
A Faster Core Constraint Generation Algorithm for Combinatorial Auctions

Benedikt Bünz
Department of Computer Science

Stanford University
buenz@cs.stanford.edu

Sven Seuken
Department of Informatics

University of Zurich
seuken@ifi.uzh.ch

Benjamin Lubin
Information Systems Department

Boston University School of Management
blubin@bu.edu

Abstract
Computing prices in core-selecting combinatorial auc-
tions is a computationally hard problem. Auctions with
many bids can only be solved using a recently proposed
core constraint generation (CCG) algorithm, which may
still take days on hard instances. In this paper, we
present a new algorithm that significantly outperforms
the current state of the art. Towards this end, we first
provide an alternative definition of the set of core con-
straints, where each constraint is weakly stronger, and
prove that together these constraints define the iden-
tical polytope to the previous definition. Using these
new theoretical insights we develop two new algorith-
mic techniques which generate additional constraints in
each iteration of the CCG algorithm by 1) exploiting
separability in allocative conflicts between participants
in the auction, and 2) by leveraging non-optimal solu-
tions. We show experimentally that our new algorithm
leads to significant speed-ups on a variety of large com-
binatorial auction problems. Our work provides new in-
sights into the structure of core constraints and advances
the state of the art in fast algorithms for computing core
prices in large combinatorial auctions.

1 Introduction
Combinatorial auctions (CAs) have found application in
many real-world domains, including procurement auctions
(Sandholm 2007), TV advertising auctions (Goetzendorff et
al. 2014) and government spectrum auctions (Cramton 2013;
Ausubel and Baranov 2014). CAs are attractive, as they can
produce efficient outcomes even when bidders have complex
preferences on bundles of heterogeneous items. However,
the construction of such auctions requires myriad design de-
cisions, even if we limit the scope to sealed bid mechanisms.
First, a potential design must include a reasonable bidding
language for participants to use; many have been proposed
in the literature, e.g., XOR, OR*, etc. (Nisan 2006). Next, a
means for solving the NP-hard winner-determination prob-
lem must be obtained (Sandholm 2002). Finally, the de-
sign must specify a payment mechanism. The classic answer
to this latter question is the well-known VCG mechanism,
where agents pay the externality they impose on all other
agents (Vickrey 1961; Clarke 1971; Groves 1973).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, as has been pointed out in the literature
(Ausubel and Milgrom 2006), there are numerous issues
with VCG, most notably that it may result in arbitrarily low
revenue to the seller. This not only creates a strong disin-
centive for sellers to use VCG, but also opens the possibility
that collusive collections of bidders may be able to come to-
gether with an outside offer that is more attractive than that
in VCG, undermining the VCG-based regime. This observa-
tion has led to considerable interest in core-selecting com-
binatorial auctions (Ausubel and Milgrom 2002; Milgrom
2007; Day and Milgrom 2008), which offer a principled way
to ensure that revenue in the auction is guaranteed to be high
enough to avoid such incentives towards collusion.

However, solving this economic problem has created a
computational one, as the naı̈ve formulation of the pricing
problem requires computing the optimal allocation for all 2n

coalitions to describe the core polytope. The state-of-the art
approach is to use constraint generation to consider only the
most valuable coalitions, which leads to a moderate num-
ber of constraints in expectation (Day and Raghavan 2007).
Nevertheless, run-time is still a limiting factor in practice.

1.1 Overview of Results
In this paper, we propose several novel methods for speed-
ing up the core pricing algorithm by reducing the number
of CCG iterations in the algorithm, and thus the number of
NP-hard problems that need to be solved. We offer:

1. Limits on the effectiveness of an existing heuristic.
2. Theoretical results that enable stronger and more precise

core constraints.
3. Two algorithmic ideas that generate additional constraints

in each CCG iteration by exploiting separability in alloca-
tive conflicts between participants and by leveraging non-
optimal solutions.

4. Experimental results, showing that our main algorithm
significantly outperforms the current state of the art.

1.2 Related Work
This paper directly extends the earlier work of Day and
Raghavan (2007), where they propose to use constraint gen-
eration to concisely codify the pricing problem in core-
selecting CAs. We also include more recent advances pro-
posed by Day and Cramton (2012), where core prices are
chosen that minimize the L2 metric to VCG.

The constraint generation method dates back to the 50s,
as a way to solve math programs that contain too many con-
straints to capture directly (Dantzig, Fulkerson, and Johnson
1954; Balinski 1965). Instead of solving the full program at
once, the primary problem is solved with only a subset of its
constraints yielding a provisional solution. Then a secondary
problem is formulated using this provisional solution, the re-
sult of which yields either a new constraint for the primary,
or a proof that the primary is already correct. The algorithm
iterates between the two problems, until such a proof is ob-
tained (Nemhauser and Wolsey 1988). Such methods have
found wide applicability in the operations literature in areas
such as airline scheduling (Hoffman and Padberg 1993) and
portfolio optimization (Künzi-Bay and Mayer 2006).

2 Preliminaries
In a combinatorial auction (CA), there is a set G of m dis-
tinct, indivisible items, and a setN of n bidders. Each bidder
i has a valuation function vi which, for every bundle of items
S ⊆ G, defines bidder i’s value vi(S) ∈ R, i.e., the maxi-
mum amount that bidder i would be willing to pay for S. To
simplify notation, we assume that the seller has zero value
for the items. However, all of our results also hold for set-
tings where the seller has non-zero value for the items (see
Day and Cramton (2012) for how to handle reserve prices).

We let p = (p1, ..., pn) denote the payment vector, with pi
denoting bidder i’s payment. We assume that bidders have
quasi-linear utility functions, i.e., ui(S, pi) = vi(S) − pi.
Bidders may make a non-truthful report about their value
function to the mechanism. However, in this paper we do
not study the incentive properties of the payment rule, and
thus we do not need to distinguish between the agents’ true
value and their value report. To simplify notion, we use vi to
denote an agent’s report. Additionally, we will assume that
bidders use the XOR bidding language, but all of our theo-
retical results in Section 4 will apply to any bidding langue.

We define an allocation X = (X1, . . . , Xn) ⊆ Gn as
a vector of bundles, with Xi ⊆ G being the bundle that i
gets allocated. Given an allocation X and a set of bidders
A ⊂ N , we let XA denote the sub-allocation corresponding
to the bidders inA. An allocationX is feasible ifXi∩Xj =
∅ ∀i, j ∈ N, i 6= j. We let X denote the set of feasible
allocations. With each allocation X we associate a coalition
C(X) = {i|i ∈ N,Xi 6= ∅}, i.e., those agents that get
allocated under X . We define the total value of allocation X
to agents C as VC(X) =

∑
i∈C vi(Xi).

A mechanism’s allocation rule maps the bidders’ reports
to an allocation. We only consider rules that maximize so-
cial welfare. The winner determination problem (determin-
ing the welfare-maximizing allocation) is a combinatorial
optimization problem. We denote the solution to this as
X∗ = arg maxX VN (X), subject to X ∈ X, when the
bids of all bidders are considered in the maximization. When
only the bids of the coalitionC shall be considered, we write
wd(C) = arg maxX VC(X).

A mechanism specifies an allocation rule, defining who
gets which goods, and a payment rule, defining prices. To-
gether, these define the outcome O = 〈X, p〉. An outcome
O is called individually rational (IR) if, ∀i: ui(Xi, pi) ≥ 0.

2.1 Core-selecting Combinatorial Auctions
With this background, we are ready to consider appropri-
ate payment rules for CAs. The famous VCG mechanism
(Vickrey 1961; Clarke 1971; Groves 1973) is an appeal-
ing candidate because it is strategyproof (i.e., no individ-
ual bidder can benefit from misreporting his value). Unfor-
tunately, in CAs where some items are complements, us-
ing VCG may result in an outcome outside of the core.
Informally, this means that a coalition of bidders is will-
ing to pay more in total than what the seller receives from
the current winners. To avoid such undesirable outcomes,
recent auction designs have employed payment rules that
restrict prices to be in the core (Day and Raghavan 2007;
Day and Milgrom 2008).

Formally, given outcome O, we let the coalition CO de-
note the set of bidders who are allocated under outcome O.
Definition 1 (Blocked Outcome and Blocking Coalition).
An outcome O is blocked, if (a) it is not individually ratio-
nal, or (b) there exists another outcome O which generates
strictly higher revenue for the seller and for which every bid-
der in the corresponding coalitionCO weakly prefersO over
outcome O. The coalition CO is called a blocking coalition.
Definition 2 (Core). An outcome is in the core if it is (a)
individually rational and (b) not blocked by any coalition.

We can restrict our attention to allocation rules that are
efficient because all inefficient outcomes are not in the core.
Thus, it suffices to think about the payments, and the re-
maining challenge is to find payments that lie in the core.
Intuitively, the payments for the winners must be sufficiently
large, such that there exists no coalition that is willing to pay
more to the seller than the current winners are paying.

Formally, we let W denote the set of winners. Given W
and p, the opportunity cost of already-winning members of
the coalition C is VC(X∗) −

∑
i∈C pi. Thus, in addition to

requiring IR, the condition that p lies in the core can be ex-
pressed as follows (Day and Raghavan 2007):∑

i∈W

pi ≥ VC(wd(C))− VC(X∗) +
∑
i∈C

pi ∀C ⊆ N (1)

This means that the core polytope can be defined by having
one constraint for each possible coalition C ⊆ N . The left-
hand side (LHS) of each constraint is the sum of the win-
ning payments; the right-hand side (RHS) is the value of the
agents in coalition C for the allocation chosen if only their
bids are considered, i.e., VC(wd(C)), minus the opportunity
cost of already-winning members of the coalition. Because
pi : i ∈ W ∩ C appears on both sides, and because pi = 0
for i 6∈W , the core constraints can also be formulated as:∑

i∈W\C

pi ≥ VC(wd(C))− VC(X∗) ∀C ⊆ N (2)

Note that the core is defined in terms of bidders’ true val-
ues. However, given that no strategyproof core-selecting CA
exists, we must expect that bidders will be non-truthful. Go-
eree and Lien (2014) have recently shown via a Bayes-Nash
equilibrium analysis that the outcome of a core-selecting CA
can be outside the true core. Thus, core-selecting CAs only
guarantee to produce outcomes in the revealed core, i.e., in
the core with respect to reported values.

2.2 Core Constraint Generation (CCG)
Because the number of core constraints is exponential in n,
it is impossible to enumerate them for even medium-sized
CAs. Fortunately, we can often consider only a small frac-
tion of them by using core constraint generation (CCG)
as described by Day and Raghavan (2007). This iterative
method applies the following two steps in each round t:

1. find a candidate payment vector pt, given all core con-
straints generated so far

2. find the most blocking coalition (if any), given the current
candidate payment vector pt

The algorithm is initialized using the VCG payments pVCG

as the first payment vector. In step (2), the most blocking
coalition is the one that maximizes the RHS of constraint
set (2), which can be found by solving the following Integer
Program (IP):
z(pt) = max

∑
i∈N

∑
S⊆G

vi(S)ySi −
∑
i∈W

(vi(X
∗
i)− pti)γi (3)

subject to
∑
S⊇{j}

∑
i∈N

ySi ≤ 1 ∀j ∈ G (4)

∑
S⊆G

ySi ≤ 1 ∀i ∈ N \W (5)

∑
S⊆G

ySi ≤ γi ∀i ∈W (6)

γi ∈ {0, 1} ∀i ∈W (7)

ySi ∈ {0, 1} ∀i ∈ N,S ⊆ G (8)

In this IP, we have two kinds of decision variables. First,
for all winners i, γi is equal to 1 if winner i is part of the
most blocking coalition. Second, for all i, and all S ⊆ G, ySi
is equal to 1 if bidder i is part of the most blocking coalition
and is allocated bundle S. Note that vi(X∗i) denotes bidder
i’s value for the efficient allocation.

This IP essentially solves the winner determination prob-
lem, but where winners’ bids are reduced by their respective
opportunity cost. The objective z(pt) represents the coali-
tional value of the most blocking coalition, i.e., the maxi-
mum total payment which the coalition would be willing to
offer the seller. If this amount is equal to the current sum
of the winners’ payments (i.e., if z(pt) =

∑
i p
t
i), then no

blocking coalition exists, and the overall algorithm termi-
nates. Otherwise we can utilize constraint set (2) to create
the constraint

∑
i∈W\Cτ pi ≥ z(pτ)−

∑
i∈W∩Cτ p

τ
i , where

Cτ denotes the coalition identified in round τ of the algo-
rithm. This is then added to the following LP, which is solved
to find the candidate price vector for the next iteration:

pt = arg min
∑
i∈W

pi (9)

subject to
∑

i∈W\Cτ
pi ≥ z(pτ)−

∑
i∈W∩Cτ

pτi ∀τ ≤ t (10)

pVCG
i ≤ pi ≤ vi(X∗i) ∀i ∈W (11)

This LP will find a new candidate price vector, where
each pi is lower bounded by i’s VCG payment and upper-
bounded by i’s bid (which enforces IR). Additionally, the

prices will obey all core constraints (10) that have been
added in any prior iteration. Here, the objective of the LP is
to minimize total bidder payments, which Day and Ragha-
van (2007) argued reduces the total potential gains from de-
viating from truth-telling. However, this by itself does not
result in a unique price vector. Parkes, Kalagnanam, and Eso
(2001) originally introduced the idea of finding payments
that minimize some distance metric to VCG payments. Fol-
lowing this idea, Day and Cramton (2012) proposed to min-
imize the L2 norm to VCG by solving a Quadratic Program
(QP), which produces a unique price vector in every iteration
of the algorithm. This is also the approach taken in practice
for the most recent spectrum auctions in the UK, the Nether-
lands, and Switzerland. For this reason, we also minimize
the L2 norm as a secondary objective in our experiments.

3 The Max-Traitor Heuristic
In running CCG, it is often the case that multiple blocking
coalitions have the same coalitional value, and thus we have
a choice over which specific core constraint to add in a par-
ticular iteration. Day and Cramton (2012) briefly mention in
their appendix that it might be helpful to minimize the car-
dinality of W \ C as a secondary objective when searching
for the most blocking coalition. This is equivalent to max-
imizing W ∩ C, i.e., the number of winners in C, which
we henceforth call traitors. We use the term Max-Traitor
heuristic to refer to the algorithm that generates constraints
with a maximal number of traitors (given the same coali-
tional value).

One intuition as to why this heuristic may be helpful is
that it will decrease the number of variables in a gener-
ated constraint, thereby strengthening it. We will build upon
this intuition to strengthen the core constraints themselves
in Section 4. The following example demonstrates why the
Max-Traitor heuristic can be useful:

Bidder 1: {A}=10 Bidder 3: {C}=10
Bidder 2: {B}=10 Bidder 4: {A,B}=6

Bidders 1, 2 and 3 form the winning coalition with a total
value of 30. Two different coalitions with coalitional value
6 are available: {4} and {3, 4}. The former coalition, which
contains no traitors, induces the constraint:

p1 + p2 + p3 ≥ 6 (12)

resulting in provisional payments of (2,2,2,0) when first
minimizing the sum of all payments, and then minimizing
the L2 metric to VCG. The coalition {3, 4}, which contains
a traitor (Bidder 3), induces the constraint:

p1 + p2 ≥ 6 (13)

This constraint is stronger, as it contains fewer variables, and
immediately leads to the final core payments of (3,3,0,0).

Day and Cramton (2012) state in their appendix that
among their test cases, maximizing the set of traitors never
led to constraints that were non-binding at termination of the
algorithm. However, we have been able to identify exam-
ples where the heuristic produces non-binding constraints.
We now provide a representative example of how this occurs.

Bidder 1: {A}=10 Bidder 5: {A,B,C,D,E}=12
Bidder 2: {B}=10 Bidder 6: {A,B,E}=8
Bidder 3: {C}=10 Bidder 7: {C,D,E}=8
Bidder 4: {D}=10

Bids {1,2,3,4} form the winning allocation with a value of
40. The VCG payments in this example are 0 for all bidders.
The unique most blocking coalition consists of Bidder 5 and
has a coalitional value of 12, which is higher than the current
total payments of 0. Thus, the generated constraint is:

p1 + p2 + p3 + p4 ≥ 12. (14)

This leads to the payment vector (3,3,3,3,0,0,0). Next, the
algorithm finds the blocking coalition consisting of {1,2,7}
with a coalitional value of 14, which is higher than the cur-
rent total payments of 12. The generated constraint is:

p3 + p4 ≥ 8 (15)

This leads to the payment vector (2,2,4,4,0,0,0).
Next, the blocking coalition {3, 4, 6} with coalitional

value 16 is selected, again with value greater than the cur-
rent payments of 12, and leading to the constraint:

p1 + p2 ≥ 8 (16)

This produces the final payment vector (4,4,4,4,0,0,0).
There does not exist a blocking coalition at this payment
vector, so the algorithm terminates. However, the constraint
(14) ends up being non-binding, even though we employed
the Max-Traitor heuristic. Note that this is a representative
example and not a corner case. Nevertheless, Max-Traitor
is often effective at reducing the run-time of the CCG algo-
rithm, yet, our algorithm dominates it (see Section 6).

4 Theoretical Results
4.1 Core of Non-Blocking Allocations
The core of an auction is generally defined in terms of coali-
tions. We now extend this definition to allocations. First, re-
call the definition we provided in Section 2.1:

(C1):
∑

i∈W\C

pi ≥ VC(wd(C))− VC(X∗) ∀C ⊆ N (17)

We now formulate this constraint set in terms of allocations.

(C2):
∑

i∈W\C(X)

pi ≥ VC(X)(X)−VC(X)(X
∗) ∀X ∈ X (18)

We call any allocation X for which this constraint is vi-
olated a blocking allocation. Proposition 1 shows that the
constraint set (C2) describes the same core prices as (C1).
Proposition 1 (Core of Non-Blocking Allocations). The two
sets of constraints (C1) and (C2) describe the same core.

Proof. We will show that each constraint in (C1) is implied
by one constraint in C(2) and vice versa. Therefore, the two
constraint sets describe the same core polytope.

“(C2) =⇒ (C1)”: Every constraint in (C1) corresponds
to a coalition C. For every such C, there exists an allocation
X such that X = wd(C). Thus, every constraint in (C1)
also exists in (C2).

“(C1) =⇒ (C2)”: Every constraint in (C2) corresponds
to an allocation X which in turn corresponds to a coali-
tion C(X). Because (C1) contains one constraint for every
coalition, it also contains one for the coalition C(X). Be-
cause the winner determination algorithm selects the value-
maximizing allocation for a given coalition, we know that
VC(X)(wd(C(X))) ≥ VC(X)(X). Thus, the constraint cor-
responding to coalition C(X) in (C1) is weakly stronger
than the corresponding constraint in (C2).

Remark 1. The existence of a blocking allocation implies
the existence of a blocking coalition and vice versa.

4.2 Core Conflicts
Let us now re-consider the first example from Section 3, and
the constraint (12) that was generated through the coalition
{4}. The constraint implicitly assumes that Bidder 4 cares
about Bidder 3’s payment, even though the allocations from
Bidder 3 and Bidder 4 are not in conflict. In fact, Bidder 3
is only interested in good C, and Bidder 4 has 0 value for
good C. Thus, Bidder 4 is indifferent to Bidder 3’s payment.
We will now show that we can formalize this intuition and
generate a more powerful set of core constraints.

We say that an allocation X1 is in conflict with an alloca-
tion X2 if it is not feasible to simultaneously realize the two
allocations X1 and X2; otherwise we say that X1 is not in
conflict with X2. We now define the analogous concept for
winners. For a winner i, we let X∗i denote winner i’s alloca-
tion. We we say that i is in conflict with allocation X if it is
not feasible to simultaneously realize X∗i and X; otherwise
we say that i is not in conflict with X .

Observe that in the example discussed above, winners 1
and 2 are in conflict with the allocation corresponding to
Bidder 4, while winner 3 is not.

As we have seen, some blocking allocations are not in
conflict with all winnersW . We letWX ⊆W denote the set
of all winners who are in conflict with an allocation X . By
dropping the non-conflicted winners from the left side of the
constraints in set (C2), we get the following set of weakly
stronger constraints:

(C3):
∑

i∈WX\C(X)

pi ≥ VC(X)(X)−VC(X)(X
∗) ∀X ∈ X (19)

The following theorem shows that (C3) still describes the
same core polytope as (C1) and (C2). In Section 5, we will
show that this insight is valuable, because it enables us to
generate, for any blocking allocation, a weakly stronger core
constraint while preserving the core polytope.
Theorem 1 (Weakly Stronger Core Constraints). The two
sets of constraints (C2) and (C3) describe the same core.

Proof. We follow the same structure as in the previous proof:

“(C3) =⇒ (C2)”: For each constraint in (C2) there is a
corresponding constraint in (C3) defined on the same allo-
cation X . If all winners in W \ C(X) are in conflict with
X , then the two constraints are the same. If there exist win-
ners in W \ C(X) that are not in conflict with X , then we
have strictly fewer variables on the LHS of the constraint

in (C3) but the same (constant) terms on the RHS. Because
payments are positive and additive, the constraint in (C3) is
strictly stronger. In both cases, the constraint in (C3) implies
the constraint in (C2).

“(C2) =⇒ (C3)”: Each constraint in (C3) corresponds
to some allocation X . We let X̄ = X∗W\WX

denote the sub-
allocation of X∗ corresponding to the winners in W \WX .
Note that because the winners in W \WX are not in conflict
withX , the allocationX∪X̄ must be feasible (where we let
“∪” denote the natural combination of two sub-allocations).
We now consider the constraint in (C2) that corresponds to
this allocationX∪X̄ , for which we can infer the following:

VC(X∪X̄)(X ∪ X̄) = VC(X)(X) + VC(X̄)(X̄) (20)

= VC(X)(X) + VW\WX (X∗) (21)

Since C(X ∪ X̄) = C(X) ∪ (W \WX) we can infer the
following on the opportunity value of C(X ∪ X̄)

VC(X∪X̄)(X
∗) ≤ VC(X)(X

∗) + VW\WX (X∗) (22)

We can also infer that

W \ C(X ∪ X̄) = W \
{

(W \WX) ∪ C(X)
}

=
{
W \ (W \WX)

}
\ C(X) = WX \ C(X) (23)

Putting this all together, we obtain the following:∑
i∈WX\C(X)

pi =
∑

i∈W\C(X∪X̄)

pi by (23) (24)

≥ VC(X∪X̄)(X ∪ X̄)− VC(X∪X̄)(X
∗) by (C2) (25)

≥ VC(X)(X) + VW\WXX
∗− by (21) (26)(

VC(X)(X
∗) + VW\WX (X∗)

)
by (22) (27)

= VC(X)(X)− VC(X)(X
∗) (28)

Thus, the constraint corresponding toX∪X̄ in (C2) implies
the constraint corresponding to X in (C3).

The “(C2) =⇒ (C3)” direction of the proof shows that
for any constraint from (C2) there exists a weakly stronger
constraint in (C3) that can directly be constructed. “Small”
allocations that are in conflict with only few winners are es-
pecially strengthened through (C3).

4.3 Splitting up Allocations
Our next result shows that we can split up allocations in the
constraint generation process under certain conditions.
Proposition 2. Consider an allocation X ∈ X that con-
sists of two separable sub-allocations X1 and X2, i.e., X =
X1 ∪X2 and C(X1) ∩ C(X2) = ∅. In constraint set (C3),
if WX1

∩WX2
= ∅, then the two constraints corresponding

to X1 and X2 imply the constraint corresponding to X .

Proof. The constraint generated by X1 is:∑
i∈WX1

\C(X1)

pi ≥ VC(X1)(X1)− VC(X1)(X
∗) (29)

The constraint generated by X2 is:∑
i∈WX2

\C(X2)

pi ≥ VC(X2)(X2)− VC(X2)(X
∗) (30)

Winner 2
Value =10
Goods {B}

Winner 1
Value =10
Goods {A}

Bid 5
Value =4
Goods {A,B}

Winner 4
Value =10
Goods {E,F}

Winner 3
Value =10
Goods {C,D}

Bid 6
Value =4
Goods {C,E}

Bid 7
Value =4
Goods {D,F}

Figure 1: Conflict Graph for “Separability Example.”

Because WX1
∩WX2

= ∅ and C(X1) ∩ C(X2) = ∅, when
adding (29) and (30) we obtain the constraint for X:∑

i∈WX\C(X)

pi ≥ VC(X)(X)− VC(X)(X
∗) (31)

5 Algorithmic Ideas
Based on the theoretical results derived in the previous sec-
tion, we now present two algorithmic ideas that improve
upon the standard CCG algorithm. The goal of both ideas
is to reduce the number of iterations of the CCG algorithm,
whilst not increasing the complexity of each iteration.

5.1 Exploiting “Separability”
Our first idea exploits certain structure in the conflicts be-
tween the winners and losers to split up core constraints,
which we can formally capture via a conflict graph (see Fig-
ure 1). The conflict graph for a set of winnersW and a block-
ing allocation X is a bipartite graph G = (W,X,E) with
(i, j) ∈ E if and only if winner i ∈W is in conflict with the
allocation Xj . If the conflict graph is separable into discon-
nected components (as in Figure 1), then the corresponding
allocation can be split up, and multiple constraints can be
generated in one step (as described below).

Consider the example in Figure 1, where the bids of the
blocking coalition are modeled as light (yellow) nodes, the
winning allocations are modeled as dark (blue) nodes, and
conflicts as edges. Assume that the VCG payments lie at
the origin. A straightforward application of CCG would find
bids {5, 6, 7} as the most blocking coalition with coalitional
value of 4+4+4 = 12, leading to the following constraint:

p1 + p2 + p3 + p4 ≥ 12. (32)

This constraint by itself leads to the payment vector of
(3,3,3,3,0,0,0). We now see that bids {6, 7} are still block-
ing, leading to the following constraint:

p3 + p4 ≥ 8. (33)

The resulting payment vector is (2,2,4,4,0,0,0), which is also
the final payment vector.

Our first algorithmic idea called Separability exploits the
separability between the bidders. In particular, in our exam-
ple, Bid 5 is only in conflict with the allocations of winners
1 and 2, and bids 6 and 7 are only in conflict with the al-
locations of winners 3 and 4. If we generate one constraint
for each separated allocation, we get the following two con-
straints in one step:

p1 + p2 ≥ 4 (34)
p3 + p4 ≥ 8 (35)

Based on Proposition 1 and Theorem 1, we know that the
new core constraints (based on allocations instead of coali-
tions) are not over-constraining the price vector. Further-
more, based on Proposition 2, we know that the split-up of
the allocation implies the original constraint p1 + p2 + p3 +
p4 ≥ 12, i.e., we are not under-constraining the price vector.
Thus, our algorithm is still guaranteed to terminate with the
correct core price vector. Indeed, the resulting payment vec-
tor after adding these two constraints is (2,2,4,4,0,0,0). Thus,
exploiting the separability of the conflict graph, we reach the
final payment vector in just one iteration of the CCG algo-
rithm instead of two. Whenever the conflict graph is separa-
ble in the way described, we can add multiple constraints in
one step. Note that this does not guarantee that the overall al-
gorithm will necessarily terminate in fewer steps. However,
our expectation is that, on average, this will reduce the num-
ber of CCG iterations, each of which requires the solution of
an NP-hard problem (finding a blocking coalition). We will
show in Section 6 that the Separability idea indeed leads to
a significant speed-up of the CCG algorithm.

5.2 Exploiting “Incumbent Solutions”
Our second algorithmic technique employs previously dis-
carded intermediate solutions to generate additional con-
straints that would otherwise not be included. Recall that
the CCG algorithm solves an IP in every iteration to find
the most blocking coalition, and the optimal solution to this
IP then corresponds to one new core constraint. We note
that every feasible, even non-optimal solution to this IP still
corresponds to a feasible allocation, which corresponds to
a core constraint in constraint set (C2). By Proposition 1,
adding additional core constraints based on those alloca-
tions, we are still describing the same core polytope. The
main idea of “Incumbent Solutions” is to collect all (non-
optimal) blocking incumbents that are found while solving
one instance of the IP, and to add all corresponding core con-
straints at once. The motivation for adding core constraints
based on sub-optimal solutions is that these constraints may
have been added in later iterations anyway (with some like-
lihood), and by adding them earlier we can save the corre-
sponding CCG iterations.

Fortunately, the majority of optimization algorithms for
solving IPs are tree-search algorithms (e.g., using branch-
and-bound). These algorithms automatically encounter in-
termediate solutions while searching for the optimal solu-
tion. In our experiments, we use IBM’s CPLEX to solve the
IPs, and the default branch-and-bound IP-solver automati-
cally collects all incumbent solutions without incurring ex-
tra work. We will show in Section 6 that the Incumbents idea
indeed leads to a significant speed-up of the CCG algorithm.

6 Experiments
To test the ideas proposed in Section 5, we ran experiments
using CATS (Combinatorial Auction Test Suite) (Leyton-
Brown and Shoham 2006). We used each of the standard
CATS distributions, as well as a simple legacy distribution
from the literature (Sandholm 2002) called Decay (aka L4).
We varied the number of goods between 128 and 256, and

the number of bids between 100 and 4,000. For each combi-
nation of distribution, number of goods and number of bids,
we created 50 random CATS instances. In total we created
1,550 instances and ran 9,300 experiments. The experiments
were run on a high-performance computer with 24 × 2.2
GHZ AMD Opteron cores and 66 GB of RAM. All mathe-
matical programs were solved using CPLEX 12.6. The total
run-time of all experiments was more than 40 days.

6.1 Experimental Results
We present our primary results in Table 1. Each row repre-
sents a separate distribution, for which we report the number
of goods and bids that were used to generate the particu-
lar instance. As Day and Raghavan (2007) have shown, the
run-time of CCG scales exponentially in the number of bids
and goods. Accordingly, the run-times for smaller CATS in-
stances are often negligible. Therefore, Table 1 only includes
results for the largest instances we could solve. Note that all
problem instances reported in this table are larger than even
the largest instances reported by Day and Cramton (2012).
Our baseline is the standard CCG algorithm, for which we
report the run-time in minutes, averaged over the 50 runs.1
The standard deviation of the run-times per distribution is
provided in parentheses, to give an idea, for each of the dis-
tributions, how homogeneous or heterogeneous the problem
instances are. Next we present the relative run-time (as a per-
centage of the baseline run-time) for Max-Traitor, Separa-
bility, Incumbents, and “Separability + Incumbents”. Note
that all algorithms share the same code-base, and only vary
regarding which particular constraint(s) they add in each it-
eration, making this a fair run-time comparison.

The results in Table 1 show that Max-Traitor already does
somewhat better than standard CCG for most distributions.
Next, we see that Separability is roughly 50% faster on L4,
Matching and Paths, while it leads to only modest improve-
ments on the other three distributions. While Incumbents
leads to similar speed-ups on L4, Matching and Paths as
Separability, it is also able to significantly reduce the run-
time on Arbitrary, Regions, and Scheduling. But most im-
portantly, we can see (in the last column of Table 1) that
“Separability + Incumbents” leads to the largest speed-up
on four out of the six distributions and is essentially tied
with Incumbents for the other two. For L4, Matching, and
Paths, the combined effect of both ideas is most visible: in-
dividually, each idea leads to a run-time reduction between
roughly 50% and 60%, but combining the two ideas we are
able to bring this percentage down to 28%–33%.

1Note that this is the run-time for the core constraint gener-
ation part of the algorithm only, and does not include the initial
run-time for computing VCG prices. We excluded the run-time for
computing VCG for two reasons: first, our ideas only affect the
core constraint generation part, and thus we are only interested in
measuring the resulting speed-up of that part of the algorithm. Sec-
ond, VCG-prices are just one possible reference point that can be
used in core-selecting CAs. Researchers have argued that other ref-
erence points could be used, e.g., the origin or well-chosen reserve
prices (e.g., Erdil and Klemperer 2010), neither of which would
require computing VCG prices.

Distribution # Goods # Bids Standard CCG Max-Traitor Separability Incumbents Separability + Incumbents

Arbitrary 128 1,000 22:37 min (18:10) 101% 95% 67% 61%
Decay (L4) 256 2,000 8:20 min (2:33) 89% 55% 60% 33%
Matching 256 2,000 16:57 min (7:00) 83% 56% 54% 32%
Paths 256 4,000 14:00 min (3:31) 80% 49% 55% 28%
Regions 256 2,000 45:21 min (81:42) 93% 93% 51% 51%
Scheduling 128 4,000 178:25 min (273:03) 35% 96% 23% 24%

Table 1: Results for all six distributions. Absolute run-times (in minutes) are provided for standard CCG (=baseline), with
standard deviation in parentheses. For all other algorithms, the relative run-time to the baseline is provided. All results are
averages over 50 instances. In each row, the algorithm with the lowest average run-time is marked in bold.

This speed-up is largely due to our algorithm reducing
the number of subordinate NP-hard IP problems that are
solved, as illustrated in Table 2. For each of the six distri-
butions, we report the correlation between the run-time of
“Separability + Incumbents” and the number of constraint
generation iterations of the algorithm. As we see, this cor-
relation is extremely high, except for Scheduling.2 The last
column of Table 2 provides the worst run-time of “Separa-
bility + Incumbents” relative to standard CCG across all 50
instances. Thus, we observe that our algorithm performs ex-
tremely well, not only on average (as shown in Table 1), but
also in the worst case (somewhat less true for Scheduling).

To get a sense of how these results scale in the size of
the auction, consider Figure 2, where we plot the run-time
of “Separability + Incumbents” relative to standard CCG
for a fixed number of goods (the same as reported in Table
1), increasing the number of bids on the x-axis. Note that
we exclude those data points were the average run-time for
standard CCG is less than 250ms. Furthermore, each line
ends at the maximum number of bids that we were able
to run, as reported in Table 1. Figure 2 illustrates that the
relative performance advantage of our algorithm generally
gets larger as the number of bids is increased for all distri-
butions but Scheduling. To summarize, our results demon-
strate that“Separability + Incumbents” leads to a significant
speed-up which is often 50% or larger, and the speed-up can
be expected to grow as the number of bids is increased.

2Note that Scheduling has a significantly higher run-time vari-
ance than the other distributions; this occurs not only across the 50
instances (as reported in Table 1), but even across rounds for in-
dividual instances. Thus, all of our results for Scheduling have a
significantly higher margin of error.

Distribution Run-time & Iteration
Correlation

Worst Relative
Run-time

Arbitrary 0.83 104%
Decay (L4) 0.98 54%
Matching 0.96 61%
Paths 0.99 47%
Regions 0.90 101%
Scheduling 0.36 133%

Table 2: Correlation between run-time and # of CCG itera-
tions, and the worst run-time of “Separability + Incumbents”
relative to standard CCG (=baseline) across all 50 instances.

7 Conclusion
In this paper, we have made several contributions regarding
the design of a faster algorithm for core constraint genera-
tion in CAs. First, we have characterized the limits of the
Max-Traitor heuristic. Next, we have proposed a new for-
mulation of the core in terms of allocations, and we have
proved that it describes the same core polytope as the previ-
ous definition. Furthermore, we have proved that some con-
straints can be strengthened by (a) dropping non-conflicted
winners from a constraint, or (b) splitting up a separable core
constraint. Based on this theory, we have introduced two
algorithmic ideas. The first one takes advantage of struc-
tural separability in allocative conflicts between bidders.
The second one adds additional constraints based on non-
optimal blocking solutions to often prevent additional itera-
tions. Both ideas work by generating multiple (strong) con-
straints in each iteration of the CCG algorithm to reduce the
total number of NP-hard problems that are solved to com-
pute core prices. Our experimental results using CATS have
shown that our main algorithm is significantly faster than the
current state-of-the-art algorithm across all distributions.

In real-world CAs, there is often a time constraint on how
long solving the pricing problem may maximally take. For
this reason, the auctioneer generally restricts the maximal
number of bids per bidder. Having an algorithm that is be-
tween two and four times faster will enable the auctioneer to
allow for additional bids, which will increase efficiency (and
thereby revenue/profits) of the auction. Given that CAs are
used to allocate billions of dollars of resources every year,
we expect our ideas to have a large practical impact.

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

of Bids

0 500 1000 1500 2000 2500 3000 3500 4000

Arbitrary
Decay (L4)
Matching
Paths
Regions
Scheduling

Run-time of
„Separability +
 Incumbents“

relative to
 standard CCG

Figure 2: Run-time of “Separability + Incumbents” relative
to standard CCG (=baseline), for a fixed number of goods.

References
Ausubel, L., and Baranov, O. 2014. A practical guide to the
combinatorial clock auction. Working paper.
Ausubel, L., and Milgrom, P. 2002. Ascending auctions
with package bidding. Frontier of Theoretical Economics
1(1):1–42.
Ausubel, L., and Milgrom, P. 2006. The lovely but lonely
Vickrey auction. In Cramton, P.; Shoham, Y.; and Steinberg,
R., eds., Combinatorial Auctions. MIT Press. 17–40.
Balinski, M. 1965. Integer programming: methods, uses,
computations. Management Science 12(3):253–313.
Clarke, E. 1971. Multipart pricing of public goods. Public
Choice 11(1):17–33.
Cramton, P. 2013. Spectrum auction design. Review of
Industrial Organization 42(2):161–190.
Dantzig, G.; Fulkerson, R.; and Johnson, S. 1954. Solution
of a large-scale traveling-salesman problem. Operations Re-
search 2:393–410.
Day, R., and Cramton, P. 2012. Quadratic core-selecting
payment rules for combinatorial auctions. Operations Re-
search 60(3):588–603.
Day, R., and Milgrom, P. 2008. Core-selecting package
auctions. International Journal of Game Theory 36(3):393–
407.
Day, R., and Raghavan, S. 2007. Fair payments for efficient
allocations in public sector combinatorial auctions. Man-
agement Science 53(9):1389–1406.
Erdil, A., and Klemperer, P. 2010. A new payment rule for
core-selecting package auctions. Journal of the European
Economics Association 8(2–3):537–547.
Goeree, J., and Lien, Y. 2014. On the impossibility of core-
selecting auctions. Theoretical Economics. Forthcoming.
Goetzendorff, A.; Bichler, M.; Day, R.; and Shabalin, P.
2014. Compact bid languages and core-pricing in large
multi-item auctions. Management Science. Forthcoming.
Groves, T. 1973. Incentives in teams. Econometrica
41(4):617–631.
Hoffman, K., and Padberg, M. 1993. Solving airline crew
scheduling problems by branch-and-cut. Management Sci-
ence 39(6):657–682.
Künzi-Bay, A., and Mayer, J. 2006. Computational as-
pects of minimizing conditional value-at-risk. Computa-
tional Management Science 3(1):3–27.
Leyton-Brown, K., and Shoham, Y. 2006. A test suite for
combinatorial auctions. In Cramton, P.; Shoham, Y.; and
Steinberg, R., eds., Combinatorial Auctions. MIT Press.
Milgrom, P. 2007. Package auctions and exchanges. Econo-
metrica 75(4):935–965.
Nemhauser, G., and Wolsey, L. 1988. Integer and Combi-
natorial Optimization, volume 18. Wiley-Interscience.
Nisan, N. 2006. Bidding languages for combinatorial auc-
tions. In Cramton, P.; Shoham, Y.; and Steinberg, R., eds.,
Combinatorial Auctions. MIT Press.

Parkes, D.; Kalagnanam, J.; and Eso, M. 2001. Achiev-
ing budget-balance with Vickrey-based payment schemes in
exchanges. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI), 1161–1168.
Sandholm, T. 2002. Algorithm for optimal winner deter-
mination in combinatorial auctions. Artificial Intelligence
135(1):1–54.
Sandholm, T. 2007. Expressive commerce and its applica-
tion to sourcing: How we conducted $35 billion of general-
ized combinatorial auctions. AI Magazine 28(3):45–58.
Vickrey, W. 1961. Counterspeculation, auctions, and com-
petitive sealed tenders. The Journal of Finance 16(1):8–37.

