
Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 1

From Hello World to Interface Design in Three Days:
Teaching Non-technical Students to Use an API

George M. Wyner
Boston University School of Management

gwyner@bu.edu

Benjamin Lubin
Boston University School of Management

blubin@bu.edu

ABSTRACT

In this preliminary report we describe ongoing research aimed at developing an effective method for
giving business students the experience of using an API. Specifically, we seek a method that is
accessible and useful even to students with no technical background. The approach we have taken is to
teach students a small but sufficient amount of the Python language and then provide them with the API
to a restaurant information system that we have developed specifically for the course. Student teams
use the API to implement a simple information system tailored to the specific work flow of a restaurant
of their choice. Anecdotal evidence suggests that students have found the programming experience
useful and that further investigation of the proposed method is warranted. This paper describes the
approach taken and the reasons behind the approach in enough detail so that the reader can assess its
potential relevance to his or her own curriculum and find some guidance on how to develop similar
approaches.
Keywords

Management Pedagogy, Curriculum Development, Introduction to Programming, API.
INTRODUCTION

This paper describes preliminary research towards the development of teaching materials used to give
MBA students with a non-technical background a hands-on introduction to the concept of an application
programming interface (API). Our focus here is primarily on describing the approach we have taken to
teaching these concepts, including extensive commentary on what we consider to be the key elements of
this approach and our rationale for the key decisions we made in developing this material. What this
paper does not do is to provide an evaluation of how our work compares to existing alternatives for
conveying this type of technical content to non-technical audiences. Neither do we provide a rigorous
evaluation of the benefits we ascribe to our approach, although as we will describe below, there is
anecdotal evidence to suggest our approach was perceived as useful by the students who have
experienced it. Our hope is that, while preliminary in nature, this research in progress will be of use to
others engaged in the challenge of usefully conveying technical content to management students. Our
goals for this paper are two-fold: First, to describe the approach we have taken and the reasons behind
that approach in enough detail so that readers can assess its potential relevance to their own curricula;
for those so interested we offer some guidance on the development of similar approaches. Second, we
seek to provide a foundation for future empirical work in which we systematically assess the usefulness
of our approach and its applicability to future business school curricula.
TEACHING GOALS

We developed this module in the context of a one week intensive course on business architecture which
is taught as part of dual degree program where students concurrently pursue an MBA and an MS in
information systems. The program is targeted at students with varying backgrounds, including those
with strong technical skills and those with no previous experience with programming or managing

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 2

information technologies. The goal of the program is to develop managers with a deep grasp of the
capabilities of information technologies and the methods by which they can be deployed in the service
of an organization. The program is not positioned as a “techno-MBA” in that the goal is not to train
managers specifically for the technology industry but rather to prepare them to employ information
technology to advantage in any industry.
In order to provide students an opportunity to complete the second degree in the same time frame as
single degree MBA students, the program includes a number of intensive courses in which a full or half
semester course is delivered in one or two weeks by means of full-day executive education style classes
in which students are in the classroom from 8am until 6pm, Monday through Friday. These intensive
classes need to be delivered when regular classes are not in session, specifically in early January, before
the start of the spring semester, and again in late May, after the spring semester and before students
begin their summer internships.

The particular intensive course for which we developed our approach occurs in January of the first year
of the program and is the first contact students have with the technology content of their degree
program. The course has an ambitious goal which is to take students from the lowest levels of
architecture, such as the architecture of a central processing unit (CPU), to the highest levels of
architecture, such as a business architecture in which information systems are but one component.
A central goal of the course is to teach students not only what an API (application programming
interface) is, but also a sense of how APIs work and why they are important – and thus why analogous
concepts across computing and web architectures are likewise important. Given the move to cloud
computing, software as a service, and service oriented architectures, managers are now in a position to
build solutions by plugging together diverse technologies. The potential business value of these
technologies often rests in the formal description of the services they provide, which is to say the API
that they expose.
THE CHALLENGE

We must confront the basic issue that our students have for the most part non-technical backgrounds and
thus, for many of them, this is their first introduction to programming. Previous experience with
teaching technical material to business students has suggested the efficacy of giving students hands-on
experience with technology. However, given the intense nature of the class schedule and the students’
limited technical background we must be selective so as to create a practical structure and scope of
work. In doing this, we seek to create an experience that is compelling to students whose primary goal
is not to learn to program, but rather to understand the business implications of the technologies
presented.
PREVIOUS CURRICULA

In previous years we have had students obtain practical knowledge of an API by creating Mashups using
Yahoo Pipes. This was in many ways a very successful exercise. Mashups are fun to create and are
appealing as examples of relatively new web technologies. The graphical interface provided by Pipes
and the set of built-in capabilities allows students to create impressive looking Mashups with a small
amount of effort and with no programming. Ironically, this advantage is also a drawback to this
approach: the graphical interface in Pipes makes it easy to use, but obscures what is going on
underneath the hood. Yet, it is precisely some of these details that we want to make visible to the
students.

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 3

Even more problematic, the most interesting (business relevant) examples of an API in the Pipes
environment involve connections to external sources of data such as web pages and newsfeeds using the
Really Simple Syndication (RSS) protocol. In this case the API is embedded in the construction of the
Uniform Resource Locator (URL), either as a path to a resource as when using the Representational
State Transfer (REST) approach (Richardson and Ruby, 2007), or as a set of parameters. This use of the
URL as the API to a website not only obscures the notion of an API as a request for service but is quite
opaque to students with limited experience with the technical aspects of the world wide web, which is to
say most of our students. Using actual web services would be one way to make the API more visible but
Pipes has limited support for interacting with web services that are defined using the Web Services
Description Language (WSDL), and this approach to web services would be potentially even more
impenetrable to a newcomer than the programming-based approach we describe in the sequel. Finally,
the graphical nature of Pipes obscures the implicit program that is being described, and creates a
substantial pedagogical gap with the hands-on programming exercise we eventually gave the students,
namely a self-contained use of a scripting language like Ruby or Perl.

Due to these drawbacks in the use of Mashups, we have sought a way to enable students to quickly be
able learn about architecture and APIs in the same environment where they learn simple programming: a
text editor and an interpreted language. This change lets us maintain continuity between the student
experience in our hands-on programming labs, and their exposure to architectural considerations at the
API level and beyond. In particular, we teach students about functions and their parameters and then
introduce the API as a set of such functions. However, rather than building up an API slowly, as may
happen in most traditional courses, we instead create a complete API for an imaginary system, enabling
our students to focus on complete interfaces early, rather than on the programming details. The trick is
to keep this early exposure to complexity from becoming confusing.
The API we provide consists of a flat set of self-contained functions that are called by the student when
writing short programs. While not as exciting as accessing a well known API like that of Amazon or
Twitter over the web, this has fewer moving parts and enables us to carefully manage the complexity of
the API and provide documentation tuned to the students’ background and the context of the course.
Students thus obtain a toolkit which is well integrated and complete, and which they can thus more
easily comprehend as a whole.
In addition to our prior experience with Mashups, another area of previous curricula has influenced our
decision to adopt this approach. Consider two options: 1) teach students a complete but hugely
simplified machine architecture with a ten op-codes or 2) teach students a tiny subset of a high-level
scripting language like Ruby. We have found that students are far more at ease, and far more successful
with the material in option 1, even though the machine language instructions are far more technical than
the more friendly high-level language in option 2. We hypothesize that students are more comfortable
because they can quickly understand the complete instruction set (ten simple commands) as opposed to
the richer set of options provided by a high-level language. Based on this admittedly untested
hypothesis we foresaw a potential advantage to our small home-grown API approach over larger real-
world examples: if we limited the size of the API and provided complete and readable documentation,
then students would be able to digest the possibilities afforded by the complete API and think creatively
about how to deploy it to solve a problem.
Finally, the rough hewn nature of the API is itself a potential advantage. We make clear to students that
this API is being built just for the assignment and may have shortcomings. We encourage students to
report bugs and request enhancements. We believe that if we can take non-technical students to a point
of engagement with an API where they are able to identify non-obvious shortcomings, then they have

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 4

internalized the concepts in a way that will well position them to subsequently take this same critical
perspective to the selection and use of real world interfaces. When this happens, we consider it to be a
great outcome for the course.
A desire to enable a rapid response to such change requests has led us to develop and deploy the API via
an industry standard Subversion (SVN) version control system (hosted on Google Code). This not only
facilitates remote collaboration among those creating the API, it also enables us to expose students to a
version control system and concretely explain why such platforms are useful in development. In the
2011 version of the course, we released several revisions to the API during the exercise including
updates to both code and documentation.
THE TEACHING MATERIALS

This analysis suggested that we present students with a series of labs that embody this API-based
approach. The labs introduce students to programming, including all the concepts they need in order to
work with the API we subsequently provide. This includes: how to write code into a text file and
execute the resulting program, the use of variables to store information, basic input and output, and
simple mathematical operations and manipulation of text in the form of strings. Finally students need to
learn some control flow, including looping and if statements and, most critically for the concept of an
API, about functions, their parameters and return values.
We use Python as our programming language for several reasons. Since Python is an interpreted
language, students can try things out using an interactive command line. Python has a very gentle
learning curve. While Python is object oriented in nature, this can be hidden from view (unlike in Java
or Ruby) so we can give students an introduction to procedural programming without the need to master
the notion of objects. Objects are not the goal of this particular course, and thus rather than the “objects
first” or “objects second” styles some courses use, we prefer to avoid the question entirely in this course
with an “objects never” approach. Finally, Python uses a particularly simple syntax with a minimum of
special characters like “;’ at the end of commands or “{}” to enclose blocks of code. While Python’s
peculiarity of using white space to denote a code block is perhaps controversial to aficionados of other
languages (which studiously avoid making white space significant), we find the resulting visual structure
and enforced style compliance to help our neophyte programmers, who can intuit what a code block is
almost without being told, and who find the cleanliness of the syntax welcoming.

We chose to have students use Eclipse as an integrated development environment for their Python
programming. While Eclipse was originally developed for Java development, it has a very usable
Python plug-in which we have students install. We believe it is useful for students to see what an
integrated development environment (IDE) is like. While Eclipse provides students assistance in the
development process, the operating parts of the system continue to be very visible: students see both the
code they write and the results of its execution with no graphical user interface (GUI) intervening to
obscure this connection.
We have structured the course such that the first three labs introduce students to Python programming,
while the fourth and final lab has students working with our API. The labs are all required but
ungraded. Our goal is to take away the anxiety of having non-technical students working with this
material by allowing them to collaborate informally during the lab. Our one requirement is that each
student needs to get each lab to work on his or her own laptop. While the first three labs are essentially
individual projects (although the students are encouraged to help each other work on them), the fourth
lab is a team exercise as described below.

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 5

Labs 1-3: Programming in Python

Lab 1: Getting Started with Python

The goal of Lab 1 is to have students install Eclipse and write their first program. This is the traditional
“hello world” program, which simply prints the message “hello world” on the user’s screen. The
complete code for this program in Python is:
print “Hello World!”
In this case we give the code to the students, and ask them to download, install and get comfortable with
the programming environment.
Lab 2: Algorithm Implementation

In this lab students are asked to write a series of simple Python programs. The programs build on each
other, culminating in a simple cash register program. We choose this application for two reasons: first, a
cash register is nothing if not business-relevant and second, the cash register is very simple and allows
us to introduce three important programming constructs: a loop with simple arithmetic, branching
(decision making), and user input and output.

A lecture precedes the lab and introduces all of the necessary concepts. During the lecture students are
encouraged to try out the syntax being described using a Python interpreter on their own laptop.

The students are asked to build the following programs in the lab:
o Prompt the user to enter a series of numbers and then print out the total, using a simple loop and

basic input/output.
o Next add the following functionality: calculate sales tax (fixed at 5%) and print a grand total.

This step requires students to make more extensive use of variables and adds incrementally to the
complexity.

o Finally, add the ability handle tax exempt customers. This requires students to understand and
use an if-then-else construction. A sample output of this third program is included in Figure 1.

Tax exempt? (y or n): n
Item: 3.95
Item: 6.95
Item: 7.95
Item:
Subtotal: 18.85
Tax: 0.9425
Total: 19.7925

Figure 1. Sample Output of Lab 2, Part 3

Lab 3: Using Functions and Lists in Python

This Lab introduces two new concepts: function calls and lists. Again the material is discussed in
advance in a lecture. We choose to introduce lists so that students can begin to see how a data structure
can be built up, the list being perhaps the most basic example of structured data. Information systems
move data around in chunks, via objects, database result sets, JavaScript Object Notation (JSON),
Extensible Markup Language (XML), and so on. This use of structured data is essential to all but the
most trivial APIs and we thus consider it an important topic not only for grasping the notion of an API,

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 6

but for subsequent course work as well. In the API provided in Lab 4 we make occasional use of more
elaborate data structures; armed with their understanding of lists, students are able make sense of these
structures by analogy to lists, implicitly learning something of encapsulation in the process.
In lab 3 students are asked to recreate the third program from lab 2, now dividing the functionality into
three separate functions. We provide students with a definition of what each function ought to do.
Students are asked to add in the code needed to make the functions work. For two of the functions we
give students the function declaration, and ask them to code the body (based on their work in lab 2).
For the third function students have to provide the function declaration as well as its definition.
Students’ use of lists is enforced by stipulating lists in the arguments of the provided function
declarations.

In working on lab 3, students are encouraged to refer back to the previous lab and reuse their already
written code. Students can thus see how introducing functions can make existing code more modular.
This is connected to a lecture on modularity which introduces students to these concepts (Baldwin and
Clark, 1999; Simon, 1981; Messerschmitt 2000). This opens the possibility of a high level discussion
about the desirability of modularity and modular design.
Lab 3 gives students an initial experience with an extremely basic API: one that consists of exactly 3
functions. It thus sets the stage for the fourth lab, where students work with a far more elaborate API.
Lab 4: Building a Restaurant Information System

The fourth lab is designed as an extended exercise in using an API to deliver meaningful business
functionality. As noted above, a key element of our pedagogical strategy is to carefully design our own
custom API to precisely fit the needs of our students, rather than forcing them to confront an overly
complex real-world system. This enables us to explicitly seek a balance between minimizing the
complexity of the API and providing students with an opportunity for creativity in how they use the API.
Given our goal of relating programming interfaces to higher level business decision-making, we focus
on a situation that explicitly involves process design. Specifically, we choose a restaurant domain
because of its familiarity to the students and because of the tremendous variation in how the work of a
restaurant can be organized (Salancik and Leblebici, 1988; Whyte, 1949). We present the students with
an API that provides support for the creation of a basic restaurant information system. Our materials
describe it as follows:

The concept is of a restaurant with a touch screen embedded in each table
along with a credit card reader. The idea is that the touch screen will be
used for ordering food and paying for the food. The API also includes
support for managing the flow of orders through the kitchen, both alerting
the kitchen to new orders and alerting wait staff to the availability of
“platters” of food to be served at the table.

In reality, the code we provide to students is more of a simulation of such a restaurant system, in that we
don’t actually have them using touch screen displays. Instead this behavior is represented to them on the
console: e.g. students can display a (text) menu on the screen, and have “the customer” interact with it.
As Salancik and Leblebici have discussed in their work, there is tremendous variation in how a
restaurant might organize the delivery of food to a customer in exchange for a payment (Salancik and
Leblebici, 1988). The API is designed to support as much of this variability as possible while capturing
the various constraints about the sequence in which tasks can be performed. For example, functions

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 7

relating to serving food cannot be called unless the food involved had been previously prepared. See
Table 1 for a selection of the functions included in the API along with a brief description of their use.

Function Description
start_meal(restaurant_name, greeting) Initiates the system for a new group of

diners. Does not return anything.
Displays restaurant name followed by
greeting on the line below.

end_meal(restaurant_name, message) Closes out the session for the current
group of diners. Does not return
anything. Displays message followed
by restaurant name.

show_logo(restaurant_name) Displays restaurant name surrounded
by a box. Used mainly by start_meal
and end_meal but you can use it any
time you want to display a logo.

get_menu(file_name, title) Reads in menu information from a
CSV file and returns a menu with the
specified title. The title parameter is
optional with a default value of
‘Menu’.

show_menu(menu) Display a menu on the screen
create_order(waiter, table) Create a new Order and return it
get_choice(menu, order) Displays the menu to the user and

updates the order to reflect the choices
made by the customer.

show_order(order) Print out an Order on the display
prepare_food(order) Notifies the kitchen that there is food to

be prepared. Returns a LIST of tickets;
one for each plate of food to be created.

pickup_food(ticket) Pick up a new plate of food for a given
ticket. Returns the plate of food.

serve_food(plate) Serve a the given food, returns nothing
new_bill() Creates a new empty bill and returns it
add_to_bill(bill, order) Add an order to a bill
show_bill(bill) Display a bill
merge_bills(bill1, bill2) Merges two bills and returns a NEW

merged bill
get_payment_type(bill) Asks the customer what type of

payment it wants to make and returns

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 8

this
collect_payment(paymentType, bill) Collects payment from the customer

Table 1. Restaurant API

The functions which comprise the API are made available in a set of Python modules (that is, files
containing Python code) which students import into their own program. The lab itself consisted of the
following assignment:

In this lab you will work in small teams to develop a restaurant
information system using an API. Your team should identify a high level
(summary) use case for your restaurant that reflects the nature of the
business and how the dining experience will unfold. Is this a fast food
restaurant where payment is collected up front? Or a fine dining
establishment where a menu is presented at several points in an
elaborately choreographed evening of gustatory delight?
The use case does not need to be turned in but you will want to have it
noted down someplace for reference. You will all be using this use case
as a point of departure for your individual use case assignments and it will
be an important reference point in designing your system.

Students are previously taught about use cases as a method for capturing the user experience of a system
(Cockburn 2001). For this lab students are asked to create a use case to summarize the customer
experience they are hoping to provide in their restaurant. Students then build a working system guided
by this use case.
RESULTS

While we have not yet formally evaluated the approach just described, we do have anecdotal evidence
that it has been well received by students and provides something of value to them. Here we describe
the results of having used this method to teach an intensive course in January 2011:

First, the students were highly successful in understanding and using the API both conceptually and
practically. All of the student teams were able to present a working system at the end of the afternoon
lab, with one exception. The one student team that did not create working code had deliberately given
themselves a harder task to complete: they broke the code into entirely separate coding projects which
they then sought to integrate. While they did not have sufficient time to complete this work, their even
more modular approach to the project suggests that they had internalized some of the key concepts
presented during the previous days.
Our informal conversations with students uniformly suggested that they found the material useful.
Several students commented that as a consequence of the perceived usefulness of the course material,
they were looking forward to the more extended technical intensive scheduled for this coming summer,
although it would be a stretch to ascribe this attitude entirely to the novel approach we took.
Perhaps stronger (though still informal) evidence for the utility of our novel approach comes from the
following outcome: for the first time in ten years of teaching technical material to management
students, a group of ten students exposed to this new material decided to self-organize into a study group
in order to learn more Python on their own. This represents nearly a third of all the students who took
this course. Given that in previous years we have had students arguing that there should be less
programming taught, it is significant that this year ten MBA students felt the opposite so strongly, they

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 9

took it upon themselves to create a venue for learning it. One should certainly be cautious leaping to the
ascription of a causal link here, but this is certainly encouraging evidence for pursing this new approach
further.
DISCUSSION

While our approach has been well received by students and we have anecdotal evidence that it may have
value, it is important to note the limitations of the current exercise. The API we developed was of
necessity very simple and thus is not usable in a practical setting. Students have therefore not gained
experience with a realistic and widely used API. We believe this limitation to be outweighed by the
benefits of a more approachable programming experience, especially given the primary goal of
understanding how an API works rather than gaining a marketable programming skill. However, the
exercise might be even more effective if an established real world API could be adapted for this purpose.
A second possible limitation is the use of Python, which is not as widely used in the classroom and in
industry as Java or .NET programming. Again, we felt that the benefits of Python’s accessibility made
it a good choice for this exercise, despite its smaller marketshare. Moreover, Python has been getting
increasing attention because of its central role in Google’s new App Engine development environment
(Sanderson, 2009). One possibility would be to develop a second and subsequent course which
leverages students’ familiarity with APIs and Python programming to work with a real-world example
based on Google’s App Engine platform.
CONCLUSION

As noted in the introduction, we have two primary goals for this paper. First, we described the
challenge we face in teaching technical material to dual degree business students without a technical
background and offered a particular approach to addressing this challenge: giving students a hands-on
experience with the use of an API to create business value. We have described both the teaching
materials we have developed for this purpose, and the third party tools (Python, Eclipse, and Google
Code) which we employed.

Our second goal is the building of a foundation for future work. By providing some modest anecdotal
evidence that our approach was effective, we have hopefully made the case that such further work is
warranted. Specifically, we propose to collect data to assess the effectiveness of our approach in
conveying an understanding of core programming concepts, controlling for the wide range of technical
backgrounds and career interests in our student population. One intriguing question is why almost one
third of the students exposed to Python in this way decided they wanted to learn more about
programming. What do they hope to learn and what in their experience with this material made them
see this need? It would appear that at least some of the students who encountered an API in this hands-
on way have come to believe that understanding code is a potential specific source of advantage for a
manager, which, if true, might indicate the utility of providing a range of additional technical material
using the methods proposed here.
ACKNOWLEDGMENTS

The authors would like to thank the Boston University MS-MBA class of 2012 for their enthusiastic
participation in this programming experience, and especially to thank Thomas Eisner for his
contributions to the development of the API.
REFERENCES

1. Baldwin, C. Y. and Clark, K. B. (1999) Design rules: The power of modularity volume 1, MIT
Press, Cambridge, MA.

Wyner et al. Teaching Non-technical Students to Use an API

Proceedings of the Seventeenth Americas Conference on Information Systems, Detroit, Michigan August 4th-7th 2011 10

2. Cockburn, A. (2001) Writing effective use cases, Addison-Wesley Publishing Company, Upper
Saddle River, NJ.

3. Messerschmitt, D. G. (2000) Understanding networked applications: a first course, Morgan
Kaufmann Publishing, San Francisco.

4. Richardson, L. and Ruby, S. (2007) RESTful web services, O'Reilly Media, Inc., Sebastopol, CA.
5. Salancik, G. R. and Leblebici, H. (1988) Variety and form in organizing transactions: A generative

grammar of organization, in N. DiTomaso and S. B. Bacharach (Eds.) Research in the Sociology of
Organizations, 6, JAI Press, Greenwich, CT, 1-31.

6. Sanderson, D. (2009) Programming Google App Engine, O'Reilly Media, Inc., Sebastopol, CA.
7. Simon, H. A. (1981) The sciences of the artificial (2nd Edition), MIT Press, Cambridge, MA.
8. Whyte, W. F. (1949) The social structure of the restaurant, The American Journal of Sociology, 54,

4, 302-310.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	8-6-2011

	From Hello World to Interface Design in Three Days: Teaching Non-technical Students to Use an API
	George M. Wyner
	Benjamin Lubin
	Recommended Citation

	Three_Days_of_the_Python_v15

