 2015 and generated over $40 Billion in
revenue, had 31 winning bidders. Their total winning bid amounts ranged between $155,000 for one of
the smallest bidders, to $18 Billion for AT&T and $10 Billion for Verizon.5

Clearly, we observe a large bidder heterogeneity in spectrum auctions conducted in practice. This
raises the following questions: (1) Do some auction payment rules lead to an advantage for large
bidders, while other rules lead to an advantage for small bidders? (2) What is the impact on efficiency
and revenue when small or large bidders are being favored? (3) Given all of these considerations,
what choice should a government make when selecting a particular payment rule for a government-run
combinatorial auction? This leads us to study new aspects in the design of payment rules, in particular
the dimensions of “aggregate incentives” as well as “fairness.”

1.2. Fairness: A Motivating Example

So far, we have focused our discussion on comparing the incentive properties of the Quadratic rule
with other rules (e.g. the Small rule). In this section, we now provide a motivating example, to build
some intuition for the “unfairness” of the Quadratic rule in terms of the payoff distribution it produces.
Note that for the following example only (for illustrative purposes), we assume that the bidders submit
their true values, and do not play their BNE strategies. All analyses in the rest of the paper will be in
BNE.

Consider Table 1, which contains one row for each of the bidders 1, 2 and 3.6 The efficient allocation
gives item A to bidder 1 and item B to bidder 2. VCG prices are pV CG1 � 10 and pV CG2 � 50, with
payoffs of πV CG1 � 40 and πV CG2 � 100. We immediately see that VCG is outside the core (Day and
Raghavan, 2007): bidders 1 and 2 are only paying 60 in total for the two items A and B, which is
less than the 100 offered by bidder 3, and thus a violation of the core. Clearly, this is unfair towards
bidder 3 who is offering 100 for items that are sold for only 60.

2http://stakeholders.ofcom.org.uk/binaries/spectrum/spectrum-awards/awards-in-progress/notices/

4g-final-results.pdf
3http://wireless.fcc.gov/auctions/default.htm?job=auction_summary&id=73
4https://apps.fcc.gov/edocs_public/attachmatch/DA-08-595A3.pdf
5https://apps.fcc.gov/edocs_public/attachmatch/DA-15-131A3.pdf
6To simplify the language, we will use “he” when referring to a bidder, and “she” when referring to the seller.
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The Quadratic Rule, presented next in Table 1, corrects this unfairness present in VCG by choosing
a price vector from the core, i.e. it picks a price vector with revenue at least 100, which is bidder 3’s
offer. Among such vectors the Quadratic Rule selects the one which is minimal in revenue and closest
by the Euclidean distance to the VCG prices, i.e., in this example pQ1 � 30 and pQ2 � 70. Because the

payment of both bidder 1 and 2 increased over that in VCG, their payoffs decreased to πQ1 � 20 and

πQ2 � 80. Note, however, that this payoff decrease has impacted the two bidders unequally. Bidder 1 is
left with only 50% of his VCG payoff, while bidder 2 retains 80% of his VCG payoff. This effect is
expected under the Quadratic rule. Given a single core constraint, the rule will increase the prices
uniformly, starting from VCG, until the constraint is met. Naturally, this will decrease the relative
payoffs, i.e. the payoffs as a fraction of VCG, of bidders with smaller VCG payoffs by more than those
with larger payoffs. This leads to the observed unfairness of the Quadratic rule in terms of the relative
payoffs of the winners, here between the small bidder (i.e., bidder 1) and the large bidder (i.e., bidder
2).

As we have seen, the Quadratic rule corrects the unfairness of VCG, by selecting payments in the
core (an idea put forward by (Day and Raghavan, 2007)), but still leads to unequally distributed
relative payoffs among the winners. In this paper, we offer a new fairness notion that goes beyond
the core to account for this. An intuition for this is provided by the Fractional rule in Table 1, with
pMF
1 � 21.5 and pMF

2 � 78.5. Note that these prices still produce a revenue of 100 and are in the core.
Yet, both bidders get the same fraction of their VCG payoff (roughly 71%). Thus, this rule has both
the fairness of the core and the fairness of uniform relative payoffs at the same time. All else equal,
we argue that it is therefore fairer than the Quadratic rule. But of course, our goal will be to find a
payment rule that achieves this, not given truthful value reports by the bidders, but in BNE.

1.3. Measuring Fairness in Payoff Space via the Gini Coefficient

As we have seen in the motivating example presented in Table 1, the three different payment rules
(VCG, Quadratic, Fractional) produce different payoff distributions. But how do we now formally
compare the payment rules regarding how fair they are? Obviously, we need a measure for the degree
of fairness of a payment rule.

In this paper, we offer two such measures. We first consider a very basic, straight-forward measure
of fairness: the standard Gini coefficient, as it is commonly used in Economics to compare the degree
of (in-)equality of income within a country, for example. Concretely, we compute the Gini coefficient
over the expected payoffs of all bidders. Computing this Gini coefficient can be done analytically (e.g.,
for small settings like the LLG domain) as well as numerically (for larger settings). The Gini coefficient
provides us with a number between 0 and 100 for each payment rule, where a smaller number indicates
a “fairer” payment rule. Thus, using this approach, we can compare the fairness of all payment rules
that we consider in this paper.

One problem with applying the standard Gini in an auction domain with heterogeneous bidders is
that we actually expect larger bidders (with larger values, who probably contribute more to social
welfare) to obtain larger payoffs than smaller bidders. Such an unequal distribution of payoffs is
absolutely fine and to be expected, in an auction domain with small and large bidders (in contrast to
the income distribution within a country, which some may argue should not be too unequal). Thus, the
standard gini may not be the only goal we should consider when designing a core-selecting payment
rule.

For this reason, we have also constructed a second fairness measure that is geared specifically towards
measuring the fairness properties of payment rules in auctions with heterogeneous bidder populations:
a VCG-based Gini coefficient. We argue that it is fine for differently-sized bidders to expect different
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payoffs, and that those should ideally be equal to their contribution to social welfare: a “maximally
fair” payment rule would provide every bidder with payoffs equal to his social welfare. Of course, VCG
is the unique mechanism that achieves this. More precisely, VCG is the unique mechanism with the
following two properties:

1. Every bidder’s payoff is his contribution to the social welfare.

2. Every bidder’s payment is the externality he imposes on all other bidders.

Of course, when payments are required to be in the core, we are often not able to charge VCG
payments anymore and thus bidders will not receive their VCG payoffs. In particular, because core
revenues are generally higher than VCG revenues, the bidders’ payoffs under a core-selecting mechanism
will generally be lower than under VCG. However, a core-selecting payment rule can still provide each
bidder with a certain fraction of his VCG payoff, with bidders obtaining a larger fraction of their
payoff consequently receiving better treatment. 7

Using these fractions of VCG payoff, we adopt as our main fairness measure in this paper a perfectly
balanced distribution of VCG payoff fractions across all bidders in the auction, as measured by a
Gini coefficient (we detail our precise method for calculating a Gini coefficient for payment rules in
Section 4.3). Note that the Fractional rule in Table 1 had indeed maximal fairness according to this
fairness measure (given truthful value reports), while the Quadratic rule did not. Of course, the VCG
mechanism always has perfect fairness, but in general produces payments that are outside the core.

In Section 7, where we evaluate our payment rules in Bayes-Nash equilibrium, we always provide
the standard Gini as well as the VCG-based Gini. However, we will see that, surprisingly, the two
measures lead to the same ranking of our rules in terms of fairness. In particular, across all domains
that we study in this paper, the Small and Fractional rules (with various weightings and reference
points) are much fairer than the Quadratic rule, according to both measures of fairness.

1.4. Comparing Payment Rules in Realistically-sized Combinatorial Auction Domains

As mentioned before, in this paper we develop a new framework which enables us to systematically
evaluate 86 distinct payment rules for combinatorial auctions. This, of course, immediately brings up
the question of what the right “evaluation method” should be. Because no strategyproof core-selecting
payment rules exist, we must evaluate our payment rules in equilibrium. Much of the early work on
core-selecting auctions has used a full information Nash equilibrium analysis. However, we argue that
the full information assumption is simply too unrealistic for practical settings, in particular for large
combinatorial auctions with many heterogeneous bidders. For this reason we adopt a Bayes-Nash
equilibrium (BNE) analysis to evaluate and compare our payment rules.

We are interested in understanding the performance of our rules in realistically-sized auction domains.
Unfortunately, analytically deriving the BNE quickly becomes intractable when going beyond the LLG
setting.

For this reason, we have developed and implemented a computational approach to find an approximate
Bayes-Nash equilibrium for our payment rules. More concretely, we have developed an algorithm,
based on fictitious play, which takes as input a payment rule and a domain generator (i.e., a simulator
for a combinatorial auction domain), and then searches for an ε-BNE. Using this approach, we can find
an approximate BNE for one payment rule for a domain with 25 items and 10 multi-minded bidders
on a high-performance machine within approximately 12 hours. Of course, we used a compute cluster
to parallelize this computation for all the payment rules and domains we have studied.

7We view a relative measure between provided payoff and VCG payoff as appropriate because it accounts for the large
heterogeneity in the underlying payoffs available and corresponding market power, which an absolute scale would not.
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1.5. Overview of Contributions

Our ultimate contribution in this paper is a new payment rule, the Marginal-Economy-Fractional rule,
which outperforms the Quadratical rule, and strikes the best balance along all of our performance
criteria. To get there, we offer:

1. A new framework for the design of core-selecting payment rules, and two fairness measures based
on the Gini coefficient for evaluating payment rules.

2. The design of 75 new rules that have not been studied before, built around various (i) distance
metrics, (ii) reference points, and (iii) bidder weightings.

3. A set of novel Marginal Economy weights that perform almost as well as reserve price weights
but without requiring a priori knowledge on the part of the seller.

4. An algorithm for computationally finding approximate BNEs in realistically-sized core-selecting
CAs.

5. Extensive experimental results using our computational BNE approach, comparing 85 different
rules in terms of efficiency, aggregate incentives, fairness, and revenue.

We find that, in BNE, the Quadratic rule is outperformed by many of our new rules in terms of
aggregate incentives and fairness, while efficiency is generally high for all rules. Additionally, we show
that the minimum-revenue-core (MRC) constraint, typically included in today’s core-selecting CAs,
only has a minor effect in equilibrium. After reviewing all results, we find that one rule is the best
all-rounder: the Marginal-Economy-Fractional rule with VCG as the reference point. We find that this
rule generally performs as well as or even slightly better than the Quadratic rule in terms of efficiency
and revenue, but significantly improves upon it in terms of aggregate incentives and fairness.

2. Related Work

Over the last 15 years, there has been a large literature on the design of bidding languages, clearing
algorithms, and activity rules for use in combinatorial auctions (CAs) (Cramton, Shoham and Steinberg,
2006). But finding optimal payment rules, the focus of our paper, has turned out to be somewhat
elusive. Early proposals for CAs typically considered VCG prices (Varian and MacKie-Mason, 1994).
However, as has been pointed out in the literature (Ausubel and Milgrom, 2006), there are numerous
issues with VCG, most notably that it may result in arbitrarily low revenue to the seller. This
observation has led to considerable interest in alternative payment rules in recent years, and ultimately
the proposal of core-selecting combinatorial auctions (Ausubel and Milgrom, 2002; Milgrom, 2007; Day
and Milgrom, 2008).

Unfortunately, there exists no strategyproof core-selecting payment rule, and thus, designing an
“optimal” core-selecting rule is a challenging market design problem. Othman and Sandholm (2010)
avoid this issue by assuming participants bid so as to minimize envy instead of maximize profit.
Instead, we follow the line of research that has made the more common assumption that bidders seek to
maximize profit. In this direction, Parkes, Kalagnanam and Eso (2001) were the first to introduce the
idea of finding prices that minimize some distance metric to VCG, first for combinatorial exchanges,
and later for CAs (Parkes, 2002). Since then, a small number of CA payment rules have been proposed
that minimize some distance metric to VCG (Day and Raghavan, 2007), or to other reference points
(Erdil and Klemperer, 2010). Ultimately, Day and Cramton (2012) proposed the Quadratic rule, and
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this is also the rule most often used in practice today. We will describe all of the payment rules and
explain the origins of the underlying ideas in detail in Section 5.6.

Even though the Quadratic rule has now been used for about 5 years by multiple governments to
allocate resources worth Billions of dollars, we still have an incomplete understanding of this rule. For
example, the only Bayes-Nash equilibrium results we have for the Quadratic rule are for highly stylized
settings with two items and three bidders (Goeree and Lien, 2014; Ausubel and Baranov, 2013). To
study core-selecting rules in larger settings, where it is infeasible to obtain analytical BNEs, we compute
approximate BNEs, following earlier work by Lubin and Parkes (2009) who have evaluated pricing rules
for combinatorial exchanges via computational BNE approximations. Our computational techniques
build on this approach, as well as earlier work from Reeves and Wellman (2004) and Vorobeychik and
Wellman (2008).

3. Preliminaries

3.1. Formal Model

In a combinatorial auction (CA), there is a set M of m distinct, indivisible items, and a set N of n
bidders. Each bidder i has a valuation function vi which, for every bundle of items S �M , defines
bidder i’s value vipSq P R, i.e., the maximum amount that bidder i would be willing to pay for S. To
simplify notation, we assume that the seller has zero value for all items, although our setup extends to
the case where the seller has non-zero value (see Day and Cramton (2012) for how to handle reserve
prices).

We let p � pp1, ..., pnq denote the payment vector, with pi denoting bidder i’s payment. We assume
that bidders have quasi-linear utility functions, i.e., uipS, piq � vipSq � pi. Bidders make reports about
their values to the mechanism, denoted v̂ipSq, which may be non-truthful (i.e., v̂i � viq. Following
existing work in this area (Goeree and Lien, 2014; Ausubel and Baranov, 2013), we assume that bidders
only bid on items for which they have a positive value. We define an allocation X � pX1, . . . , Xnq �Mn

as a vector of bundles, with Xi �M being the bundle that i gets allocated. A mechanism’s allocation
rule maps the bidders’ reports to an allocation. We only consider allocation rules that maximize
reported social welfare, yielding an allocation X� � arg maxX

°
iPN v̂ipXiq, subject to X being feasible,

i.e.,
�
X�
i � H. In addition to the allocation rule, a mechanism also specifies a payment rule, defining

prices. Together, these define the outcome O � xX, py. An outcome O is called individually rational
(IR) if, @i: uipXi, piq ¥ 0.

3.2. VCG, Payoff, and Discount

The famed VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) generalizes the well-known
second-price auction:

Definition 1 (VCG). The VCG mechanism chooses the allocation X� that maximizes the bidders’
reported social welfare, and then charges each bidder i its marginal cost to the economy, i.e., the
externality he imposes on all other bidders. Formally:

pV CGi �
¸
j�i

v̂jpX�iq �
¸
j�i

v̂jpX�q, (1)

where X�i is the welfare-maximizing allocation when all bidders except i are present.
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Figure 1: A graphical depiction of the core, as well as the price vectors corresponding to VCG,
Quadratic, ∆-Large, ∆-Small, ∆-Fractional, and Pay-as-Bid.

VCG is social-welfare maximizing and strategyproof, i.e., it is a dominant strategy for every bidder
to report his true value vi. Every payment rule other than VCG we consider in this paper will not be
strategyproof, and thus we will in general have to differentiate between a bidder’s true value vi and his
reported value v̂i.

Definition 2 (Payoff). Given a payment pi charged by a particular payment rule, a bidder’s payoff is
the bidder’s profit evaluated at his true value, i.e.,

πi � vipX�
i q � pi. (2)

Definition 3 (Discount). A bidder’s reported VCG discount (or just discount) is the difference
between its reported value and its VCG payment:

∆i � v̂pX�
i q � pV CGi . (3)

Note that payoff and discount are only the same (in equilibrium) if VCG is used as the actual
payment rule; otherwise they are different. The payoff is what a bidder actually cares about, and the
discount captures the “revealed payoff” the bidder would have gotten if VCG had instead been used in
place of the actual payment rule. We will later use the discount for the design of our payment rules to
weight the bidders’s bids.

3.3. The Core

In CAs where some items are complements, VCG prices may lie outside the core. Informally, this
means that a coalition of bidders is willing to pay more than what the seller receives from the current
winners. To avoid such undesirable outcomes, recent designs have employed payment rules that restrict
prices to be in the core, giving rise to core-selecting payment rules (Day and Milgrom, 2008).

Definition 4 (Core Prices). We let W denote the set of winners, X� the welfare-maximizing allocation,
C � N denotes a coalition of bidders, and XC is the allocation that would be chosen by the mechanism
if only the bidders in the coalition C were be present. Then, a price vector p is in the core, if, in
addition to individual rationality, the following set of core constraints hold:¸

iPW

pi ¥
¸
iPC

vipXCq � p
¸
iPC

vipX�q �
¸
iPC

piq @C � N (4)
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Note that enforcing prices to be in the core puts lower bounds (constraints) on the payments of the
winners, where each coalition of bidders leads to one core constraint. Intuitively, the winners’ payments
must be sufficiently large, such that there exists no coalition that is willing to pay more to the seller
than the current winners’ payments. In a CA with complements, VCG prices are often outside the
core and, in the worst case, VCG may generate zero revenue despite high competition for the goods.
See Figure 1 for a graphical depiction of the core, based on the motivating example from Section 1.2.

In this example, we immediately see that VCG prices are outside the core. Additionally, we also
display the price vectors that would be chosen by the Quadratic rule (which we describe next), as well
as the Large, Small, and Fractional rules (which we describe in Sections 3.5 and 5.4). Note that the
distance between VCG and the core can vary significantly depending on the bidders’ bids (i.e., from
one auction to another). In our experiments, we found that this distance has a significant impact
on how fair different payment rules are, and, not surprisingly, how much revenue they generate (see
Section 7.4).

Remark 1 (True vs. Revealed Core). Note that the core is defined in terms of bidders’ true values.
However, given that no strategyproof core-selecting CA exists, we must expect bidders to be non-truthful.
Goeree and Lien (2014) have recently shown that the outcome of a core-selecting CA can be outside
the true core in a BNE. Thus, core-selecting CAs only guarantee to produce outcomes in the revealed
core, i.e., in the core with respect to reported values. Going forward, whenever we talk about the core,
or core-selecting rules, we always mean the revealed core, unless we state it otherwise. Note that for
the auctioneer (e.g., the government), having prices in the revealed core is typically want she wants,
because this protects the auctioneer against law-suits from losing bidders and from the appearance that
an unacceptably large amount of revenue was left on the table.

3.4. Bayes-Nash Equilibrium

For the analysis of auction payment rules we assume that the bidders know their own value function,
but do not have full information about the other bidders’ value functions. Instead, bidders only
have distributional information regarding the other bidders’ value functions. Thus, the appropriate
equilibrium concept is the Bayes-Nash Equilibrium. For the following definition, we let si denote
bidder i’s strategy, which is a mapping from his true value function vi to a possibly non-truthful report
v̂i. Given a value function and a strategy from each bidder, this determines the outcome of the auction.
Thus, we can let uips1pv1q, s2pv2q, . . . , snpvnqq denote bidder i’s utility for the outcome of the auction.
We use v�i to denote the value functions of all bidders except i, and analogously for the strategies s�i:

Definition 5 (Bayes-Nash Equilibrium). A strategy profile s� � ps�1 , . . . , s�nq is a Bayes-Nash
equilibrium (BNE) in a sealed-bid auction if, for all bidders i, and all values functions vi

Ev�i
�
uips�i pviq, s��ipv�iqq

� ¥ Ev�i
�
uipv̂i, s��ipv�iqq

�
, for all possible reports v̂i, (5)

where the expectation is taken with respect to the distribution over the other bidders’ value functions.

In words, a bidder’s BNE strategy is an optimal strategy (a mapping of true value functions to
reported value functions) given his belief regarding the other bidders’ value functions. With this
background, we turn to describing the key desiderata for payment rules in the core-selecting CA setting.

3.5. Existing Theoretical Analysis of the Quadratic Rule

To place our subsequent results in context, we here include the existing analytical results for the
Quadratic rule in the tractably-small LLG domain (Ausubel and Baranov, 2013; Goeree and Lien,
2014), which we first describe.
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3.5.1. The LLG Setting

Bayes-Nash equilibria of core-selecting payment rules are very complex to study analytically, which
is why theoretical results only exist for a very small settings. Existing theoretical results have been
derived for the Local-Local-Global (LLG) setting. In this setting, there exist two items A and B, and
three bidders. Two of the bidders are local bidders, with one of them only interested in item A, and
one of them only interested in item B. The third bidder is the global bidder who is interested in
both items A and B. In this set-up the global bidder has a weakly dominant strategy to bid truthful.
However, the local bidders have an incentive to “shade” their bids.

3.5.2. The Quadratic Rule

The Quadratic rule is the payment rule that has been used in many of the spectrum auctions in North
America and Europe over the past five years (Day and Cramton, 2012):

Definition 6 (Quadratic Rule). The unique Quadratic Rule price vector is chosen to be:

1. Within the core (defined with respect to reported values).

2. Within this, minimal in the L1 (Manhattan) norm, the so called minimal revenue core (MRC),
an idea first put forward by Day and Raghavan (2007).

3. Within this, minimal in the L2 (Euclidean) distance to the VCG payments,8 an idea first put
forward by Day and Cramton (2012).

The BNE for the specific set-up where the value of the global bidder is uniformly distributed on
[0,2] and the value of the local bidders are uniformly distributed on [0,1] and where all such values are
drawn independently from each other and are uncorrelated, has already been calculated:

Proposition 1 (Goeree and Lien (2014); Ausubel and Baranov (2013)). The Bayes-Nash equilibrium
of the Quadratic rule with uncorrelated bids is for the global bidder to bid truthful, and for the local
bidders to bid:

v̂ � maxp0, v � p3� 2
?

2qq � maxp0, v � 0.17q (6)

Thus, the Bayes-Nash equilibrium strategies of the local bidders require an additive shading of their
values in this uncorrelated LLG setting.

The case of correlated bidders has also aready been studied:

Proposition 2 (Ausubel and Baranov (2013)). The Bayes-Nash equilibrium of the Quadratic rule
with perfectly correlated local bidders is for the global bidder to bid truthful, and for the local bidders to
bid:

v̂ � 2

3
v (7)

Thus, it turns out that in this setting, the Bayes-Nash equilibrium strategies of the local bidders
require a multiplicative shading of their values. Ausubel and Baranov (2013) also derive Bayes-Nash
equilibrium strategies for LLG settings with partial correlation which will induce the local bidders to
shade both additively and multiplicatively according to a more complicated formula we omit here for
brevity.

8Note that the L1 restriction from step (2) can be binding. Thus, this rule is not the same as simply minimizing the L2

distance to VCG without first minimizing L1.
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4. Design Goals

We strive for the following four objectives when designing core-selecting payment rules, in this order:
(1) high efficiency, (2) good incentives, (3) good fairness properties, and (4) high revenue. Obviously,
trade-offs are necessary.

4.1. High Efficiency

From a social planner’s perspective (e.g., a government auctioning off wireless spectrum) it is desirable
to maximize social welfare, i.e., efficiency. Of course, the efficiency of our payment rules must be
evaluated in BNE, and thus we consider the expected efficiency in BNE. Our measure for efficiency
is the expected welfare of the mechanism divided by the expected welfare of the optimal allocation.
Formally, given an auction instance I, let SWOPT pIq denote the social welfare obtained under the
optimal allocation given bidders’ true values (which is equal to the social welfare that would be achieved
by VCG). Let SWM pIq denote the social welfare obtained by the mechanism M when all bidders play
their BNE strategies. We define the efficiency of mechanism M as:

Efficiency(M) � E�IrSWM pIqs
E�IrSWOPT pIqs (8)

where the expectation is taken over the auction instances given a particular domain generator. This is
the standard definition of efficiency used in prior work, e.g., by Goeree and Lien (2014).9 Of course,
we could simply use VCG to achieve the maximally efficient allocation. However, as discussed in the
introduction, VCG outcomes are often outside the core, and finding payments inside the core is also
one of our design goals.10 Thus, maximizing efficiency in BNE is our first non-trivial design goal.

4.2. Good Aggregate Incentives

We next desire that our payment rules produce “good incentives”. Because there is no strategyproof
core-selecting CA, and thus, all of our rules are necessarily non-strategyproof, there will remain
strategic opportunities for the participants. However, we would like these opportunities in BNE to
be as small as possible. This helps unsophisticated players who play truthfully instead of playing
optimally, because they will suffer less if their BNE strategy is closer to playing truthful, and in general
makes the game easier for participants to play. Furthermore, from an “approximate strategyproofness”
point of view, smaller opportunities to manipulate in BNE are also better: one can take the viewpoint
that an agent who can only gain very little (in BNE) may not want to manipulate at all.

To make this notion of “good aggregate incentives” concrete, we define the aggregate incentives for
bidders to strategize as the Euclidean distance between their truthful value and their bid in BNE,
normalized by their truthful value. The normalization will make the measure robust to the distribution
of value in the domain. Formally we have:

9Note that Ausubel and Baranov (2013) also study core-selecting CAs in BNE, but what they call efficiency is actually
not equivalent to our definition. Instead, their concept of efficiency corresponds to the probability of achieving the
efficient allocation, which is an important difference. They find that for the Quadratic rule, in some settings, the
probability of achieving the efficient allocation is only 85% in BNE. However, in that same setting, the social welfare
of the mechanism (in terms of the sum of bidders’ values) is still above 98%.

10Note that we put “efficiency” first, and “payments in the core” second, in our list of objectives, because if requiring
payments in the core would lead to a large drop in efficiency, we would probably prefer a payment rule that has
larger efficiency but is not core-selecting over a payment rule that is highly inefficient (in BNE) but is core-selecting.
Fortunately, as our computational BNE analyses will show, all of the core-selecting payment rules we consider achieve
near 100%-efficiency, and thus, requiring payments in the core does not lead to a significant loss in efficiency.
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Definition 7 (Aggregate Incentives).

AI � ||pv�v̂q{v||2, (9)

where the L2 measure is taken over a vector calculated from the observed and reported values.

We note that in Section 3.5, we will use a continuous version of this measure; later in Section 7,
where bidders are organized by class, we will use a discretized version.

4.3. Fairness: Gini Coefficients for Payment Rules

As we have motivated in Section 1.2, the core only provides a minimal fairness guarantee (“no-group-
envy”), but says little about the distribution of winners’ payoffs. In this section, we define two measures
for how fair the payoff distribution of a payment rule is. While any measure of statistical dispersion
might be employed, we use the Gini coefficient, which is often used for this purpose in the economics
literature. Accordingly, we define a “Standard” Gini measure over these payoffs as:

Definition 8 (Standard Gini). Given a vector of participant payoffs πR, we define the Standard Gini
as the unweighted Gini coefficient computed on these values (Jasso, 1979). Here πRi refers to agent i’s
payoff under rule R in the (approximate) BNE of rule R.

Gini coefficients are between 0 and 100: a Gini of 0 implies perfect fairness and a Gini of 100 implies
perfect unfairness over the quantity of comparison.

However, because the Gini is generally used to measure wealth inequality, some care must be used in
applying it to our more complex setting. We believe the payoff obtained under the rule to be the most
natural analogy to “wealth” in our setting, but it is certainly not the only quantity we might wish to
consider. Specifically, as we have argued in Section 1.3, this is not the only measure of fairness that we
may wish to consider. We may also reasonably wish to adopt VCG as our gold standard in terms of
fairness, even as it is one that is not achievable within the core. We might then wish to determine to
what degree our core-selecting payment rules allocate to participants the same fraction of their VCG
payoff, and use this as our fairness target:

Definition 9 (Fraction of VCG Payoff). Given bidder i’s VCG payoff πV CGi and his payoff under rule
R, i.e., πRi , we define bidder i’s fraction of VCG payoff as:

γi � πRi
πV CGi

(10)

where πV CGi refers to agent i’s VCG payoff given truthful value reports (the BNE of VCG), while
πRi refers to agent i’s payoff under rule R in the (approximate) BNE of rule R.

Accordingly, we will now quantify the degree to which a payment rule achieves this notion of fairness
by seeking a balanced distribution of VCG payoff fractions across the bidders. To begin, we use the
standard measure to capture the fairness of the winning bidders as follows:

Definition 10 (Winners’ Gini). Given a vector of the fractions of VCG payoffs, i.e., γ � pγ1, . . . , γnq,
we define the Winners’ Gini for γ as the Gini coefficient computed on the set of bidders who are
winners under both rules, R and V CG:

Winners’ Ginipγq � Gpγi : i PWR XW V CGq (11)

where G is the standard unweighted Gini coefficient (Jasso, 1979) and WR and W V CG are the sets of
winners under R and VCG respectively.
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In practice, we draw a large number of bidders i from our domain of interest, i.e. we run a vary
large number of auctions (100, 000) to produce γ.

Note, however, that the Winners’ Gini covers only those bidders who are winning under both, the
rule R and VCG. To get a handle on what fraction of bidders this represents, we also consider the
following:

Definition 11 (Winner Change Rate). Given W V CG, i.e., the set of winners under VCG, and WR,
i.e., the set of winners under R, we define the Winner Change Rate of R:

Winner Change Rate(R) � 1� |W V CG XWR|
|W V CG YWR| (12)

This is the fraction of bidders who are winners under one rule but not the other, otherwise known as
as the Jaccard distance dJpW V CG,WRq.

The bidders captured by the Winner Change Rate are precisely those that create a maximal
unfairness, because their fraction of VCG payoff is either 0 or 8.

Ultimately, we can combine the Winners’ Gini and the Winner Change Rate into a single fairness
measure for all bidders:

Definition 12 (VCG Gini). Given a vector of the fractions of VCG payoffs, i.e., γ � pγ1, . . . , γnq, we
define the VCG Gini for γ as:

VCG Ginipγq �Winners’ Ginipγq � p1�Winner Change Rateq�
100 �Winner Change Rate

The VCG Gini captures the Winners’ Gini for those bidders in WR XW V CG, and assigns a Gini of
100 explicitly to those bidders in tWR YW V CGuztWR XW V CGu.

The VCG Gini provides a single fairness number for a payment rule R that captures both, the
change in the winners’ between VCG and the rule R, as well as the distribution of the fractions of
VCG payoffs among the winners under R.

4.4. High revenue

When choosing between different rules, various design goals are possible, including the natural goal of
maximizing revenue. However, in this paper we are primarily interested in fairness-maximizing payment
rules, and not revenue-maximizing rules. If the seller wanted to achieve especially high revenue, she
would have to use well-chosen reserve prices anyway, which of course would require distributional
information about bidders’ values. Because this is not the focus of this paper, we do not consider using
reserve prices to increase revenue in this work. However, all else equal, i.e., given two core-selecting
payment rules with similar efficiency and fairness properties, we would prefer a rule with higher rather
than lower revenue. Still, in our evaluations, a comparison by revenue will generally be secondary.

5. A General Framework for Designing Core-Selecting Payment Rules

In this section we now develop a general framework for designing core-selecting payment rules, that
encompasses all of the 84 core-selecting CA payment rules we design in this paper, and subsequently
evaluate in a more expansive domain.
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5.1. The pricing problem

The pricing problem (finding a particular price vector p) of a core-selecting auction can be formulated
as the following mathematical program:

arg min
p

f1pp, p�,1q, f2pp, p�,2q, . . . , fkpp, p�,kq (13)

s.t. p P Core Core Constraints & IR (14)

The functions f1, f2, . . . , fk : Rn � Rn Ñ R are objective functions which minimize some distance
between the price vector p and the reference points p�,1, p�,2, ..., p�,k. These objective functions are
evaluated in order, i.e.,with f1 being the primary objective, f2 the secondary, etc. Because this is
a sequence of objectives, k programs must be solved in sequence, where only fk is included in each
program and the constraints on p resulting from all fi, i   k, are included as constraints in program
k. Equation 14 ensures we produce core-selecting prices. While there can in theory be exponentially
many core constraints (one for each coalition of bidders), constraint generation typically limits the
required number to only a few. Day and Raghavan (2007) were the first to propose a core constraint
generation algorithm which made running core-selecting CAs feasible for real-world sized auctions.
Recently, Bünz, Seuken and Lubin (2015) further improved this algorithm leading to an additional
speed-up.

The reference points p�,1, p�,2, etc., used in the objective functions, can be any arbitrary price vectors
within or below the core. Multiple authors have discussed the impact of using different reference points
and this remains an important open research question (Erdil and Klemperer, 2010; Day and Cramton,
2012). In our experiments, we primarily focus on using VCG payments as the reference point p�. We
additionally also consider ~0, as well as reserve prices set by the seller, both of which are independent
of bidders’ value reports.

As an illustrative example, consider the Quadratic rule (with the MRC), which requires solving a
mathematical program with two objective functions: f1 first minimizes the L1 distance to ~0, and then
f2 minimizes the L2 distance to the VCG price vector.

5.2. Characterizing Payment Rules By Distance Measures

In general, the objective functions f1 to fk can represent arbitrary distance measures between a
reference point p� and the payment vector p. Here, we consider weighted generalizations of the metrics
obtained from the Lebesgue Lρ norms. Following a common slight abuse of terminology we will often
refer to the distance metric implied by the Lρ norm as the Lρ metric. The weighted form we use is as
follows:

fipp, p�q �
�

ņ

j�1

ψpwjq � |pj � p�j |ρ
� 1

ρ

(15)

This is the standard Lebesgue metric, augmented by a set of weights ~w P Rn and a simple function
ψ : R Ñ R which is applied to each weight element-wise.11 If a particular payment rule is not
guaranteed to result in unique prices in a core-selecting CA setting, then we break ties by further
minimizing the L2 distance to p� as our final objective.

11Since argminx fpxq � argminx gpfpxqq for all strictly monotonic functions g, we can in practice minimize pfiq
ρ in our

price optimization instead of fi. This is particularly helpful since pfiq
ρ is a convex function.
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5.3. Standard Lebesgue Metrics and the Minimum Revenue Core

We first consider a number of unweighted Lebesgue metrics, i.e., where ψpxq � x, and ~w � ~1 in
Equation 15. First, we consider the L2 distance, which gives rise to the Quadratic rule we have
already looked at in detail. Next we consider the L8 distance, which captures the largest element-wise
difference between p and p�. This metric gives rise to the Threshold rule introduced by Parkes,
Kalagnanam and Eso (2001). Finally, we consider the L1 distance, which captures the sum of the
absolute differences between payments in p and p�.

Day and Raghavan (2007) argued for selecting prices in the core that are minimal in revenue, the
so-called Minimum Revenue Core (MRC). In our framework, this is equivalent to minimizing the L1

distance to ~0. Most rules used in practice also include a restriction to the MRC. Consequently, for
every payment rule, we have studied both a version with and without MRC (i.e., with and without an
initial L1 minimization).

5.4. Weighted Metrics

In addition to the standard Lρ metrics, we also investigate the weighted metrics introduced by Parkes,
Kalagnanam and Eso (2001) in the combinatorial exchange (CE) domain. In a CE, each rule can
be defined not only in terms of a distance metric but also in terms of an equivalent algorithmic
process. The algorithmic definitions are not available for core-selecting payment rules, because the
core constraints bind in ways that are orthogonal to how the algorithms compute prices. However,
we can still obtain useful intuitions about the effects of these weighted metrics by appealing to their
algorithmic definitions (as captured in their names), as follows:

1. The Small rule is defined as an L1 measure, but with ψpxq � x�1.12 It favors players with small
weights, trying to set their payments to the reference point (or as close to the reference points as
the core constraints will allow), while “large” bidders are charged payments as close as possible
to their value-reports. This rule has the virtue of maximally removing the strategic incentive
from the smallest players. While it may seem unfair to bias the rule for some players and against
others, market power does this already so the rule can be viewed as a way to push back against
this built-in bias.

2. The Large rule is also based on L1, but with ψpxq � x, the identity function. It is the inverse of
the Small rule, i.e., it attempts to set the prices of “large” bidders to the reference point and of
“small” bidders to their value-report.

3. The Fractional rule also uses ψpxq � x�1, like the Small rule, but it uses an L2 measure instead
of L1.

5.5. Weights for Weighted Metrics

The Small, Large, and Fractional rules all use weights to bias payments in favor of certain bidders. It
remains to identify which weights to use:

1. VCG Discount Weighting uses the VCG discount for weights, i.e. wi � ∆i. These were the
weights introduced in the original Parkes, Kalagnanam and Eso (2001) work, and were chosen
because it is ultimately the discounts that are set via the payment rules. However, our results
will show that using weights based on payments, reserve prices, as well as imputed values are
more effective.

12To avoid division by 0, we Winsorize the weights to their smallest non-zero value.
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2. VCG Payment Weighting uses the VCG payments (calculated based on bidders’ reports) as the
weights in the mechanism, i.e. wi � pV CGi . This is a new approach we introduce in this paper,
and we will show that it outperforms weighting by discount.

3. Reserve Price Weighting uses a set of reserve prices set by the seller as weights, i.e. wi � pRPi .
This approach has been proposed by Baranov (2010), and used in practice in the recent Canadian
bandwidth auction (Licensing Framework, n.d.). This can be an effective weighting method, but
it heavily relies on the seller actually having reasonable reserve prices, which is often not the
case because no good distributional information about bidders’ values is available.

4. Marginal Economy (ME) Weighting is a novel set of weights we propose in this paper, denoted
wi � pME

i . The idea of marginal economy weighting is to (a) obtain much of the benefit of
reserve price weighting, without (b) actually requiring the seller to have good distributional
information to compute reserve prices. We now describe this approach in more detail.

The main idea of marginal economy weighting is to compute weights based on an estimate of bidders’
values, instead of using bidders’ discounts or VCG payments. Because using a bidder’s own bid as
information about his value for a bundle would open up too many avenues for strategic manipulation,
we will instead impute an estimate of a bidder’s value for his winning bundle, based on the other
bidders’ bids. The idea is similar to the construction of VCG payoffs, which, as we have discussed
before, are always equal to a bidder’s marginal contribution to the economy. Here, we instead find a
reasonable estimate for the value of the bidder’s winning bundle based on the bids of all other bidders.

Towards this end, we propose the following heuristic: we use the highest value of the bundle in the
marginal economy, i.e., considering all bidders except the bidder being priced. Such a value has the
virtue of not being directly manipulable by the bidder being priced. When the marginal economy
contains at least one bid for the same allocation as the bundle being priced, then we can use this losing
bid for the marginal economy value. However, this will often not be the case, forcing us to impute a
value for the bundle from the bids that are in the marginal economy. In the present work, we adopt
the following simple heuristic to compute these imputed values for Marginal Economy Weighting :

pME
i pX�

i q �
¸
gPX�i

max
jPN,S�M :j�i,gPS

v̂jpSq
|S| (16)

That is, for each good g in bidder i’s winning bundle (that needs to be priced), we calculate the
maximum per-good value across all marginal-economy bidders. Then we set the weight to be the
sum of each of these per-good prices. We find that this weighting function can be highly effective in
increasing both incentives and fairness, which we will show empirically in Section 7.

5.6. Parameterized Framework for all Payment Rules

The degrees of freedom outlined in the preceding sections have provided us with 3 weighted metrics
(Small, Large, Fractional), 4 weights for these weighted metrics (∆, pV CG, pRP , pME), 2 additional
non-weighted rules (Quadratic and Threshold), 3 reference points (pV CG, pRP , ~0q, and the option to
use MRC or not for any of our rules. In total, this leads to 84 different core-selecting payment rules:

�
Weighted Metricsloooooooooomoooooooooon � Weightslooomooon� (Quadratic, Threshold)loooooooooooooomoooooooooooooon

	
� Reference Pointslooooooooomooooooooon � (MRC,MRC)looooooomooooooon

�
3 � 4 � 2

	
� 3 � 2 � 84
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Payment Rule Name Metric ψpwq Reference Metric ψpwq Reference Metric ψpwq Reference

f1 f2
Threshold L8 ~1 p� L2: ~1 p�

Quadratic L2 ~1 p�

w-Large L1 w p� L2: ~1 p�

w-Small L1 w�1 p� L2: ~1 p�

w-Fractional L2 w�1 p�

f1 f2 f3
MRC Threshold L1 ~1 ~0 L8 ~1 p� L2: ~1 p�

MRC Quadratic L1 ~1 ~0 L2 ~1 p�

MRC w-Large L1 ~1 ~0 L1 w p� L2: ~1 p�

MRC w-Small L1 ~1 ~0 L1 w�1 p� L2: ~1 p�

MRC w-Fractional L1 ~1 ~0 L2 w�1 p�

Table 2: Here we provide the sequence of metrics and weights that define each of our payment rules. For
each rule we use three different reference points p� P tpV CG, pRP , ~0u. For the weighted rules
(Large, Small, Fractional) we use four different weights w P t∆, pV CG, pRP , pMEu. Note that
for the Threshold, Large and Small rules, the final L2 metric is included only for tie-breaking
purposes (as indicated by :).

Table 2 provides an overview of all payment rules we have studied. For each rule, we provide its
name, and describe the sequence of metrics and weights that define it.

Remark 2. Out of the 84 rules described in Table 2, only 9 have been explicitly proposed and studied
by other researchers before. We now briefly discuss each of those in turn to put the origins of these
rules and the underlying ideas into context.

Parkes, Kalagnanam and Eso (2001) were the first to suggest using distance-to-VCG-based payment
rules in combinatorial settings. They proposed the (1) Threshold rule (without MRC), originally for the
CE domain, and later for the CA domain (Parkes, 2002). Then Day and Raghavan (2007) suggested to
first enforce prices to be in the MRC, and proposed the (2) MRC Threshold rule. Because minimizing
the L8 distance to VCG does not guarantee unique prices in CAs, Day and Cramton (2012) refined
this approach and proposed the (3) MRC Quadratic rule, which is the rule currently used in practice.

In the original work by Parkes, Kalagnanam and Eso (2001), they also proposed the three weighted
rules, but only in combination with the VCG-discount weights, giving rise to the (4) ∆-Large, (5)
∆-Small, and (6) ∆-Fractional rules. Recently, Baranov (2010) proposed to use the Fractional rule in
combination with reserve price weighting, giving rise to the (7) pRP -Fractional rule. Finally, Erdil
and Klemperer (2010) and Day and Cramton (2012) have both investigated using reference points (in
combination with MRC Quadratic) that are independent of all bidders’ bids, which includes our reference
points pRP and ~0, giving rise to (8) MRC Quadratic(p� � pRP ) and (9) MRC Quadratic(p� � ~0).

Subtracting those 9 rules from the 84 rules described in Table 2 leads to 75 new rules which we are
the first to study in this paper. Some of these new rules we have designed by simply combining various
ideas from prior work (combinations of metrics, weights, reference points, and MRC). However, 36
rules are based on the new weights we have introduced, pV CG and pME, and we will show in Section
7 that the rules based on those weights perform particularly well. Note that our framework naturally
lends itself to extensions via new metrics, weights, reference points, and arbitrary combinations thereof.

17



Domain Theoretical BNE Computational BNE Std. Dev.

Four-Bidder First-Price Auction n�1
n � 0.75 0.7475 0.0284

Additive Local-Local Global
?

8� 3 � �0.1715 �0.1735 0.0157
Multiplicative Local-Local Global 2

3 � 0.6666 0.6769 0.0177

Table 3: Here we compare theoretical BNE results against the BNE strategies obtained from our
algorithm. These include the first-price single item auction (Krishna, 2002), the uncorrelated
LLG setting (with additive strategies) (Goeree and Lien, 2014), and the correlated LLG
setting (with multiplicative strategies) (Ausubel and Baranov, 2013). Reported values are
averages across 50 runs.

6. Methods

6.1. Approximate Bayes-Nash Equilibrium Calculation

To evaluate our rules in realistic settings where closed-form solutions for the bidders’ BNE strategies do
not exist or are intractable to derive analytically, we need a computational method for approximating
the BNEs. Accordingly, we have developed an algorithm based on the approach by Lubin and Parkes
(2009) and earlier work by Vorobeychik and Wellman (2008). Pseudocode of the algorithm is provided
in Appendix A.

Our algorithm is based on the general idea of Fictitious Play. The algorithm finds outcomes to games
by iteratively computing the expected best response for a bidder given a set of current strategies for the
other bidders. We simplify the problem by defining a fixed number of bins, three in our experiments,
and assigning each bidder to a bin (small, medium, or large) depending on his value function. We
then find a single strategy for each bin that is in expectation a best response to the other bidders
play. After each iteration, we proceed forward with an affine combination of the best response and the
previous strategy. In a BNE, no player (or bin) can improve his utility (in expectation) by playing his
best response instead of the BNE strategy. Our algorithm converges if this criterion is met within an
error of ε. Such an outcome is called a (multiplicative) ε-BNE, i.e., each player diverting from the
ε-BNE can, in expectation, improve his utility by at most a factor of ε. Additionally, we ensure that
the strategies in the approximated BNE are at most a constant factor δ away from the respective best
response. We thus get an pε, δq-BNE.

More formally, we let brips��iq denote agent i’s best-response to the strategy profile s��i of all other
agents. To measure the distance between two strategies si and s1i, we use the L2-norm ||si � s1i||2.
Definition 13 (Approximate Bayes-Nash Equilibrium). A strategy profile s� � ps�1 , . . . , s�nq is an
pε, δq-Bayes-Nash equilibrium in a sealed-bid auction if, for all bidders i, and all values functions vi

Ev�i
�
uips�i pviq, s��ipv�iqq

� � p1� εq ¥ Ev�i
�
uipbrips��iq, s��ipv�iqq

�
and (17)

||s�i � brips��iq||2 ¤ δ, (18)

where the expectation in (17) is taken with respect to the distribution over the other bidders’ value
functions.

To validate the correctness of our approximate-BNE calculation algorithm, we have computed
approximate BNEs for the settings presented in Section 3.5.2 where closed-form expressions are
known from the literature. The results are shown in Table 3, which are averages over 50 randomly
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initialized runs. We see that our algorithm is able to find approximate BNEs (with additive as well as
multiplicative strategies) that are very close to the true BNEs.

To further illustrate the use of our algorithm, we show in Figure 2 the results of an approximate BNE
computation with multiplicative strategies for the Quadratic rule, for a more complicated, combinatorial
setting with multi-minded bidders, where the bidders are grouped into three bins. Shown are the
number of iterations on the x-axis, and the shade factors for each of the three bins on the y-axis. The
calculation converges after 23 iterations and finds an approximate BNE with the Large bidders shading
only a little (0.93), the Medium bidders shading a bit more (0.89), and the Small bidders shading very
much (0.71).

Figure 2: Computation of an approximate Bayes-Nash equilibrium using multiplicative strategies for
the Quadratic rule in the Tri-Modal domain.

6.2. Choosing a Strategy Space for our Experiments

In the experiments we present in the next section, we only consider large settings for which no
analytical BNE results are known (e.g., 10 bidders, 25 goods, combinatorial preferences, multi-minded
bidders). Naturally, the optimal BNE strategies in these settings will be highly complex. To make
the approximate BNE calculation computationally feasible we need to choose a reasonably restricted
strategy space for our algorithm. For this paper, we limit ourselves to single-dimensional strategies
to keep the computational run-time manageable (even with single-dimensional strategies, finding the
approximate BNE for a single payment rule can take up to one day on a high-performance machine).
We study both, (1) multiplicative as well as (2) additive shading strategies. With multiplicative
(shading) strategies, a bidder’s strategy is a shading factor in r0, 1s that he applies multiplicatively
to all value reports on all bundles (i.e., shading all values down by the same factor). With additive
shading strategies, a bidder’s strategy is an additive factor in r0,�8s that he adds to all value reports
on all bundles (where adding a negative number also corresponds to shading down his values).

Overall, we obtain very consistent results (in terms of efficiency, fairness, incentives, and revenue)
whether we study multiplicative or additive strategies. Thus, for the comparison of our payment
rules we could look at the results for either multiplicative or additive strategies. However, because
multiplicative strategies are somewhat easier to interpret (the strategies are always in r0, 1s and can be
interpreted independent of the agents’ values), we will discuss our findings by presenting the results
for multiplicative strategies in the main body of the paper. The most important results for additive
strategies are provided in Appendix F.
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We note that in core-selecting auctions, there are reasons to analyze more complex strategies than
those we use in our experiments. For example, Beck and Ott (2013) show that over-bidding strategies
can sometimes be useful. Concretely, they show that by leveraging the core constraints, bidders may
be able to decrease their own payment on bundles they expect to win, by bidding more than their true
value on bundles they expect to lose. Somewhat orthogonally, Janssen and Karamychev (2013) show
that bidders who want to drive up competitors’ payments can use so-called “spiteful” bidding strategies
in combinatorial auctions. This could help a bidder by causing the bidder’s competition to exhaust
their budget, or by making the competition overpay for spectrum, hurting the public perception of
their position and thus, e.g., their stock price. While we believe that such strategies would be very
interesting to study, they are necessarily multi-dimensional, making the equilibrium finding problem
significantly more computationally difficult. Thus, as multi-dimensional strategies are outside the
scope of our already highly optimized and extremely complex equilibrium solver, we defer the analysis
of such strategies to future work.

6.3. Domain Generators

For our experiments, we use two generators to create CA instances from which we evaluate the
effectiveness of the payment rules. The first generator we use is the Regions distribution from the
Combinatorial Auction Test Suite (CATS) (Leyton-Brown and Shoham, 2006). CATS has many
distributions, but most of them are not particularly suitable for evaluating core-selecting payment
rules. Because Regions is based on the geographic allocation of assets, it is the closest match to a
spectrum auction environment, where core-selecting payment rules have so far played the biggest role
in practice. We therefore use Regions, with the default parameters (16 goods, 8 bidders).

However, we found that even when using the CATS Regions distribution, the average VCG-to-core
distance of the auction instances was quite small (i.e., VCG is “almost” in the core). To have greater
control over the structure and economic properties of the instances we evaluate, we also constructed
our own domain generator based on the one in Lubin and Parkes (2009), and presented in Appendix B.
Because this generator produces three different classes of bidders, we call it the Tri-Modal Generator.
We opted for a generator that explicitly produces this structure because this facilitates the economic
interpretation of the results, in particular the bins (small, medium, large) to which we assign our
bidders in our computational BNE algorithm.

Our generator is designed to be simple, but to still exhibit the key features of combinatorial spectrum
auctions. Bidders in the auction are assigned a size, either small, medium or large. Each bidder is only
interested in a subset of the goods and constructs a number of XOR bundle-bids by drawing uniform at
random from this demand set a number of goods proportional to his assigned size. Bundles are given a
value by summing over private per-good values, and then scaling by a factor that is exponential in
the size of the bundle above the smallest one demanded by the bidder. We set this exponential to a
slightly sub-additive factor, accounting for bidders having a decreasing marginal return for additional
goods, once they are able to satisfy their basic business plan.

6.4. Reserve Prices

For a seller to set reasonable reserve prices, she must have good estimates of the bidders’ values.
Despite the difficulty of attaining such a distribution in practice, we want to use reserve prices in our
experiments, not to increase revenue, as this is not our focus in this paper, but to use them as reference
points and weights for our payment rules. Towards this end, we begin by estimating the empirical
distribution on bundle values by drawing a large number of bundle-bids from our domain generator.
We then take the 20th-percentile of our empirical bundle-value distribution as our bundle-specific
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reserve price. To validate this choice, we also evaluated the 10th, 30th and 50th percentile, and found
that the 20th-percentile produced both high fairness and revenue, which we therefore adopted for our
experiments.

7. Results for Realistically-sized Combinatorial Auction Domains

In this section, we describe the results of our computational BNE analysis, comparing various payment
rules according to their (a) efficiency, (b) incentives, (c) fairness, and (d) revenue. Here, we provide
results that were produced using our Tri-Modal generator described in Section 6.3. The results are
generally consistent with the results for the CATS Regions generator, but they are simply more
pronounced for the Tri-Modal generator (which makes reading the results tables easier) than for the
Regions generator, because Regions has a small average VCG-to-core distance. The corresponding
results for the CATS Regions generator are provided in Appendix E.

Table 4 lists our main results: we compare the various payment rules in our framework when we
include the MRC objective, use VCG as the reference point, and adopt multiplicative strategies for the
bidders. Results for alternative reference points are provided in Appendix D and additive strategies in
Appendix F. In total, we have evaluated each of our 85 rules in eight different ways: four different
settings (two domain generators, each with two different VCG-to-Core distances), and with both
multiplicative and additive strategies. Computing the BNE for one rule requires approximately 13
hours on a high-performance machine (with 128 GB RAM, two Intel Xeon CPUs at 2.8 GHz, and 10
cores per CPU), with additional 2 hours of time subsequently spent when evaluating the nature of the
BNE found by computing the outcome of 100, 000 additional game instances in order to produce our
efficiency, fairness and revenue results. Across all rules, settings, and strategy spaces, this adds up to
more than one year of compute with a single machine, though we have parallelized our computations
on a large compute grid.

7.1. Efficiency analysis

The last column of Table 4 is efficiency, from which we can see that all of the rules achieve high
efficiency. The lowest efficiency is achieved by the Pay-as-bid rule (98.2%), while all other payment
rules lead to an efficiency of 99.4% or higher. Consequently, we immediately turn to our other criteria
in evaluating the rules.

7.2. Incentive Analysis

Next, we consider our first main point of interest: the strategies we observe in BNE. We report the
strategies for each of the “small”, “medium” and “large” bidders in the second through fourth columns
of Table 4, as well as the overall “aggregate incentive” to deviate in the fifth column of Table 4. As was
described in Section 4.2, we characterize the latter by the Euclidean distance between truth-reporting
and the observed strategies (normalized by value); we color code this column to make the results easier
to read.

For the MRC Quadratic rule, we observe that the strategies diverge significantly between the “small”,
“medium”, and “large” bidders. The small bidders are forced to shade strongly (v̂S � .71vS) while the
medium and large bidders have significantly smaller shades (v̂M � .89vM and v̂L � .93vL). Taken
together, these induce a reasonably strong aggregate incentive to deviate at AI � 31.9.
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Tri-Modal Domain using VCG Reference Point
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 100 100 100 0.0 100 100 100 43.1 0 100.0 100.0
Pay-as-Bid 28 60 65 89.5 76 108 145 49.1 79.7 92.9 98.2
MRC Threshold 71 88 94 32.4 79 90 105 48.3 61.2 105.9 99.6
MRC Quadratic 71 89 93 31.9 79 90 106 47.5 60.2 105.7 99.7
MRC ∆-Large 65 91 96 36.0 76 87 105 54.0 64.8 107.0 99.4
MRC pV CG-Large 58 88 99 44.1 76 86 113 54.7 70.2 104.9 98.9
MRC pRP -Large 57 86 98 44.8 77 87 118 54.5 70.4 103.5 98.9
MRC pME-Large 58 86 97 44.3 77 89 118 54.1 70.1 103.3 99.0
MRC ∆-Small 74 84 89 32.8 90 94 108 43.3 59.5 102.1 99.8
MRC pV CG-Small 80 84 87 28.7 90 94 104 42.6 55.1 102.9 99.9
MRC pRP -Small 84 87 88 23.9 91 89 96 40.9 51.3 105.4 100.0
MRC pME-Small 83 86 89 24.8 91 89 97 42.3 52.2 105.3 100.0
MRC ∆-Fractional 72 87 93 31.8 83 91 105 45.5 59.9 104.9 99.7
MRC pV CG-Fractional 77 86 89 28.8 86 92 104 44.0 56.3 104.2 99.9
MRC pRP -Fractional 82 87 91 23.8 87 86 96 43.5 52.7 106.9 99.9
MRC pME-Fractional 80 88 92 24.5 85 87 97 44.3 53.5 107.2 99.9

Table 4: The results of a computational BNE analysis with multiplicative strategies (in %). The
Aggregate Incentives, calculated as ||struth � srule||2, indicates the degree of strategizing bidders
employ in the BNE of each rule. The Standard Gini is calculated over each bidders payoff
in equilibrium. The VCG Gini is based on the fraction of bidders’ VCG payoffs recieved in
equilibrium.

Among the Large rules, this pattern is only made worse, with the small bidders shading even more
(v̂S � .60vS) and large bidders being almost truthful. This is expected, given that the Large rule aims
to provide large bidders with their full VCG discount. This extreme shading by the small players
causes the Large rules to have overall the poorest aggregate incentives with AI � 40.

We see that both the Small and Fractional rules are able to improve the incentives for the small
players. In the best case, when using the pRP -Small rule, the small players’ strategy is much closer to
truth, at v̂S � .84vS . We note that it is not surprising that even the Small rule – which maximally
benefits small players – cannot fully compensate for the headwind that small players must endure in
combinatorial auctions: the relative distance to VCG is generally higher for small players and the core
constraints often have a relatively higher effect on small bidders. Still, the improved incentive effect on
small players (while not overly harming the incentives for the other players) yields a corresponding
improvement to the aggregate incentives at AI � 23.9.

We further observe that the Fractional rule also leads to reasonably good incentives for the players
compared to the Quadratic rule, but not quite as good as the Small rule. For example, for pME-
Fractional, the incentives to shade vary between v̂S � .80vS and v̂L � .92vL. But importantly, the
maximal incentive to strategize (here by the small players) as well as the aggregate incentives to
strategize are smaller under the pME-Fractional than under the Quadratic rule at AI � 24.5.

7.3. Fairness analysis

We now turn to our second main point of interest: the comparison of our payment rules in terms of
fairness. To do this, we begin by computing the fraction of VCG payoff obtained by each winner under
the payment rule in each of our 100, 000 evaluation instances (shown in columns six through eight of
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Table 4).
We next capture two versions of the Gini coefficient for each rule. The first is the “Standard” Gini,

calculated on the payoff obtained by each agent in our evaluation instances, as payoff is the natural
analogy to “wealth” commonly used when calculating gini coefficients. We present these values in the
ninth (and color-coded) column of Table 4. Further, as described in Section 4.3, we believe that the
fraction of VCG discount that each participant obtains is also an important reflection of their “fair”
apportionment, and so we provide a “VCG”-based Gini in the tenth column (also color-coded). As we
shall see, these two measures are remarkably consistent.

The MRC Quadratic rule has a Standard Gini of 47.5 and a VCG Gini of 60.2, which corresponds
to its quite unequal distribution of fractions of VCG payoffs: the small players obtain 79% of their
VCG payoff while the larger players obtain 106% of their VCG payoff. This is consistent with the
motivating example we provided in the introduction, here now verified for a larger setting, and in
BNE. Clearly, the MRC Quadratic rule favors the “large” bidders not only on a strategic basis but on
a payoff basis as well.

Next we consider the weighted rules, starting with Large. The relative VCG payoffs under Large are
even more divergent than under the Quadratic rule and consequently both Gini measures are even
higher than under MRC Quadratic. Exactly the opposite occurs, though, under the Small rule, where
the unfairness is ameliorated by explicitly favoring the “small” players. Looking at the fractions of
VCG payoffs for the Small rule, we observe far greater consistency across bidder sizes than for the
Quadratic and Large rules. This translates to the lowest overall Standard and VCG Gini scores of
only 40.9 and 51.3 respectively for pRP -Small.

Finally, we turn to the Fractional rule which, when equipped with ∆ for weights, seeks to provide
the same fraction of VCG payoff across all bidders ex-post. While there is no guarantee that targeting
optimal fairness ex-post will result in a fair rule in equilibrium, we find that Fractional does in fact do
well, obtaining a miminum VCG Gini of 52.7 for pRP -Fractional (and a small Standard Gini of 43.5),
only slightly higher than that achieved by Small.

Choosing Weights. For each of the weighted rules, we have considered four different weights. The
first weight we report is the VCG discount ∆, the weight originally proposed by Parkes, Kalagnanam
and Eso (2001). While one might imagine that VCG discount is highly correlated with bidder value, in
many domains this correlation is actually low. Indeed, we see in Table 4 that ∆ performs surprisingly
badly, and in particular is outperformed by all other weights for the Small and Fractional rules. Note
that this represents a counterpoint to the results we found for the LLG domain. There, we found that
the ∆-Small rule outperformed the Quadratic rule in terms of all dimensions, and in particular in
terms of aggregate incentives and fairness. However, here in the larger, more realistically-sized domain,
the ∆-Small rule has essentially the same efficiency as the Quadratic rule, slightly better fairness, but
somewhat worse aggregate incentives.

Next, we consider our new weights pV CG. We find that using pV CG significantly improves upon
using ∆, but is itself dominated, e.g., by reserve prices pRP . In particular, we find that pRP can be
extremely effective as weights, for example in the Small rule producing a VCG Gini that is 3.8 lower
than that with pV CG weights.

However, in practice, high quality reserve prices will often not be available. Fortunately, our results
also demonstrate that for these cases, our new marginal economy pME weights perform just as well:
they produce essentially the same fairness, revenue and efficiency as pRP , but without requiring
knowledge of bidders’ value distributions.

This demonstrates how important, not only the distance metric, but also the choice of weights is. In
contrast to the ∆-Small rule (which still had worse aggregate incentives than the Quadratic rule), the
pME-Small rule outperforms the Quadratic rule, achieving 100% efficiency, and significantly better
fairness (a VCG Gini of 52.2) and aggregate incentives (AI=24.8).

23



Tri-Model Domain (High-Revenue Quantile) using VCG Reference Point
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 100 100 100 0.0 100 100 100 34.7 0 100.0 100.0
Pay-as-Bid 25 46 55 103.2 69 87 111 45.6 44.6 115.6 97.5
MRC Threshold 45 77 88 61.1 71 77 90 45.2 39.2 131.2 98.3
MRC Quadratic 45 74 89 62.2 71 78 92 46.3 40.5 129.6 98.0
MRC ∆-Large 38 88 99 63.0 66 63 77 54.2 50.2 145.5 97.1
MRC pV CG-Large 41 81 100 62.1 65 64 86 52.3 48.7 141.5 97.0
MRC pRP -Large 37 74 94 68.4 66 69 98 52.7 49.0 131.2 96.5
MRC pME-Large 40 76 92 65.6 67 71 97 50.6 46.3 131.7 97.3
MRC ∆-Small 53 62 78 64.5 85 87 97 39.7 33.0 115.6 99.1
MRC pV CG-Small 55 65 80 60.5 83 86 92 40.6 32.5 119.8 99.2
MRC pRP -Small 62 63 79 57.5 86 86 91 39.0 30.9 119.5 99.3
MRC pME-Small 60 64 81 56.8 86 84 89 39.6 31.7 121.7 99.3
MRC ∆-Fractional 50 68 84 61.4 77 82 94 42.5 35.6 123.9 98.6
MRC pV CG-Fractional 52 67 83 60.5 79 84 92 42.6 34.6 123.2 98.8
MRC pRP -Fractional 60 70 86 52.4 81 79 85 39.9 31.0 128.7 99.2
MRC pME-Fractional 56 71 87 54.3 78 79 86 41.4 33.0 129.6 99.0

Table 5: The results of a computational BNE analysis with multiplicative strategies (in %). The
Aggregate Incentives, calculated as ||struth � srule||2, indicates the degree of strategizing bidders
employ in the BNE of each rule. The Standard Gini is calculated over each bidders payoff
in equilibrium. The VCG Gini is based on the fraction of bidders’ VCG payoffs recieved in
equilibrium.

7.4. The VCG-to-Core Distance: Fairness (and Revenue)

Core-selecting pricing rules are often put forward as a way to raise additional revenue in CAs over that
available under VCG. While it is true that ex post such rules do raise additional revenue, in equilibrium,
bidder strategies can often more than compensate for this. As is evident in our results, it is easy for
core-selecting rules to produce little or no additional revenue over VCG in equilibrium. For example,
in Table 4, the increase in revenue over VCG was on average between 2% and 7%. However, even when
the revenue rise is small (or even non-existant), practitioners may still want to use core-selecting rules
– not for their revenue properties – but because of the anti-collusion property that the core guarantees.
In many real-world settings, providing this guarantee (and avoiding the potential lawsuits that arise
from not having it) is more important than the total revenue raised. Ultimately, if high revenue is a
concern for the market designer, then techniques such as well-chosen reserve prices should be employed.

This said, we want to be able to evaluate how much revenue the various rules produce in equilibrium.
To get a handle on this, we first note that the expected distance between VCG and the MRC at true
values is a property of the domain, and represents the potential revenue increase of the core over VCG
if bidders remained truthful. In equilibrium, the strategic behavior of bidders will reduce the revenue
obtained – and the particulars of the payment rule used will mediate how much such reduction occurs.
Neither the CATS Regions generator nor our own generator produce instances with a particularly
large core-to-VCG distance. Accordingly, we stratify the instances produced by the generators, and
consider a domain comprised of only the highest quintile of instances when looking at the truthful
distance between the core and VCG.

Table 5 provides results of this type for the Tri-Modal domain. We observe that the overall pattern
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of the results is similar to that seen in Table 4. However, because more revenue is available in this
setting, comparing the revenue amongst the rules is easier. We can see that Large produces the most
revenue, but only through extreme unfairness. In fact, Table 5 shows that fairness and revenue are
inverse proportional to each other: the most unfair rule produces the largest amount of revenue, and
vice versa. In particular, Small produces significantly less revenue than MRC Quadratic, but is very
fair. The Fractional rule, especially in conjunction with marginal economy weights, strikes a balance
between fairness and revenue. It produces the same revenue as MRC Quadratic, but with somewhat
better efficiency and significantly better fairness.

7.5. Minimum Revenue Core (MRC)

All of the results presented so far are for rules that choose payments from the MRC, as suggested by
Day and Raghavan (2007). We have also studied the effect of MRC on the BNE outcome and include
a version of Table 4 created without the MRC criterion in Appendix C. Overall, the results with
and without MRC are very similar. While relaxing the MRC constraint does change the equilibrium
properties slightly for each payment rule, we do not observe any systematic shifts in revenue, efficiency,
fairness, aggregate incentives, or in the strategies. This seems to suggest that, in Bayes-Nash equilibrium,
the effect of the MRC constraint is relatively minor.

7.6. Alternative Reference Points

Additionally, we have also investigated the effect of replacing VCG as the reference point for our rules
with our reserve prices, as detailed in Appendix D. When using reserve prices for the reference point,
we observe that the differences among our rules narrows. This matches intuition, as the high-quality
reserve prices we employ are “doing the work” such that our rules’ weightings have less of an effect.
This implies that if good reserve prices are available (which is often not the case), using them may
be beneficial. Importantly, however, we observe that the ranking of the various rules remains the
same even when using the alternate reference point. Thus, in the case where reserve prices are being
employed, the Small and the Fractional rules both remain better choices than the Quadratic rule.

8. Conclusion

In this paper, we have studied the efficiency, fairness, incentive and revenue properties of various
payments rules for core-selecting CAs. Our main focus was the fairness of these rules in terms of the
payoffs of the winners’ in the auction. We have proposed a new fairness concept: a Gini coefficient
defined over the fraction of the VCG payoff obtained by the winners. We have then sought core-selecting
payment rules that performs well by this fairness measure. To do so, we have defined a framework
covering a class of 85 possible rules. We then analyzed these rules using a novel approximate BNE
calculation method. We found that all the rules we have evaluated had near perfect efficiency, but
the rules varied considerably in terms of their incentive effects, fairness properties and revenue. In
particular, we have found that the rule most commonly used in practice, the Quadratic rule, strongly
favors larger bidders and is thus unfair towards small bidders, while the Small rule is the fairest rule.

However, one issue with Small is that it is itself asymmetric between players: small bidders are
effectively facing VCG, while the “large” players are effectively playing in a pay-as-bid auction. We find
that this asymmetry can help correct for the differential market power that large and small participants
have a priori. However, in many settings such differential treatment may not be acceptable, depending
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on the prevailing policy and law. Fortunately, we have found that the Fractional rule provides nearly
the same good incentive and fairness properties as the Small rule.

To power weight-based rules like Fractional we have proposed two new weights, including Marginal
Economy weights, which we find to be almost as effective as reserve prices, but with much lower
informational requirements. Moreover, we find that the MRC, typically included in today’s core-
selecting CAs, has only a minor effect in equilibrium.

Overall, we find that the Quadratic rule is not necessarily the optimal choice for CAs. Instead,
considering all of our experimental results, we recommend using the Marginal-Economy-Fractional rule,
which has the same (or even slightly better) high efficiency and revenue properties as the Quadratic
rule, but significantly improves upon it in terms of fairness and aggregate incentives.

In future work, we plan to expand upon the space of strategies that we evaluate in equilibrium,
including multi-dimensional (additive and multiplicative) strategies. Additionally, we believe that even
more sophisticated heuristics may be developed along the lines of the marginal economy weights we
have presented, by using machine learning techniques to interpolate the marginal economy values.
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APPENDIX

A. The BNE Calculation Algorithm

Figure 3: Response utilities from a representative
step of the BNE calculation from an ex-
ample of our Tri-Modal generator and the
Quadratic rule.

The fundamental approach we take to solving
for the Bayes-Nash Equilibrium is that of Fic-
titious Play. This algorithm finds outcomes to
games by iteratively computing the best response
for a player given a set of current strategies for
the other players. After each such iteration, we
update each player’s strategy using a linear com-
bination of the best response and the current
current strategy, i.e we proceed forward with a
“damped” version of the best response.

Traditionally, such an algorithm would identify
a unique strategy for every bidder in the mech-
anism. However, even with single-dimensional
bidder strategies, computing such an equilibrium
in our setting is intractable for domains with large
numbers of bidders. Consequently, following Lu-
bin and Parkes (2009), we simplify the problem
defining a fixed number of bins, three in our ex-
periments, and assigning each bidder to a bin.
We then find a single single strategy per bin, and
apply it to all bidders therein. This enables us to
compute approximate equilibria, even in games containing many bidders.

For this approach to be effective, “similar” bidders must be assigned to the same bin. While there
are many ways to define similarity, we have opted to assign bidders according to their value: our
bins are thus defined as the terciles of bidder value (’small’, ’medium’ and ’large’). This would be
enough if our bidders were single-minded, i.e. interested in only a single bundle of goods. However, as
our bidders are multi-minded, we must define what we mean by their value. We assign them to bins
according to the 90th quantile of their value across all of their bundles.

In a BNE no player (or bin) can improve his utility by playing a best-response instead of the BNE
strategy. Our algorithm converges if this criterion is met within an error of ε. Such an outcome is
called an ε-BNE, i.e., each player diverting from the ε-BNE can, in expectation, gain at most ε utility.

For some mechanisms in practice, some players may have utilities that are relatively inelastic with
respect to their bids. A sample response utility graph for such a domain is presented in Figure 3. As a
consequence, it is possible for the ε-BNE condition to be met even while the underlying strategies are
not yet stable, because all strategies within the utility plateau are within the support. To account
for this, we slightly augment the convergence criterion of our algorithm to require that not only the
maximum utility change between the current strategy and the best response is less than ε, but also
that the maximum change in strategy is less than δ P R.

Pseudocode for our approach is provided in Algorithm ??. Our algorithm has a large number
of parameters most of which involve a trade-off between validity and runtime. In our experiments
we used: nBidders � 60, nSamples � 30, nGridPoints � 50, nBins � 3, ε � .01, δ � 0.015. To
increase the validity of our algorithm we run a final best-response round with increased parameters
(e.g. nBidders � 120, nSamples � 60, nGridPoints � 100) and only terminate if the convergence
criteria are still met.
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ALGORITHM 1: Iterative Best Response

Data: nClasses P N, ε P R�, δ P R�

Result: Class-symmetric ε, δ-BNE strategies
// Current strategies

1 S :� ~1 P RnClasses
// Best response strategies

2 Ŝ :� ~1 P RnClasses
// Utilities current strategy

3 U :� ~1 P RnClasses
// Utilities best response

4 Û :� ~1 P RnClasses
5 repeat
6 for c � 1 to nClasses do

// Compute next strategy

7 Sc � updatepSc, Ŝc, Uc, Ûcq

8 end
9 for c � 1 to nClasses do

10 Ŝc, Ûc, Uc � bestResponsepS, cq
11 end

12 until Ûc

Uc
¤ p1 � εq ^ |Sc � Ŝc| ¤ δ @c P t1, . . . , nClassesu

13 return S

ALGORITHM 2: Update Rule

Data: wmin P R, wmax P R,α P R
Result: Merged strategy
Function update(Sc P R, Ŝc P R, Uc P R,Ûc P R)

// Adaptive weight

w � arctanpα � p Ûc

Uc
� 1qq � 2

π � pwmax � wminq � wmin P pwmin, wmaxq;

return Sc � p1 � wq � Ŝc � w;
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ALGORITHM 3: Best Response Computation

Data: δstart,δmin

Function bestResponse( S P RnClasses,c)
// Pattern width

δ � δstart;
Scenter � Sc;
while δ ¡ δmin do

Sleft � Scenter � δ;
Sright � Scenter � δ;
Sbest � findBestpSleft, Scenter, Sright, cq;
if Sbest � Scenter then

// Narrow pattern

δ � δ
2 ;

end
Scenter � Sbest;

end
Uc � sampleUtilitypScq;

Ûc � sampleUtilitypScenterq;

return Scenter, Ûc,Uc;
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ALGORITHM 4: Strategy Comparison

Data: nmin P N, nmax P N, c P t1, nClassesu, S P RnClasses, v P pPpMq Ñ Rqnmax , A P Gamesnmax

Function findBest( Sleft P R, Scenter P R, Sright P R)
n � nmin;
repeat

uleft � sampleUtilitypSleft, nq P Rn;
ucenter � sampleUtilitypScenter, nq P Rn;
uright � sampleUtilitypSright, nq P Rn;
best � arg maxposPtleft,center,rightu

°n
i�1 upos;

significantDiff=true;
for other P tleft, center, rightuzbest do

// Samples from utilitypv,A, Sbest, Sq � utilitypv,A, Sother, Sq with v,A i.i.d.

udiff � ubest � uother;
// Statistical test whether Ev,Arutilitypv,A, Sbest, Sq � utilitypv,A, Sother, Sqs is

greater 0 with significance p
testResult =test (udiff,n,p);
significantDiff=significantDiff ^ testResult

end
n � n � 2;

until significantDiff _n ¡ nmax;
return Sbest;

// Produces samples from utilitypv,A, S�, Sq with v,A i.i.d.

Function sampleUtility( S� P R,n P N)
u P Rn � ~0;
for i � 1 to n do

vi // random value function drawn from class c
Ai // random game containing bidder with value function vi
// Utility gained under value function vi when playing Sc in game Ai and other

bidders play according to S
ui=utility (vi,Ai,Sc,S);

end
return u;

Function test(u P Rn,n P pnmin, nmaxq,p P p0, 1q)
// Sample mean

µ �
°n

i�1 ui

n ;
// Sample Variance

.52 �
°n

i�1pui�µq2
n�1 ;

// Standard error

SE � s?
n

;

// Φ�1 is the quantile function of the standard normal distribution

p̂ � Φ�1p�µSE q;
return p̂ ¤ p;
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B. The Tri-Modal Generator Algorithm

Psudocode for our Tri-Modal generator is provided in Algorithm 5. The generator is careful to capture
the property that bidders typically demand only a subset of all goods, producing XOR bundle bids
only for sets of goods drawn from this “demandment” set (i.e., demandment : buyer :: endowment :
seller). Value for these bundles is calculated as a linear combination of individual good prices, but
scaled by a quantity that is exponential in the size of the bundle over the smallest bundle the bidder
bids upon. This enables us to model decreasing returns for additional goods, once an bidder’s basic
business plan has been met.

For our experiments, we setup the parameters of the generator as follows: m � 25, n � 9, PM �
.3, PH � .2, dSizes � r3, 9, 13s, nBundles � r2, 4, 8s, bSizeL � r1, 4, 7s, bSizeH � r2, 6, 9s, γ � .97.

ALGORITHM 5: The Tri-Modal Generator
Data: m,n, PM , PH , dSizes, nBundles, bSizeL, bSizeH, γ
Result: n bidder bids, each consisting of XOR bundles
for each bidder do

size := L with 1-PM -PH , M with PM and H with PH
demandment := draw dSizesrsizes goods uniform
Draw private values U r0, 1s, for each g P demandment
for i in nBundlesrsizes do

Draw bSizeris from U rbSizeLrsizes, bSizeHrsizess
bGoodsris := Draw bSizeris goods from demandment
bV alLinris :=

°
gPbGoodsris privatergs

end
sSize := mini bSizeris
for i in nBundlesrsizes do

bV alNonLinris := bV alLin � γbSizeris�sSize

Assign bidder bGoodsris at value bV alNonLinris as XOR bundle

end

end
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C. Results Without MRC
Day and Raghavan (2007) argued for selecting payments that are in the minimum-revenue-core (MRC).
In this section we investigate the effect of removing this constraint and select prices that are, perhaps,
not in the MRC. We see that the results are very similar to the results with MRC. The MRC constraint
does not seem to have a significant effect on the bidder’s strategies, nor on fairness or revenue.

Tri-Modal Domain using VCG Reference Point without MRC
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 100 100 100 0.0 100 100 100 43.1 0 100.0 100.0
Pay-as-Bid 28 60 65 89.5 76 107 145 49.1 79.7 93.1 98.2
Threshold 68 87 93 35.3 79 90 107 47.9 62.5 105.4 99.5
Quadratic 70 90 94 32.3 78 88 103 47.8 60.3 106.9 99.6
∆-Large 67 91 97 33.9 73 84 103 55.0 64.4 108.6 99.4
pV CG-Large 54 89 99 47.4 74 83 115 56.1 71.9 105.5 98.7
pRP -Large 51 83 99 52.3 76 90 126 56.3 73.8 100.9 98.4
pME-Large 52 86 97 50.0 76 89 122 55.3 72.4 102.1 98.7
∆-Small 70 81 87 38.0 92 97 115 42.5 62.0 99.4 99.7
pV CG-Small 78 81 86 31.9 93 95 107 41.8 57.4 101.5 99.9
pRP -Small 88 84 86 23.8 94 85 94 39.9 53.5 105.8 100.0
pME-Small 85 84 87 25.6 94 88 97 40.5 53.8 104.8 100.0
∆-Fractional 70 85 90 34.7 84 93 109 44.1 60.7 103.4 99.7
pV CG-Fractional 77 84 88 30.5 88 93 105 43.2 57.3 103.6 99.9
pRP -Fractional 81 84 88 27.2 90 89 101 40.9 54.0 104.8 99.9
pME-Fractional 81 87 91 25.1 86 86 96 43.2 53.3 107.1 99.9

Table 6: The results of a computational BNE analysis with multiplicative strategies (in %). The Aggregate
Incentives, calculated as ||struth � srule||2, indicates the degree of strategizing bidders employ in the
BNE of each rule. The Standard Gini is calculated over each bidders payoff in equilibrium. The VCG
Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.

Tri-Model Domain (High-Revenue Quantile) using VCG Reference Point without MRC
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 100 100 100 0.0 100 100 100 34.7 0 100.0 100.0
Pay-as-Bid 25 46 55 103.2 69 87 111 45.6 44.6 115.6 97.5
Threshold 45 73 89 62.0 70 77 91 46.3 40.2 130.8 98.0
Quadratic 45 75 88 61.7 70 77 90 45.8 39.6 131.1 98.1
∆-Large 36 89 100 64.7 64 62 77 55.6 51.5 146.5 96.9
pV CG-Large 35 80 100 67.6 63 62 88 54.5 51.6 140.7 96.3
pRP -Large 38 74 94 67.8 64 69 100 52.9 48.8 131.9 96.6
pME-Large 38 73 90 68.1 66 73 102 51.3 46.9 128.9 97.1
∆-Small 51 59 76 67.9 87 87 100 40.2 34.1 112.9 98.9
pV CG-Small 54 62 81 62.7 84 84 92 42.1 34.9 119.7 98.7
pRP -Small 70 59 81 54.0 87 81 87 39.9 32.2 122.8 99.0
pME-Small 67 61 82 54.0 86 80 86 40.5 33.6 124.0 99.0
∆-Fractional 48 68 82 63.4 78 82 95 41.7 34.9 123.1 98.7
pV CG-Fractional 54 65 84 59.8 79 82 90 42.8 34.7 124.3 98.7
pRP -Fractional 61 66 86 53.8 81 78 86 40.4 31.8 128.1 99.0
pME-Fractional 58 69 88 53.0 78 77 84 41.9 33.5 131.1 98.9

Table 7: The results of a computational BNE analysis with multiplicative strategies (in %). The Aggregate
Incentives, calculated as ||struth � srule||2, indicates the degree of strategizing bidders employ in the
BNE of each rule. The Standard Gini is calculated over each bidders payoff in equilibrium. The VCG
Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.
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D. Results For Alternative Reference Points
Multiple authors (Erdil and Klemperer, 2010; Day and Cramton, 2012) have investigated non-VCG
reference points that are independent of the bidders’ bids, with the goal of minimizing incentives for
strategizing. Here we are showing results for the reserve reference point, which performs well, but
requires sellers to posses significant distributional information on bidders values.

Tri-Modal Domain using Reserve Price Reference Point with MRC
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 100 100 100 0.0 100 100 100 43.1 0 100.0 100.0
Pay-as-Bid 28 60 65 89.5 76 107 145 49.1 79.7 93.1 98.2
MRC Threshold 76 93 97 25.7 77 80 93 49.4 58.1 110.9 99.7
MRC Quadratic 70 93 98 31.0 78 81 94 50.3 61.3 109.8 99.5
MRC ∆-Large 63 93 98 37.9 76 84 102 55.6 66.2 108.1 99.2
MRC pV CG-Large 62 90 99 39.4 76 82 108 54.5 67.9 107.2 99.1
MRC pRP -Large 63 88 99 38.9 75 83 110 54.5 68.2 106.6 99.1
MRC pME-Large 61 90 98 40.6 76 83 110 54.4 68.3 106.4 99.1
MRC ∆-Small 78 86 90 28.1 87 89 103 44.5 58.0 104.9 99.9
MRC pV CG-Small 84 86 88 24.5 88 90 100 42.6 53.5 105.1 100.0
MRC pRP -Small 89 88 90 19.3 88 84 92 43.1 51.9 108.1 100.0
MRC pME-Small 86 88 90 20.8 88 85 92 43.6 51.0 107.7 100.0
MRC ∆-Fractional 78 93 97 23.7 77 79 92 49.4 57.4 111.6 99.7
MRC pV CG-Fractional 82 92 95 20.1 79 79 91 47.2 53.3 111.3 99.9
MRC pRP -Fractional 81 92 96 21.1 79 80 92 47.6 54.4 111.2 99.9
MRC pME-Fractional 80 91 96 21.8 78 80 92 48.2 55.5 111.1 99.8

Table 8: The results of a computational BNE analysis with multiplicative strategies (in %). The Aggregate
Incentives, calculated as ||struth � srule||2, indicates the degree of strategizing bidders employ in the
BNE of each rule. The Standard Gini is calculated over each bidders payoff in equilibrium. The VCG
Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.

Tri-Model Domain (High-Revenue Quantile) using Reserve Price Reference Point with MRC
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 100 100 100 0.0 100 100 100 34.7 0 100.0 100.0
Pay-as-Bid 25 46 55 103.2 69 87 111 45.6 44.6 115.6 97.5
MRC Threshold 56 82 94 48.0 73 69 77 42.8 37.2 142.7 99.0
MRC Quadratic 54 84 93 49.2 73 69 77 42.9 37.5 142.7 98.9
MRC ∆-Large 38 91 100 62.6 66 61 76 54.8 50.6 147.5 97.1
MRC pV CG-Large 39 84 100 63.4 66 63 84 52.8 49.5 142.6 96.9
MRC pRP -Large 39 80 100 64.8 66 64 87 53.4 50.1 139.7 96.6
MRC pME-Large 41 80 96 61.9 67 66 89 51.2 46.9 138.6 97.3
MRC ∆-Small 65 67 74 54.9 86 86 96 36.9 27.4 118.8 100.0
MRC pV CG-Small 67 68 80 50.4 84 82 89 38.5 28.9 124.8 99.8
MRC pRP -Small 83 78 59 49.4 84 83 98 39.7 27.4 120.3 99.7
MRC pME-Small 78 66 80 45.1 83 81 88 38.5 28.6 126.4 99.8
MRC ∆-Fractional 54 86 96 48.3 70 67 75 44.4 39.0 146.3 98.8
MRC pV CG-Fractional 57 84 94 46.7 72 68 77 43.0 36.9 144.1 99.1
MRC pRP -Fractional 56 83 94 47.9 71 69 78 43.3 37.1 142.9 99.0
MRC pME-Fractional 54 83 95 48.8 71 68 77 43.5 37.9 143.4 98.9

Table 9: The results of a computational BNE analysis with multiplicative strategies (in %). The Aggregate
Incentives, calculated as ||struth � srule||2, indicates the degree of strategizing bidders employ in the
BNE of each rule. The Standard Gini is calculated over each bidders payoff in equilibrium. The VCG
Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.

35



E. Results from the CATS Regions Generator
As noted in Section 6.3, we ran experiments using two generators: the Tri-Modal generator and the
CATS Regions generator. In this section, we present the results from the CATS Regions generator.
Note that this generator produces auction instances with a significantly smaller VCG-to-core distance,
which is why the results results are qualitatively similar, but less pronounced than those we have
obtained for the Tri-Modal generator.

Regions Domain using VCG Reference Point with MRC
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 100 100 100 0.0 100 100 100 43.1 0 100.0 100.0
Pay-as-Bid 28 60 65 89.5 76 107 145 49.1 79.7 93.1 98.2
MRC Threshold 71 88 94 32.4 79 89 105 48.3 61.2 105.9 99.6
MRC Quadratic 71 89 93 31.9 79 90 106 47.5 60.2 105.8 99.7
MRC ∆-Large 65 91 96 36.0 76 86 105 54.0 64.8 107.1 99.4
MRC pV CG-Large 58 88 99 44.1 76 85 113 54.7 70.2 104.9 98.9
MRC pRP -Large 57 86 98 44.8 77 87 118 54.5 70.4 103.5 98.9
MRC pME-Large 58 86 97 44.3 77 88 118 54.1 70.1 103.3 99.0
MRC ∆-Small 74 84 89 32.8 90 93 108 43.3 59.5 102.2 99.8
MRC pV CG-Small 80 84 87 28.7 90 94 104 42.6 55.1 103.0 99.9
MRC pRP -Small 84 87 88 23.9 91 89 96 40.9 51.3 105.5 100.0
MRC pME-Small 83 86 89 24.8 91 89 97 42.3 52.2 105.4 100.0
MRC ∆-Fractional 72 87 93 31.8 83 90 105 45.5 59.9 104.9 99.7
MRC pV CG-Fractional 77 86 89 28.8 86 92 104 44.0 56.3 104.2 99.9
MRC pRP -Fractional 82 87 91 23.8 87 86 96 43.5 52.7 107.0 99.9
MRC pME-Fractional 80 88 92 24.5 85 86 97 44.3 53.5 107.2 99.9

Table 10: The results of a computational BNE analysis with multiplicative strategies (in %). The Aggregate
Incentives, calculated as ||struth � srule||2, indicates the degree of strategizing bidders employ in the
BNE of each rule. The Standard Gini is calculated over each bidders payoff in equilibrium. The VCG
Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.

Regions Domain using VCG Reference Point without MRC
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 100 100 100 0.0 100 100 100 43.1 0 100.0 100.0
Pay-as-Bid 28 60 65 89.5 76 107 145 49.1 79.7 93.1 98.2
Threshold 68 87 93 35.3 79 90 107 47.9 62.5 105.4 99.5
Quadratic 70 90 94 32.3 78 88 103 47.8 60.3 106.9 99.6
∆-Large 67 91 97 33.9 73 84 103 55.0 64.4 108.6 99.4
pV CG-Large 54 89 99 47.4 74 83 115 56.1 71.9 105.5 98.7
pRP -Large 51 83 99 52.3 76 90 126 56.3 73.8 100.9 98.4
pME-Large 52 86 97 50.0 76 89 122 55.3 72.4 102.1 98.7
∆-Small 70 81 87 38.0 92 97 115 42.5 62.0 99.4 99.7
pV CG-Small 78 81 86 31.9 93 95 107 41.8 57.4 101.5 99.9
pRP -Small 88 84 86 23.8 94 85 94 39.9 53.5 105.8 100.0
pME-Small 85 84 87 25.6 94 88 97 40.5 53.8 104.8 100.0
∆-Fractional 70 85 90 34.7 84 93 109 44.1 60.7 103.4 99.7
pV CG-Fractional 77 84 88 30.5 88 93 105 43.2 57.3 103.6 99.9
pRP -Fractional 81 84 88 27.2 90 89 101 40.9 54.0 104.8 99.9
pME-Fractional 81 87 91 25.1 86 86 96 43.2 53.3 107.1 99.9

Table 11: The results of a computational BNE analysis with multiplicative strategies (in %). The Aggregate
Incentives, calculated as ||struth � srule||2, indicates the degree of strategizing bidders employ in the
BNE of each rule. The Standard Gini is calculated over each bidders payoff in equilibrium. The VCG
Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.
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F. Results For Additive Strategies
Here we report our main results for additive strategies (while in the body of the paper we have provided
the results for multiplicative strategies). Using an additive strategy, a bidder reports his value plus
an additive offset. We observe that the results are very consistent with the results we obtained using
multiplicative strategies. This consistency (i.e., independency of the choice of strategy space) provides
further confidence in our findings regarding the fairness comparison of the various payment rules.

Tri-Modal Domain using VCG Reference Point with MRC and Additive Strategies
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 0.00 0.00 0.00 0.00 100 100 100 43.1 0 100.0 100.0
Pay-as-Bid -0.77 -1.13 -1.63 1.20 82 105 138 48.9 80.5 90.8 96.7
MRC Threshold -0.36 -0.32 -0.28 0.50 83 93 109 47.9 64.5 102.9 99.3
MRC Quadratic -0.32 -0.31 -0.25 0.46 82 91 106 47.7 62.9 104.3 99.4
MRC ∆-Large -0.44 -0.28 -0.14 0.60 80 90 109 54.4 69.0 103.5 98.8
MRC pV CG-Large -0.44 -0.31 -0.04 0.60 78 86 113 53.9 70.6 104.0 98.7
MRC pRP -Large -0.46 -0.41 -0.11 0.64 80 90 123 53.7 71.6 100.8 98.5
MRC pME-Large -0.49 -0.40 -0.17 0.68 80 92 124 53.6 71.9 99.7 98.5
MRC ∆-Small -0.20 -0.43 -0.47 0.34 90 93 106 43.4 60.5 102.6 99.7
MRC pV CG-Small -0.20 -0.39 -0.50 0.33 91 93 101 44.5 58.6 103.0 99.8
MRC pRP -Small -0.14 -0.36 -0.52 0.27 92 89 96 43.4 55.9 104.8 99.8
MRC pME-Small -0.17 -0.35 -0.47 0.30 93 89 96 44.1 56.8 104.7 99.8
MRC ∆-Fractional -0.30 -0.38 -0.40 0.45 87 95 111 44.7 62.7 101.7 99.5
MRC pV CG-Fractional -0.24 -0.36 -0.43 0.37 88 93 104 45.0 59.2 103.3 99.7
MRC pRP -Fractional -0.20 -0.35 -0.41 0.32 89 89 99 43.7 56.8 104.9 99.8
MRC pME-Fractional -0.22 -0.33 -0.40 0.34 88 90 101 44.3 57.4 104.7 99.7

Table 12: The results of a computational BNE analysis with additive strategies (numbers are additive offsets).
The Aggregate Incentives, calculated as ||ps

truth�sruleq{v||2, indicates the degree of strategizing bidders
employ in the BNE of each rule. The Standard Gini is calculated over each bidders payoff in
equilibrium. The VCG Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.

Tri-Modal Domain (High-Revenue Quantile), VCG Ref. with MRC and Additive Strategies
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 0.00 0.00 0.00 0.00 100 100 100 34.8 0 100.0 100.0
Pay-as-Bid -0.85 -1.40 -1.84 1.36 68 75 95 46.1 51.3 123.2 94.8
MRC Threshold -0.58 -0.60 -0.46 0.83 72 77 89 44.9 41.4 130.5 97.9
MRC Quadratic -0.58 -0.62 -0.45 0.83 72 77 89 45.2 41.7 130.3 97.8
MRC ∆-Large -0.66 -0.44 -0.03 0.91 66 66 82 53.4 51.5 140.4 96.7
MRC pV CG-Large -0.64 -0.59 -0.02 0.89 66 66 89 52.1 50.9 137.0 96.5
MRC pRP -Large -0.65 -0.69 -0.30 0.92 67 70 101 50.7 48.6 129.4 96.7
MRC pME-Large -0.66 -0.66 -0.35 0.94 68 72 99 50.4 48.5 129.0 96.8
MRC ∆-Small -0.41 -0.99 -1.30 0.76 87 91 102 39.4 33.3 109.7 98.9
MRC pV CG-Small -0.42 -0.91 -1.21 0.75 86 90 98 39.9 32.4 113.0 99.0
MRC pRP -Small -0.28 -0.86 -1.43 0.64 90 89 95 37.4 27.8 113.7 99.4
MRC pME-Small -0.29 -0.96 -1.06 0.62 88 86 91 38.9 30.7 118.0 99.2
MRC ∆-Fractional -0.56 -0.80 -0.76 0.85 78 83 96 42.8 38.8 120.5 98.0
MRC pV CG-Fractional -0.48 -0.73 -0.95 0.76 81 85 93 40.6 33.9 120.6 98.9
MRC pRP -Fractional -0.43 -0.70 -0.96 0.69 83 83 91 38.1 30.3 122.4 99.2
MRC pME-Fractional -0.45 -0.73 -0.59 0.69 79 79 86 41.3 34.9 128.2 98.7

Table 13: The results of a computational BNE analysis with additive strategies (numbers are additive offsets).
The Aggregate Incentives, calculated as ||ps

truth�sruleq{v||2, indicates the degree of strategizing bidders
employ in the BNE of each rule. The Standard Gini is calculated over each bidders payoff in
equilibrium. The VCG Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.
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Tri-Modal Domain using VCG Reference Point without MRC and Additive Strategies
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 0.00 0.00 0.00 0.00 100 100 100 43.1 0 100.0 100.0
Pay-as-Bid -0.77 -1.13 -1.63 1.20 82 105 138 48.9 80.5 90.8 96.7
Threshold -0.35 -0.32 -0.28 0.49 82 91 107 47.2 64.2 103.9 99.3
Quadratic -0.34 -0.31 -0.31 0.48 82 92 108 47.1 63.7 103.7 99.4
∆-Large -0.48 -0.27 -0.13 0.65 80 90 110 55.6 70.5 103.1 98.6
pV CG-Large -0.54 -0.39 -0.06 0.74 78 89 122 55.4 74.1 100.6 98.1
pRP -Large -0.51 -0.40 -0.06 0.70 78 88 123 55.1 73.2 100.8 98.3
pME-Large -0.50 -0.40 -0.14 0.70 79 91 124 54.2 72.8 100.0 98.4
∆-Small -0.25 -0.48 -0.53 0.41 93 96 111 43.0 63.5 100.0 99.6
pV CG-Small -0.19 -0.42 -0.55 0.34 94 92 100 43.9 58.7 102.8 99.8
pRP -Small -0.11 -0.44 -0.56 0.28 96 87 95 42.7 56.2 104.6 99.8
pME-Small -0.12 -0.46 -0.57 0.29 96 89 98 43.5 57.5 103.7 99.8
∆-Fractional -0.34 -0.41 -0.44 0.50 88 96 113 44.3 64.7 100.4 99.4
pV CG-Fractional -0.24 -0.40 -0.45 0.38 90 92 102 44.3 59.7 103.3 99.7
pRP -Fractional -0.17 -0.41 -0.46 0.31 91 88 98 42.5 56.0 104.9 99.8
pME-Fractional -0.20 -0.38 -0.45 0.33 89 90 101 43.1 57.0 104.5 99.8

Table 14: The results of a computational BNE analysis with additive strategies (numbers are additive offsets).
The Aggregate Incentives, calculated as ||ps

truth�sruleq{v||2, indicates the degree of strategizing bidders
employ in the BNE of each rule. The Standard Gini is calculated over each bidders payoff in
equilibrium. The VCG Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.

Tri-Modal Domain (High-Revenue Quantile), VCG Ref. w/o MRC and Additive Strategies
Strategies Aggregate % of VCG Payoff Standard VCG % VCG

Payment Rule Sm. Med. Lrg. Incentives Sm. Med. Lrg. Gini Gini Revenue Eff.
VCG 0.00 0.00 0.00 0.00 100 100 100 34.8 0 100.0 100.0
Pay-as-Bid -0.85 -1.40 -1.84 1.36 68 75 95 46.1 51.3 123.2 94.8
Threshold -0.58 -0.69 -0.56 0.84 72 78 92 44.7 40.6 127.8 97.8
Quadratic -0.57 -0.65 -0.48 0.82 71 77 90 44.7 40.7 129.9 97.9
∆-Large -0.68 -0.38 0.00 0.93 65 64 81 54.6 52.9 142.8 96.6
pV CG-Large -0.66 -0.61 -0.02 0.92 64 64 91 52.9 52.1 137.8 96.2
pRP -Large -0.69 -0.74 -0.28 0.99 66 70 103 52.4 50.6 127.8 96.1
pME-Large -0.68 -0.72 -0.37 0.96 67 72 101 51.1 49.3 127.4 96.5
∆-Small -0.39 -1.01 -1.45 0.77 88 92 104 39.0 32.8 107.8 98.9
pV CG-Small -0.45 -0.87 -1.24 0.78 87 89 95 39.6 32.8 114.1 99.0
pRP -Small -0.23 -1.00 -1.54 0.65 92 88 96 37.9 28.1 112.0 99.1
pME-Small -0.24 -1.02 -1.31 0.63 90 86 93 38.3 29.3 114.8 99.2
∆-Fractional -0.50 -0.88 -0.88 0.80 79 85 98 41.3 36.1 118.6 98.4
pV CG-Fractional -0.48 -0.80 -1.12 0.78 82 87 95 40.1 32.9 117.7 98.9
pRP -Fractional -0.39 -0.86 -0.84 0.67 83 82 89 38.8 30.9 123.4 99.0
pME-Fractional -0.42 -0.81 -0.59 0.67 79 79 86 41.4 34.6 128.2 98.7

Table 15: The results of a computational BNE analysis with additive strategies (numbers are additive offsets).
The Aggregate Incentives, calculated as ||ps

truth�sruleq{v||2, indicates the degree of strategizing bidders
employ in the BNE of each rule. The Standard Gini is calculated over each bidders payoff in
equilibrium. The VCG Gini is based on the fraction of bidders’ VCG payoffs recieved in equilibrium.
: indicates convergence at the ε � 2% level without δ.

38


	Introduction
	Bidder Heterogeneity in Real-world Spectrum Auctions
	Fairness: A Motivating Example
	Measuring Fairness in Payoff Space via the Gini Coefficient
	Comparing Payment Rules in Realistically-sized Combinatorial Auction Domains
	Overview of Contributions

	Related Work
	Preliminaries
	Formal Model
	VCG, Payoff, and Discount
	The Core
	Bayes-Nash Equilibrium
	Existing Theoretical Analysis of the Quadratic Rule
	The LLG Setting
	The Quadratic Rule


	Design Goals
	High Efficiency
	Good Aggregate Incentives
	Fairness: Gini Coefficients for Payment Rules
	High revenue

	A General Framework for Designing Core-Selecting Payment Rules
	The pricing problem
	Characterizing Payment Rules By Distance Measures
	Standard Lebesgue Metrics and the Minimum Revenue Core
	Weighted Metrics
	Weights for Weighted Metrics
	Parameterized Framework for all Payment Rules

	Methods
	Approximate Bayes-Nash Equilibrium Calculation
	Choosing a Strategy Space for our Experiments
	Domain Generators
	Reserve Prices

	Results for Realistically-sized Combinatorial Auction Domains
	Efficiency analysis
	Incentive Analysis
	Fairness analysis
	The VCG-to-Core Distance: Fairness (and Revenue)
	Minimum Revenue Core (MRC)
	Alternative Reference Points

	Conclusion
	The BNE Calculation Algorithm
	The Tri-Modal Generator Algorithm
	Results Without MRC
	Results For Alternative Reference Points
	Results from the CATS Regions Generator
	Results For Additive Strategies

